核磁测井
- 格式:ppt
- 大小:6.15 MB
- 文档页数:76
核磁测井解释
嘿,你知道核磁测井解释吗?这可真是个超级有趣又超级重要的事儿呢!就好像你要解开一个神秘的大谜团。
咱就说,核磁测井解释就像是一个侦探在寻找线索!想象一下,测井仪器就像是侦探的眼睛,深入到地下,去捕捉那些隐藏的信息。
比如说,它能告诉我们岩石里有多少孔隙,这些孔隙里有多少是饱含着油啊气啊之类的。
这不就跟侦探找到关键证据一样嘛!
我记得有一次,我们的工程师团队在研究一个油田区块。
大家都围着那些核磁测井的数据,就像一群兴奋的孩子在研究新玩具。
“嘿,你看这个信号,是不是说明这里有大储量啊!”“哇,这部分的孔隙度好高啊!”大家七嘴八舌地讨论着,每个人都充满了好奇和期待。
然后呢,专家们就开始根据这些数据进行解释啦。
这可不是随便说说就行的,得非常严谨、仔细,就像拼图一样,把每一块都准确地拼到合适的位置。
“这个区域的核磁信号表明,可能有连续的油层。
”专家肯定地说道。
哇塞,这时候大家都兴奋起来了,仿佛看到了滚滚的石油在向我们招手。
核磁测井解释真的是太重要了!它能帮助我们更好地了解地下的情况,找到那些宝贵的资源。
没有它,我们就像在黑暗中摸索一样。
它就像一盏明灯,照亮我们探索地下宝藏的道路,不是吗?
所以啊,核磁测井解释绝对是地质勘探领域不可或缺的一部分。
它让我们能更准确地评估油田、气田的储量和潜力,为我们的能源开发提供了坚实的基础。
我们真的应该好好重视它,好好利用它,让它为我们的生活带来更多的便利和财富呀!。
测井新技术之核磁共振测井随着石油勘探开发需要,测井技术发展十分迅速,高分辨阵列感应、微扫、三分量感应和正交偶极声波等新型成像测井仪为研究地层各向异性提供了强有力的手段;核磁共振、电缆地层测试、井壁取心等提供了对地层流体的精确认识;新的过套管井测井仪器,如电阻率、新型脉冲中子类测井仪、核磁共振、电缆地层测试及永久监测等现代测井技术的发展可以在套管井中确定地层参数,精细描述油藏动态变化;新的水泥胶结评价仪直观提供一、二胶结面、水泥环形新空间及套管的剖面成像;新的套损成像测井仪为修井作业提供井精确套损质量。
随钻测井系列不断增加,如随钻声电成像、核磁共振测井、随钻地层测试等。
生产测井中的新型仪器出现,如流动成像仪、持率计等可较精确地提供大斜度、水平井测井[1]。
从上述可以看出,核磁共振测井(NMR)在测井新技术中占据着非常重要的地位,在油气勘探开发的许多方面都起着重要的作用。
自上个世纪九十年代核磁共振现象被发现以来,核磁共振技术作为一种重要的现代分析手段已经广泛应用于各个领域。
核磁共振在石油勘探中的应用始于20世纪50年代,经过近60年的发展,核磁共振测井仪器不断更新换代,功能逐渐增强,采集的信息更加丰富。
随着勘探程度的提高和勘探目标的复杂化,核磁共振侧井已经成为一种十分重要的地球物理探测方法,在复杂油气藏勘探开发中正在发挥不可替代的作用。
在复杂岩性、复杂孔隙结构、复杂流体成分、低孔低渗以及低电阻率、低含油气饱和度等情况下,当其他测井大多显得无能为力时,核磁共振测井却是储层评价和流体识别的有效手段,因而具有独特的价值和生命力[2,3]。
人们第一次认识NMR的潜在价值是在上世纪50年代。
核磁共振测井仪器的构想最早由Varian提出,并进行了可行性研究,迈出了核磁共振在石油工业应用的第一步。
20世纪60年代,Chevron和Schlumberger合作研制出利用地磁场的核磁共振测井仪器(nuclear magnetism logging,NML),并用于油田测井。
核磁共振测井原理
核磁共振测井(NMR)是一种地球物理测井技术,利用磁共振现象分析电磁信号来获取地下岩石中的孔隙结构和流体含量信息。
NMR测井原理基于核磁共振现象,即在强磁场中放置原子核会产生共振吸收现象。
在NMR测井中,沿井壁发射一系列短脉冲电磁信号,这些信号会激发旋转相干磁矩,进而引起共振吸收现象,并使得磁共振信号能够被测量。
这些信号可以表征岩石中的孔隙结构和流体含量。
NMR测井技术常见的参数包括自由液体体积(FFV),有效孔隙度、孔隙尺度和流体饱和度。
其中最重要的参数为FFV,它表征了岩石中的自由水体积。
知道FFV,可以确定孔隙中不同类型液体的含量,如水、油、混合物等。
有效孔隙度和孔隙尺度表征了岩石中的孔隙结构,可用于评估岩石的渗透性和储层质量。
流体饱和度则表征了岩石中所含流体的百分比,用于确定油田储层中可采储量和开发方案。
核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。
当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。
核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。
核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。
感应线圈的作用是把发射出去的核磁共振信号接收下来。
一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。
这些铁屑和颗粒对核磁共振信号会产生很大的干扰。
当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。
在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。
—— 1 —1 —。
核磁共振测井原理一、快速发展的核磁共振测井技术1945年,Bloch 和Purcell发现了核磁共振(NMR)现象。
从那时起,NMR作为一种有活力的谱分析技术被广泛应用于分析化学、物理化学、生物化学,进而扩展到生命科学、诊断医学及实验油层物理等领域。
如今,NMR已成为这些领域的重要分析和测试手段。
40年代末,Varian公司证实了地磁场中的核自由运动,50年代,Varian Schlumberger-Doll,Chevron三个公司开展了核磁共振测井可行性研究。
60年代初开发出实验仪器样机,它基于Chevron研究中心提出的概念,仪器使用一些大线圈和强电流,在志层中产生一个静磁场,极化水和油气中的氢核。
迅速断开静磁场后,被极化的氢核将在弱而均匀的地磁场中进动。
这种核进动在用于产生静磁场的相同线圈中产生一种按指数衰减的信号。
使用该信号可计算自由流体指数FFI,它代表包含各种可动流体的孔隙度。
这些早期仪器有一些严重的技术缺陷首先,共振信号的灵敏区包括了所有的井眼流体,这迫使作业人员使用专门的加顺磁物质的泥浆和作业程序,以消除大井眼背景信号,这是一促成本昂贵且耗时冗长的处理,作业复杂而麻烦,测井速度慢石油公司难以接受。
其次,用强的极化电流持续20ms的长时间,减小了仪器对快衰减孔隙度成分的灵敏度,而只能检测具有长弛豫衰减时间的自由流体,由于固液界面效应对弛豫影响及岩石孔隙中油与水的弛豫时间差异不大,使得孔隙度和饱和度都很难求准。
此外,这些仪器为翻转被极化的自旋氢核需消耗大量功率,不能和其它测井仪器组合。
但这些难题没有使核磁共振测井研究中止。
70年代末至80年代初,美国Los Alamos 国家实验室Jasper Jackson 博士提出“INSDE-OUT”磁场技术。
在相同时期,磁共振成象(MRI)概念也得到很大发展。
1983年,Melvin Miller博士在美国创办了NU-MAR公司,他们综合了“INSIDE-OUT”概念和MAR技术同时,斯伦贝谢公司几十年来,一直在努力发展核磁共振测井技术。
核磁测井1、现代NMRR测井1、1脉冲NMR测井仪传感器(如磁铁和天线)是脉冲NMR测井仪的核心部分。
它对仪器的S/N、最小回波间距、探测深度(DOI)、测井速度和垂直分辨率有重要影响。
在用的所有仪器在传感器的设计上都不尽相同,主要差别是电子线路、固件、脉冲序列、数据处理和解释算法。
NMR仪器的详细技术指标都能在各家服务公司的网站上找到。
斯伦贝谢电缆式NMR测井仪器有三个天线和一个完全可编程的脉冲序列发生器,能进行多种不同方式的测量。
两个152mm天线用于高分辨率测量,提供总孔隙度、束缚流体孔隙度和自由流体孔隙度。
高分辨率天线还可用来探测天然气和轻烃,计算渗透率和孔隙大小分布。
主天线长457mm,有多个频率,用于不同地层评价,提供多种NMR 测量。
每个频率都对应不同DOI(从井壁算起为38~102mm)。
主天线所提供的地层评价包括两个高分辨率天线所提供的所有地层评价,还用于评价流体径向剖面、流体体积和石油黏度。
所有的商用NMR仪都有一些共同的特征,譬如:所有的仪器都采用强度很大的钐钴合金永久磁体,磁铁对温度变化相对不敏感。
磁体用于极化(磁化)烃和水分子中的氢核(质子)。
另一个共同的特征是它们都采用脉冲NMR测量。
1.2测量原理NMR测量有两步。
第一步是建立储层流体的净磁场,当仪器沿井简移动时,磁铁的磁场矢量B。
磁化储层流体中的氢核,产生净磁场,磁场沿着B。
方向,即纵向。
在井壁附近区域(距井壁几英寸),B。
的大小一般为几百高斯。
B。
的大小随着离磁铁径向距离的增加而减小,从而在测量区域内形成磁场梯度或梯度分布。
正如下面讨论的,磁场梯度用于识别储层流体并描述流体特征。
在施加B。
之前,氢核磁矩的方向是无序的,因此流体净磁场为0。
在极化时间Tp内,磁化强度以指数形式增大到其平衡值Mo。
描述磁场指数方式的时间常数为纵向弛豫时间,称之为T1。
在储层岩石中,用T1分布描述磁化过程。
T1分布反映的是沉积岩中油气的复杂成分和孔隙大小分布。
引言核磁共振测井是一种适用于裸眼井的测井新技术,是目前唯一可以直接测量任意岩性储集层自由流体(油、气、水)渗流体积特性的测井方法,有明显的优越性。
本文主要讲解了核磁共振测井的发展历史、基本原理、基本应用、若干问题及展望。
发展历史核磁共振作为一种物理现象,最初是由Bloch和Purcell于1946年发现的,从而揭开了核磁共振研究和应用的序幕。
1952 年,Varian 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。
1956 年,Brown 和Fatt研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。
1960年,Brown 和Gamson研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。
但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。
因此,这种类型的核磁共振测井仪器难以推广。
1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。
这个方案后来成为核磁共振测井大规模商业化应用的基础。
但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。
1985 年,ZviTaicher和Schmuel提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。
1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。
此后,核磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。
核磁共振测井技术的现代应用趋势核磁共振测井技术(Nuclear Magnetic Resonance Logging)是一种应用于地球物理勘探领域的重要技术。
通过测量岩石中原子核自旋的共振现象,它可以提供有关地下岩石储层的重要信息。
在过去几十年中,核磁共振测井技术得到了广泛的应用和发展,为石油勘探、地质学研究以及地下水资源评估等领域提供了重要的帮助。
本文将探讨核磁共振测井技术在现代中的应用趋势。
一、高分辨率成像随着仪器设备的不断改进和技术的发展,核磁共振测井技术的分辨率得到了显著提高。
传统的测量方法主要关注岩石样品中液态水的分布,但现代的核磁共振测井技术已经可以提供更加详细的成像信息。
通过对地下储层中油、水、气等不同成分的测量和分析,可以获得更准确、更细致的地下岩石结构图像。
这种高分辨率成像技术可以帮助勘探人员更好地理解地下岩石储层的特征,提高勘探和开发效率。
二、多参数测量发展传统的核磁共振测井技术通常只能提供岩石储层的孔隙度信息,但现代核磁共振测井技术已经实现了多参数测量。
除了孔隙度,核磁共振测井技术现在还可以测量地下储层中的渗透率、饱和度、岩石孔隙结构等多个参数。
这些参数可以提供更全面、更准确的地下岩石特征信息,有助于勘探人员更好地评估岩石储层的潜力和开发价值。
三、非侵入式测井传统的测井技术通常需要进行试井操作,即在地下储层中打孔取样来获取岩石信息。
然而,这种试井操作会对地下储层造成一定的破坏,且操作成本较高。
与传统试井相比,核磁共振测井技术具有非侵入性的优势。
通过无需打孔取样直接对地下储层进行测量,核磁共振测井技术能够实现对地下岩石的准确评估,提高勘探效率的同时减少对地质环境的破坏。
四、多尺度测量与高精度定量随着核磁共振测井技术的发展,现代测井仪器已经可以实现多尺度测量和高精度定量。
不同尺度的地下岩石结构对储层特征的影响是不同的,因此,进行多尺度测量能够提供更全面的岩石信息。
与此同时,高精度定量分析也是核磁共振测井技术的重要发展方向。
核磁共振测井原理与应用一、核磁共振基本原理核磁共振(NMR)是物理学中的一种现象,其基本原理是原子核在磁场中的磁矩与射频脉冲之间的相互作用。
核磁共振在测井中的应用得益于其独特的物理性质,可以对地层岩石和流体进行无损检测。
二、核磁共振测井技术核磁共振测井技术利用了在地磁场中自由氢核(如H)的磁矩进动与射频脉冲的相互作用。
当射频脉冲停止后,氢核将恢复到原来的状态,这一过程中产生的信号可以被检测并用于分析地层性质。
核磁共振测井技术可以分为静态测量和动态测量两种。
三、岩石孔隙结构分析核磁共振测井可以提供关于岩石孔隙结构的详细信息。
通过测量地层中氢核的弛豫时间,可以推断出孔隙的大小、分布以及连通性,从而评估储层的渗透率和油气储量。
四、地层流体识别与分类核磁共振测井可以区分油、水、气等不同的流体,这是由于不同流体中氢核的弛豫时间不同。
此外,通过测量束缚流体和自由流体的比率,可以评估油藏的驱替效率和水淹程度。
五、地层参数反演通过核磁共振测井数据,可以反演地层的多种参数,如孔隙度、渗透率、含水饱和度等。
这一过程涉及到复杂的数学模型和算法,是核磁共振测井数据处理的关键环节。
六、测井数据处理与解释核磁共振测井数据处理包括原始数据的预处理、参数反演、解释和后处理等多个环节。
解释人员需要具备丰富的地质和测井知识,以便正确地解释测井数据,提供准确的储层评价结果。
七、核磁共振测井应用实例核磁共振测井在油气勘探和开发中得到了广泛应用。
例如,在评估油田的储层质量、监测注水作业效果、确定剩余油分布等方面发挥了重要作用。
具体实例包括评估某油田的储层孔隙结构和含油性、监测某气田的产气能力等。
这些实例证明了核磁共振测井在油气勘探和开发中的实用价值。
八、未来发展趋势与挑战随着技术的不断进步和应用需求的增加,核磁共振测井在未来将面临一些发展趋势和挑战。
例如,发展更高分辨率和灵敏度的核磁共振测井仪器、提高数据处理和解释的自动化程度、解决复杂地层和油藏条件下的应用问题等。
核磁共振成像测井作业技术规范核磁共振成像测井(NMRWellLogging)是一种非常先进的测井技术,可以用于采集准确的测井信息,以更好地评估油田矿床和流体。
本文旨在介绍核磁共振成像测井作业技术规范。
一、定义核磁共振成像测井(NMR Well Logging)是一种以核磁共振技术(NMR)为基础的、从地层探测电磁属性的新技术,该技术可以提供准确的、可靠的、全方位的小孔压力测井数据。
二、作业准备1.定测井方位:作业前需要确定测井方位,确定具体要施工的岩层,并进行深度的估计,以便为作业安排做好准备。
2.磁共振仪器的准备:核磁共振成像测井作业前需要准备核磁共振仪器,包括原子核磁共振仪器(NMR)、回旋共振仪器(CPM)和磁共振仪器(MRI)等。
3. 仪器调试:在仪器准备完成后需要对仪器进行调试,确保仪器正常工作,以及可以正常测量。
三、作业步骤1.动仪器:在仪器调试完成后,需要把仪器下到指定深度,启动仪器,开始测量准备。
2.量:对指定深度层位进行测量,并将测量结果进行数据处理,以获得更加准确的地层参数信息。
3.止仪器:在测量完毕后,需要停止仪器,并拔出仪器,以停止测量作业。
四、作业质量检查1.查仪器:在拔出仪器后,需要对仪器进行检查,以确保仪器在使用过程中没有出现故障。
2.据处理:数据处理和检查也是作业质量管理的重要部分,由于计算机科学家们近几十年来不断研发新的算法,在数据处理和数据检查方面也有了很大的进步,可以很好地帮助我们确保测井作业的质量。
3.量评价:在数据处理完成后,还需要对测井作业的质量进行评价,可以通过深度分布和电磁参数分析来评价测井数据的精度。
五、安全措施1. 仪器安全:在测井作业前,需要对仪器进行安全检查,确保其在降深过程中没有损坏,以防止出现意外。
2. 个人安全:为确保测井队员的人身安全,还需要严格遵守当地政府关于涉及安全的规定,并建立相应的安全管理制度。
3.境安全:作业期间应该保持清洁的环境,并减少环境污染,以防止出现意外。
核磁共振测井资料解释与应用核磁共振测井(Nuclear Magnetic Resonance Logging,简称NMR 测井)是一种常用的地质测井技术,利用核磁共振原理对地下岩石进行非侵入性测量,可获取地层各种物理和化学参数的连续变化情况。
NMR测井资料是分析地层组成、孔隙结构和流体性质等信息的重要工具,在油气勘探、地下水资源评价和地质储层评价等领域有广泛的应用。
NMR测井资料提供了多个参数,包括有效孔隙度、孔隙尺度分布、孔隙直径、孔隙连通性和时间常数等。
根据这些参数,可以评估岩石孔隙结构特征,如孔隙度、孔隙分布、孔隙连通性,进而判断流体的储存和流动情况。
此外,NMR测井资料还可以提供岩石矿物组成信息,以及含油气饱和度、流体相态(油、气、水)比例和流体饱和度等。
NMR测井资料在油气勘探中的应用主要有以下几个方面:1.矿石特性评估:NMR测井资料可以获取到岩石的孔隙结构参数,如孔隙度、孔隙连通性等,进而评估储层的孔隙度分布、孔隙尺度、孔隙连通性等。
这些参数对于判断储层的储存和流动能力非常重要,对油气资源的评估和开发有着重要的指导意义。
2.资源评价和储量估算:NMR测井资料可以提供岩石中流体的类型、饱和度和流体饱和度等参数,这些参数对于评估油气资源的潜力和储量有着重要的作用。
结合地震和地质资料,可以对储层进行综合评价和储量估算,为油气勘探和开发决策提供科学依据。
3.储层评价和改造:NMR测井资料可以提供储层的孔隙结构参数,如孔隙度、孔隙连通性等,对于储层的评价和改造有着重要的作用。
通过对NMR测井资料的分析,可以确定储层的渗透率、孔隙度分布、孔隙连通性等,进而指导油气勘探和生产管理。
4.地下水资源评价:NMR测井资料可以提供地层中含水饱和度、孔隙结构和含水层分布等参数,对地下水资源的评价和开发有着重要的作用。
利用NMR测井资料,可以评估地下水资源的潜力和可开发性,从而指导地下水资源的开发和管理。
总之,NMR测井资料是一种重要的地质测井技术,可以提供地层的孔隙结构、流体性质和岩石组成等信息。