一次函数图象实际问题
- 格式:doc
- 大小:1.15 MB
- 文档页数:16
中考复习专题三一次函数图象的实际应用类型一行程问题命题角度❶单人行程问题(2019·吉林省实验模拟)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少 5 km,下坡的速度比在平路上的速度每小时多5 km,设小明出发x h后,到达离乙地y km的地方,图中的折线ABCDEF表示y 与x之间的函数关系.(1)小明骑车在平路上的速度为________km/h,他在乙地休息了________h;(2)分别求线段AB,EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85 h,求丙地与甲地之间的路程.【分析】(1)分别计算出小明骑车上坡的速度,小明在平路上的速度,小明下坡的速度,小明在平路上所用的时间,小明下坡所用的时间,即可解答;(2)根据上坡的速度为10 km/h,下坡的速度为20 km/h,所以线段AB所对应的函数关系式为y=6.5-10x,线段EF所对应的函数关系式为y=4.5+20(x-0.9),即可解答;(3)设小明出发a小时第一次经过丙地,根据题意得到6.5-10a=20(a+0.85)-13.5,求出a的值,即可解答.【自主解答】1.快递员张师傅从快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间x(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义________;(2)图中a=______,直线BC的函数解析式为______;(3)出发x小时,快递员距离快递公司10千米,求x的值.命题角度❷双人行程问题(2019·松原模拟)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=________;b=________;m=________;(2)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100米,此时小军骑行的时间为______分钟.【分析】(1)根据题意和函数图象中的数据可以求得a,b,m的值;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以列出相应的方程,从而可以求得t的值.【自主解答】2.(2019·白山一模)周末,甲、乙两名大学生骑自行车去距学校6 000米的净月潭公园,两人同时从学校出发,以a米/分的速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙,甲追上乙后,两人以相同的速度前往净月潭,乙骑自行车的速度始终不变,设甲,乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a,b的值;(2)求甲追上乙时,距学校的路程;(3)当两人相距500米时,直接写出t的值是______.3.(2019·白山二模)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟,发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与姐姐出发时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮骑共享单车返回家所用的时间是______分钟,他骑共享单车从家到图书馆所用的时间为________分钟;(2)求小亮骑共享单车从家出发去图书馆时,距家的路程y(米)与姐姐出发时间x(分钟)之间的函数关系式;(3)当小亮追上姐姐时,他距图书馆的路程是____米.类型二 注水问题(2019·吉林名校模拟)游泳池换水清洗的整个过程为“排水——清洗——注水”.一个长方体的游泳池在一次换水清洗的过程中,排水速度是注水速度的2倍,清洗的时间为50 min ,这次换水清洗过程中游泳池水量y(m 3)与时间x(min)之间的函数图象如图所示.(1)这次换水清洗的过程中排水的速度为______m 3/min ;(2)求“注水”过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在该游泳池换水清洗的整个过程中,当池水的水位高度恰好是注满水的池中水位高度的13时,直接写出x 的值.【分析】(1)分析图象可得;(2)根据图象及排水速度是注水速度的2倍求解即可;(3)分两种情况讨论.【自主解答】4.(2019·长春模拟)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.每日从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与时间x(小时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.类型三 费用与工程问题(2019·长春模拟)甲、乙两车间同时开始加工一批零件,加工一段时间后,甲车间的设备出现故障停产维修设备,乙车间继续加工,甲车间维修好设备后提高了工作效率,每小时比出现故障前多加工10个零件,从开始加工到加工完这批零件乙车间的工作效率不变且工作10小时.甲、乙两车间加工这批零件的总数量y(个)与加工时间x(时)之间的函数图象如图所示.(1)甲车间每小时加工零件________个;(2)求甲车间维修完设备后,y 与x 之间的函数关系式;(3)求加工完这批零件总数量的23时所用的时间.【分析】(1)根据“工作效率=工作总量÷工作时间”即可求出甲车间每小时加工零件的个数;(2)根据待定系数法即可得到甲车间维修完设备后,y 与x 之间的函数关系式;(3)先求出零件总数量的23,再根据(2)中的函数关系式,即可得解. 【自主解答】5.(2019·德惠模拟)某快递公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的一次函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?6.(2019·吉林二模)假期小颖决定到游泳馆游泳.游泳馆门票有两种:A种是每天购票进馆,没有优惠;B种是每月先购买贵宾卡,持贵宾卡购票每张可减少8元.设小颖游泳x次,y1(元)是按A种购票方案的费用,y2(元)是按B种购票方案的费用.根据图中信息解答问题:(1)按A种方案购票,每张门票价格为________元;(2)按B种方案购票,求y2与x的函数解析式;(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.参考答案类型一【例1】 (1)15 0.1(2)由题意可知,上坡的速度为10 km/h ,下坡的速度为20 km/h , ∴线段AB 所对应的函数关系式为y =6.5-10x ,即y =-10x +6.5(0≤x≤0.2).线段EF 所对应的函数关系式为y =4.5+20(x -0.9),即y =20x -13.5(0.9≤x≤1).(3)由题意可知,小明第一次经过丙地在AB 段,第二次经过丙地在EF 段. 设小明出发a 小时第一次经过丙地,则小明出发后(a +0.85)小时第二次经过丙地,∴6.5-10a =20(a +0.85)-13.5,解得a =0.1,∴0.1×10=1(千米).答:丙地与甲地之间的路程为1千米.跟踪训练1.解:(1)张师傅到达小区后将快递投放到快递专柜(2)3 y =-30x +90(3)分为两种情况:当出发至离公司10千米时,t =10÷20=0.5(h),当回公司至离公司10千米时,10=-30x +90,解得x =83. 【例2】 (1)10 15 200(2)设小军第二次与爸爸相遇时距图书馆的距离为S 米.根据题意得3 000-S 120=15+3 000-S -1 500200, 解得S =750.答:小军第二次与爸爸相遇时距图书馆的距离是750米.(3)704,20或1456跟踪训练2.解:(1)由题意a =9004.5=200,b =6 000200=30, ∴a=200,b =30.(2)9001.5×200+4.5=7.5. 设t 分钟甲追上乙,由题意300(t -7.5)=200t ,解得t =22.5,22.5×200=4 500(米),∴甲追上乙时,距学校的路程为4 500米.(3)5.5分或17.5分两人相距500米时的时间为t 分钟.由题意得1.5×200(t-4.5)+200(t -4.5)=500,解得t =5.5(分);300(t -7.5)+500=200t ,解得t =17.5(分).3.解:(1)2 20(2)∵小亮骑车从家到图书馆用了20分钟,∴点C 对应的时间为30-20=10,即C(10,0).设y =kx +b ,过C(10,0),E(30,3 000),∴⎩⎪⎨⎪⎧10k +b =0,30k +b =3 000,解得⎩⎪⎨⎪⎧k =150,b =-1 500,∴y=150x -1 500(10≤x≤30).(3)2 250类型二【例3】 (1)20(2)1 500÷(20÷2)=150(min),由图可知,150+(75+50)=275(min),∴A(125,0),B(275,1 500).设y =kx +b ,∴⎩⎪⎨⎪⎧125k +b =0,275k +b =1 500,∴⎩⎪⎨⎪⎧k =10,b =-1 250,∴y=10x -1 250(125≤x≤275).(3)50或175.跟踪训练4.解:(1)由图象可知,4点到8点进水20立方米,∴每小时进水量为5立方米.(2)当8≤x≤12时,由图象知,线段过点(8,25)和(12,35).设函数解析式为y =kx +b ,代入(8,25),(12,35)得⎩⎪⎨⎪⎧8k +b =25,12k +b =35,解得⎩⎪⎨⎪⎧k =52,b =5,∴当8≤x≤12时,y 与x 的函数关系式为y =52x +5. (3)9.2≤x≤16.8.类型三【例4】 (1)60(2)(150+10)×(10-4)+540=1 500.设y =kx +b, 把(4,540),(10,1 500)代入得⎩⎪⎨⎪⎧4k +b =540,10k +b =1 500,解得⎩⎪⎨⎪⎧k =160,b =-100,∴y=160x -100.(4<x ≤10)(3)根据题意得1 500×23=1 000, ∴160x-100=1 000,解得x =558. 跟踪训练5.解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180, 解得⎩⎪⎨⎪⎧k =90,b =-90.∴y B 关于x 的函数解析式为y B =90x -90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得3k1=180,解得k1=60.∴y A=60x.当x=5时,y A=60×5=300(千克),x=6时,y B=90×6-90=450(千克),450-300=150(千克).答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.6.解:(1)35(2)设y2=27x+b,将点(10,470)代入得b=200,即y2与x的函数解析式为y2=27x+200.(3)A种费用为30×35=1 050(元),B种费用为27×30+200=1 010(元).答:选择B种购票方案比较合算.。
一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。
一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。
当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。
例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。
2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。
当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。
例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。
3. 存款利率:一次函数可以用来描述存款利率的变化情况。
当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。
例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。
4. 股票价格:一次函数可以用来描述股票价格的变化情况。
当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。
例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。
5. 植物生长:一次函数可以用来描述植物的生长情况。
当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。
例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。
实际问题中的一次函数图象我们知道,一般地一次函数y=kx+b的图象是经过(0,b)且平行于直线y=kx的一条直线,其中x、y都是任意实数.但是,在实际问题中,自变量x的取值受到一定的限制,函数y=kx+b的图象就不一定是直线了,其可能是射线、线段或一些点.现举例说明如下:例1 A、B两站相距20千米,汽车经过B站后以每小时60千米的速度向C站行驶,求汽车行驶t小时后与A站距离s(千米)之间的函数关系式,并作出函数的图象.解:由题意知,解析式为s=60t+20(t≥0).令t=0,则s=20,有A(0,20);令t=1,则s=80,有B(1,80).如图1,在直角坐标系中描出点A、B,作射线AB即为所求函数的图象.注意:当自变量x≥0时,函数y=kx+b的图象是一条射线(不含等号时,端点画圆圈).例2一根弹簧的原长是12厘米,它挂的重量不能超过15千克,并且每挂重1式,并在给出的坐标系中画出它的图象.解:y与x之间的函数关系式为令x=0,则y=12.有A(0,12);令x=15,则y=19.5.有B(15,19.5).如图2,在直角坐标系中,描出A、B两点,连结AB的线段就是所求函数的图象.注意:当自变量x1≤x≤x2时,函数y=kx+b的图象是一条线段(不含等号时,应去掉端点).例3 小明带3元钱买练习本,已知每本0.25元,试写出本数x与所剩钱数y(元)之间的函数关系式,并作出图象.解:由题意知,函数关系式为y=3-0.25x(0≤x≤12的整数).在0≤x≤12中整数x与y的对应关系如下:图3,在直角坐标中,以上各组对应值描出的点即为所求函数的图象.注意:当自变量的取值是一些特殊值时,函数y=kx+b的图象是一些点.。
实际问题中的一次函数图象
一次函数图象主要表示被称为"一次函数"的数学函数的输入和输出之间的联系。
函数图象显示一次函数可以使输入值与输出值之间的连接变得可视化,并显示解决数学问题的更多不同方法。
一次函数图象在现实世界中有很多不同的应用。
例如,它可以用来帮助社会科
学家理解人们的行为,并预测他们的未来行为。
它们也可以用来推断经济趋势,并预测未来经济状况。
一次函数图象也可以用于建模地质和气候变化,以便预测和模拟未来可能发生的事件。
一次函数图象还被用于许多工程和技术领域。
例如,它们可以用来模拟物理系统,例如机械设备,以及模拟电子系统的行为。
这种模拟可以帮助工程师和技术人员更好地理解系统的操作原理,从而更有效地设计和构建他们所面临的系统。
此外,一次函数图象还可以在统计学和机器学习领域中用于模型拟合和数据预测。
通过对一次函数图象的关系可以更好地了解给定数据集中存在的规律,从而更好地预测未来可能发生的事情。
总之,一次函数图象是一种非常有用的可视化工具,可以帮助我们更好地理解
现实世界的复杂系统,并预测未来可能发生的事件。
它有很多不同的应用,从社会科学到经济状况再到工程技术等多个领域,它都有着重要的作用。
一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。
一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。
在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。
一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。
根据斜率的正负,可以判断直线是上升还是下降。
下面我们来看几个具体的例子。
1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。
根据斜率的正值,我们知道这条直线上升。
当x增加1个单位时,y增加2个单位。
当x减小1个单位时,y减小2个单位。
通过这些关系,我们可以画出该函数的函数图像。
2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。
根据斜率的负值,我们知道这条直线下降。
当x增加1个单位时,y减小3个单位。
当x减小1个单位时,y增加3个单位。
同样地,我们可以通过这些关系画出该函数的函数图像。
通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。
这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。
二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。
我们将通过以下两个实际应用问题来说明。
1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。
已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。
我们希望找到销售多少件产品时,公司能够实现盈亏平衡。
根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。
将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。
用一次函数图象解决实际问题的教案]教案名称:用一次函数图像解决实际问题教案主题:数学教学目标:1.能够明白使用一次函数图像解决实际问题的意义和应用范围。
2.能够解决一些实际问题,如解析坐标点和斜率;在一张坐标纸上绘制函数图像;使用图像解决一些实际问题。
3.培养学生的思维能力,如观察、分析和解决问题的能力。
4.激发学生学习数学的兴趣,增加把数学知识与现实生活联系起来的积极性。
教学重难点:1.使用一次函数图像解决实际问题的应用。
2.使用函数图像求解问题时,特别是建立方程和制作图像,需要学生经常练习。
教学步骤:老师首先为学生介绍本课的主题,即使用一次函数图像解决实际问题。
为什么要学习这个?这与他们日常生活有什么关联呢?Step 2:预习老师为学生分发学习材料,让他们阅读有关材料和视频的内容。
同时,老师还设定了小组任务:每组从学习材料中选出一段内容进行理解和总结,并向全班展示学习成果。
这样做可以让学生更好地理解学习内容,并培养他们的思维和沟通能力。
Step 3:讲解老师开始讲解本课的主要内容。
老师首先介绍了一次函数图像的概念和一些重要的性质,如斜率和截距。
老师解释了函数图像的意义和用途,以及在实际问题中的应用。
老师使用数学公式和实际问题来解释一些具体的概念和应用,如解析坐标点和斜率等。
Step 4:示范老师向学生展示如何在坐标纸上绘制一次函数图像并解决实际问题。
老师以一个具体的例子为例,让学生跟着操作,并吸收相关知识。
老师渐进式地解释过程并指出一些常见的错误。
学生们也可以跟着老师完成这个例子,以加深理解。
老师将一些相关问题分发给学生,让他们在课堂上或自学时间里完成。
老师还将一些问题转化为实践任务,让学生们在学校里寻找并解决实际问题。
这样做可以帮助学生掌握图像和实际问题的应用。
Step 6:总结老师要求学生对本节课的知识点和应用进行总结,并将学习成果向全班展示。
老师鼓励学生互相交流和分享自己的答案,以促进知识的交流和深入理解。
一次函数图象实际问题小明和同学相约在周日去距家24km 的武大看樱花。
他原计划沿东湖骑自行车2小时到达。
途中由于车胎破了,修车耽搁了20分钟。
之后他加快速度,等他到达武大时,比约定时间晚了10分钟。
①设y (单位:km )表示小明出发x 小时之后与家的距离,y 与x 的关系如图所示,根据图象回答问题:(1)小明原计划的骑车速度是 km/h ,自行车修好之后,他的速度是 km/h 。
(2)根据题中提供的信息,补全y 关于x 的函数关系式,并直接写出a ,b ,c 的值:a= ,b= ,c= 。
②若y 表示小明出发x 小时后与武大的距离,请作出y 与x 之间的函数图象,并补全函数关系式。
小明的家,学校和武汉市图书馆在同一条直线上。
星期天上午,他骑自行车从家出发,到学校和小刚见面后,一起坐公交车到图书馆看书。
看完书后,小明的爸爸开车下班,顺便带他回家。
设y (单位:km )表示小明出发x 分钟后与家的距离,根据图(1)回答: (1)小明的家距学校 km ,距图书馆 km 。
他和同学在图书馆停留了 h 。
(2)小明的骑车速度是 km/h ,坐公交车的速度是 km/h ,他和爸爸回家时的速度是⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤<≤≤=3321634340x x x y ⎪⎪⎪⎩⎪⎪⎪⎨⎧+-≤<≤≤=31041634340x x x ykm/h。
(3)如果y表示小明出发x min后和图书馆的距离,请在图(2)中完成y与x的函数图象。
五一当天,小明和妈妈准备自驾去木兰草原游玩。
由于妈妈临时有事,小明决定骑车先出发。
1个小时后,妈妈也出发了。
她开车半个小时后,追上了小明。
之后小明和妈妈一起,以相同的车速,又用了半个小时,到达了木兰草原。
设小明出发x小时后,他和妈妈之间的距离为y(单位:km)。
根据图1回答以下问题:(1)小明骑车的速度是 km/h,妈妈开车的速度是 km/h。
木兰草原和小明家相距 km。
(2)若y表示小明出发x小时后,他与木兰草原的距离,请在图2中作出y与x之间的函数图象。
小明和小刚参加越野赛跑。
当小明跑了1600米时,小刚跑了1400米。
这时小刚开始加速,最终小明惜败给了小刚。
设小刚加速x秒后,小明和小刚之间的距离是y(单位:m),根据图1提供的信息,完成下列问题:(1)小刚加速秒后,追上了小明,又用了秒,他到达了终点,比小明快了秒。
(2)小刚加速后,平均速度为米/秒,小明的速度是米/秒。
此次越野赛跑的全程是米。
(3)若设小刚加速x秒后,小明和小刚已跑的路程分别为y1和y2,请根据题中的信息,在图2中作出y1,y2与x之间的图象(表示y1的图象用实线,表示y2的图象用虚线)小明和表弟家相距20km,利用周末,两人商议用不同的方式到对方的家。
小明步行,表弟骑自行车,同时从家出发。
表弟到达小明的家后,又原速返回去接小明,最后一起骑车回表弟的家。
已知他们两次相遇的间隔时间与他们一起骑车回家所用的时间相等。
设他们出发x 小时后,两人之间的距离是y千米。
根据图1回答问题:(1)表弟骑车的速度是 km/h,小明步行的速度是 km/h,两人一起骑车的速度是km/h。
(2)他们第一次相遇是在出发 h后,第二次相遇的地点距离小明家是 km,出发 h后他们一起到达了表弟的家。
(3)在A点时,表弟的位置在,A点的坐标为。
(4)如果用y1和y1分别表示出发x小时后,小明和表弟各自与表弟家的距离,请在图2中补作y2与x之间的函数图象(y2画虚线)。
武汉和襄阳两地相距300km,每天上午9点,一列动车从武汉站出发,开往襄阳,到达之后,停留1个小时,再原速返回武汉站。
上午9点30分,一列普快从襄阳开往武汉站,它比动车早半个小时到达武汉站,并不再返回襄阳。
若y(单位:千米)表示动车出发x小时后,两车之间的距离。
y和x的函数图象如图所示。
根据图象完成下列问题:(1)动车早上从武汉站出发,下午返回武汉站的时间是,共用时小时,其中运行了小时,动车的平均速度是 km/h。
(2)普快从襄阳站开往武汉站用了小时,它的平均速度是 km/h。
(3)两车在路上相遇的时间是。
当动车从襄阳站返回时,普快距离武汉站还有 km。
甲、乙两个工程队从两端同时施工,修建一条地下管道。
施工一段时间后,乙工程队接到其他的任务,剩下的工程由甲队独立完成。
若y表示甲工程队施工x天后,已完成的工程量。
y和x之间的函数关系如图所示。
根据图象填空:(1)整个施工期间,甲工程队单独施工天,完成的工程量是,如果由甲队独立完成全部任务,需要天;(2)甲、乙两工程队合作的天数是天,共同完成的工程量是。
如果由乙工程队独立完成全部任务需要天。
一项工程由甲、乙两队共同完成。
由于施工中途,乙工程队接到上级通知,需要去支援另一项工程,甲工程队继续完成剩下的工程。
施工一段时候后,由于上级规定剩下的工程必须在5天内全部完成,乙工程队又重新返回,和甲工程队并肩作战,终于按时完成任务。
若设y 表示甲工程队施工x天后,已完成的工程量,y和x之间的函数关系如图所示。
根据图象填空:(1)整个施工期间,甲工程队施工天,乙工程队施工天。
(2)如果由甲工程队独立完成全部工程,需要天;如果由乙工程队独立完成全部工程队,需要天;(3)如果甲、乙工程队合力完成全部工程,将比预期工期缩短天。
y O x (千克)5 10 10 2030 405060 15 20(元)一个有进水管和出水管的容器,从某时刻开始的5min 内只进水不出水,在随后的10min 内既进水又出水, 最后关闭进水管,只打开出水管。
每分的进水量和出水量 不变。
容器内的水量y (单位:L )与时间x (单位:min ) 之间的关系如图所示。
根据图象回答问题: (1)当只进水不出水时,y 与x 之间的关系式 为 。
每分钟的进水量是 L 。
(2)整个过程进水管打开了 min ,共进水 L 。
同时打开进水管和出水管的过程有 min , 此时容器中的水 (填增加或减少)了 L 。
由此可知,出水管每分钟的出水量是 L 。
(3)当关闭进水管后,将容器内的水全部排空,还需 要 min ,a = 。
小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收(千克)之间成正比例关系.请你根据入70元.已知在降价前销售收入y (元)与销售重量x 以上信息解答下列问题:克)之间的函数关系(1)求降价前销售收入y (元)与售出草莓重量x (千式;并画出其函数图象; (2)小强共批发购进多少千克草莓小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b a>)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图13所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元(2)求b的值,并写出当10x>时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨2008年5月12日14时28分四川汶川发生里氏级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米(6分)(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x,两车之间的距离.......为(km)y,图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时2008年5月12日,四川汶川发生级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S(千米)与行进时间t (小时)的函数大致图像,你认为正确的是( )如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜12元ABCDO y90012 x /h 4 70 50 30y (元)A 方案B 方案C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分汶川地震发生后,全国人民抗震救灾,众志成城. 某地政府急灾民之所需,立即组织12辆汽车,将A、B、C三种救灾物资共82吨一次性运往灾区,假设甲、乙、丙三种车型分别运载A、B、C三种物资.根据下表提供的信息解答下列问题:(1)设装运A、B品种物资的车辆数分别为x、y,试用含x的代数式表示y;(2)据(1)中的表达式,试求A、B、C三种物资各几吨.我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案并求出最大利润的值.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提供一种最佳方案A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,•求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案(3)求出总运费最低的调运方案,最低运费是多少青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件(通过计算得出答案)2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,搭配A B乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低最低成本是多少元抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库。