离散数学2
- 格式:ppt
- 大小:320.00 KB
- 文档页数:11
联结词----否定、合取复合命题是用“联结词”将原子命题联结起来构成的.归纳自然语言中的联结词,定义了六个逻辑联结词:(1)否定“⌝”(2)合取“∧”(3) 析取“∨”和异或“”∨(4) 条件(蕴涵)“→”(5)双条件(等价)“∆”或记做“↔”一. 否定“⌝”表示:“…不成立”,“不…”.用于:对一个命题P的否定,写成⌝P,并读成“非P”.⌝P的真值:与P真值相反.例 P:2是素数.⌝P:2不是素数. P ¬P F T T F例1. P: 天津是一个城市.Q: 3是偶数.于是: ⌝ P: 天津不是一个城市.⌝ Q: 3不是偶数.例2. P:济宁学院处处清洁.Q:这些都是男同学.(注意,不是处处不清洁)⌝ P:济宁学院不处处清洁.⌝ Q:这些不都是男同学.二. 合取“∧”表示:“并且”、“不但…而且...”、“既…又...” “尽管…还…”.例 P:小王能唱歌.Q:小王能跳舞.P∧Q:小王能歌善舞. P∧Q读成P合取Q.P∧Q的真值为真,当且仅当P和Q的真值均为真.P Q P∧Q F F F F T F T F F T T T例3. 将下列命题符号化:(1)李平既聪明又用功.(2)李平虽然聪明, 但不用功.(3)李平不但聪明,而且用功.(4)李平不是不聪明,而是不用功.解: 设P:李平聪明. Q:李平用功.则 (1) P∧Q (2) P∧⌝ Q(3) P∧Q (4) ⌝(⌝ P)∧⌝ Q例4. 翻译下列命题的合取.(1) P: 我们在C403教室. Q: 今天是星期二.(2) S:李平在吃饭. R:张明在吃饭.解: (1) P∧Q :我们在C403教室且今天是星期二.(2) S∧R:李平与张明在吃饭.“∧”与日常语言中“与”“和”的不同之处:(1)逻辑学中允许两个相互独立无关,甚至相反的原子命题生成一个新命题.(2)自然语言中有时在不同意义时可以同时使用“与”“和”,但是不能都用“∧”翻译.(如:我和你是好朋友.李敏和李华是姐妹.)说明:“∧”属于二元运算符.合取运算特点:只有参与运算的二命题全为真时,运算结果才为真,否则为假.自然语言中的表示“并且”意思的联结词,如“既…又…”、“不但…而且…”、“虽然…但是…”、“一面…一面…”、“…和…”、“…与…”等都可以符号化为∧.。
离散数学(2)复习题一、判断题1、两个集合相等的充分必要条件是这两个集合互为补集。
( × )2、两个集合相等的充分必要条件是这两个集合互为子集。
( √ )3、两个集合相等的充分必要条件是这两个集合互为幂集。
( × )4、对于任意一个集合A ,A f Í。
( √ )5、对于任意一个集合A ,A f Î。
( × )6、如果有限集合有n 个元素,则其幂集有2n 个元素。
( √ )7、设R 、S 是集合A 上的关系,且R S Ê,则()()s R s S Ê。
( √ )8、设R 、S 是集合A 上的关系,且R S Ê,则()()t R t S Ê。
( √ )9、设R 、S 是集合A 上的关系,且R S Ê,则()()r R r S Ê。
( √ )10、一个关系可以:既不满足自反性,也不满足非自反性。
( √ )11、一个关系可以:既不满足对称性,也不满足反对称性。
( √ )12、一个关系可以:既满足对称性,同时也满足反对称性。
( √ )13、若图G 是不连通的,则图G 的补图G -是连通的。
( √ )二、单项选择题1、由集合运算定义,下列各式正确的有( A )。
A.X ⊆X ⋃YB.X ⊇X ⋃YC.X ⊆X ⋂YD.Y ⊆X ⋂Y2、设A B -=∅,则有( C )。
A.B =∅B.B ≠∅C.A B ⊆D.A B ⊇3、对任意的集合A 、全集U ,下列命题为假的是( D )。
A.A ⋃∅ =A ,B.A ⋃U = UC.A ⋂∅ = ∅,D.A ⋂U = U4、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x ∈A,y ∈A},则R 的性质为( B )。
A.自反的B.对称的C.传递的,对称的D.反自反的,传递的5、设R 和S 是集合A 上的任意关系,则下列命题为真的是( A )。
离散数学(第2版)——关于数学中重要的研究方向
离散数学是一门涉及数学中各种离散对象的研究方向,包括数论、图论、代数等。
离散数学是计算机科学、通信工程和其他许多工科领域的基础,对于理解计算机算法的原理和应用具有重要意义。
本文将对离散数学(第2版)这本数学教材进行介绍。
离散数学(第2版)是由美国杜克大学的Kenneth H. Rosen所著的数学教材。
这本书共分为五章,分别是基础概念、逻辑和计算、数论、图论、代数和应用。
第一章主要介绍了离散数学的基础概念,包括逻辑基础、集合、关系和函数。
第二章介绍了逻辑和计算的相关内容,包括命题逻辑、谓词逻辑、计算机科学中的逻辑和布尔代数。
第三章是关于数论的章节,包括质数、最大公约数、最小公倍数、模运算、同余方程等内容。
第四章是关于图论的章节,包括无向图、有向图、连通图、生成树、最短路径、最小生成树等内容。
第五章是关于代数和应用的章节,包括代数系统、群、域、同余环、线性代数和代数应用等内容。
本书还附有大量的练习题,帮助读者检验自己的学习效果。
离散数学(第2版)是一本系统而全面的数学教材,涵盖了离散数学的各个方面。
它适合作为计算机科学和工科领域的数学基础教材,也可作为普及离散数学的参考书。