SMPS
- 格式:ppt
- 大小:2.35 MB
- 文档页数:64
开关电源(SMPS)的发展趋势
(1)高频化技术:随着开关频率的提高,开关变换器的体积也随之减少,功率密度也得到大幅提升,动态响应得到改善。
小功率DC-DC变换器的开关频率将上升到MHz。
但随着开关频率的不断提高,开关元件和无源元件损耗的增加、高频寄生参数以及高频EMI等新的问题也将随之产生。
(2)软开关技术:为提高变换器的变换效率,各种软开关技术应用而生,具有代表性的是无源软开关技术和有源软开关技术,主要包括零电压开关/零电流开关(ZVS/ZCS)谐振、准谐振、零电压/零电流脉宽调制技术(ZVS/ZCS-PWM)以及零电压过渡/零电流过渡脉宽调制(ZVT/ZCT-PWM)技术等。
采用软开关技术可以有效的降低开关损耗和开关应力,有助于变换器变换效率的提高。
(3)功率因数校正技术(PFC)。
目前PFC技术主要分为有源PFC技术和无源PFC技术两大类,采用PFC技术可以提高AC-DC变化器输入端功率因数,减少对电网的谐波污染。
(4)模块化技术。
采用模块化技术可以满足分布式电源系统的需要,提高系统的可靠性。
(5)低输出电压技术。
随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的供电要求。
第一章简介SMPS1002H-I、SMPS1004H-I整流模块(以下简称SMPS1000H-I系列整流模块),是珠江电信设备制造有限公司自主设计生产的高频开关电源模块。
该模块采用了APFC有源功率因数校正、ZVS相移谐振软开关技术、直流输出恒功率控制等先进技术。
APFC技术的应用使整流模块的功率因数可接近于1,极大的降低市电电流波形的失真,最大限度地降低电源设备的接入对电网质量的影响;相移谐振软开关技术极大地减小整流设备中大功率开关器件的开关损耗和开关应力,有效地提高产品的效率和运行的可靠性。
SMPS1000H-I系列整流模块具有很宽的交流输入电压适应范围:100V~ 310V,其性能指标更适合国内的使用环境和用户的要求。
SMPS1000H-I系列整流模块的产品规格:SMPS1002H-I:输出电压为直流21.5V~29V,输出电流标称值60ASMPS1004H-I:输出电压为直流43V~59V,输出电流标称值30ASMPS1000H-I系列整流模块可应用于中小型通信系统、中等容量的程控交换局、数字环路系统、移动通信系统、光纤传输系统、铁路中间站或通信站、微波通信系统、无人值守机站等,具有高效率、宽输入电压范围、高功率因数、结构紧凑等特点,性能价格比高。
第二章安全注意事项为了遵守已公布的安全标准规范,使用SMPS1000H-I系列整流模块时请注意以下事项:2.1 SMPS1000H-I系列整流模块是装入通信机房内的专用机架使用的嵌入式设备(IP20),为热插拔方式,工作时将通过整流模块后部专用的热插拔插头与机架的插座(配电)连接。
2.2在使用整流模块前,请仔细阅读本说明书,将有助于安装与维护。
只有通过专业培训的技术人员才可以安装与维护。
2.3 由于整流模块是装入专用的机架与其他设备配合使用的,整流模块的工作及送出功率是通过整流模块的输入输出插头与机架的插座连接来实现的,因此,安装机架电源时必须遵守IEC60950-1999;EN 60950-2000有关的安全规定,尤其是满足初级对地、初级对次级(SELV)之间的:爬电距离、电气间隙与穿透距离(固体绝缘)的绝缘要求。
SMPS选择和测试要领的分析在现代电子产品中,开关电源(SMPS)被普遍选择用为来提供各种不同的直流电源,因它对于提高DC-DC电源转换系统的效率和可靠性是必不可少。
然而在这设计和应用过程中对于了解与掌握高效率SMPS的选择和测试要领很为重要,为此本文将对SMPS的选择和测试要领作分析说明。
1、选择SMPS基本要领1.1从开关电源(SMPS)系统基本特征说起大多数现代系统中主流的直流电源体系结构是开关电源系统,它因为能够有效地应对变化负载而众所周知。
典型SMPS的电能“信号通路”包括无源器件、有源器件和磁性元件。
SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。
SMPS设备还有一个控制部分,其中包括脉宽调节器、脉频调节器以及反馈环路等组成部分。
控制部分可能有自己的电源。
图1是简化的SMPS示意图,图中显示了电能转换部分,包括有源器件、无源器件以及磁性元件。
绝大部分的电气直流负载由标准电源供电。
但是,标准电源的电压可能不符合微处理器、电机、LED或其他负载的电压要求,尤其当标准电源本身的输出电压并不稳定时。
电池供电设备就是一个最好的例子:标准的Li+电池或NiMH电池组的典型电压对于大多数应用而言,不是过高就是过低,或者随着放电过程电压下降的过多。
1.2选择要领拓扑结构很多有通用性幸运的是,SMPS的通用性帮我们解决了这一难题,它将标准电源电压转换成合适的、符合规定的电源电压。
SMPS拓扑结构有很多,但可以划分为几种基本的类型,不同类型的转换器可以对输入电压实现升压、降压、反转以及升/降压变换。
与线性稳压器只能对输入电压进行降压不同的是,可以选择不同拓扑的SMPS来满足任何输出电压的需求,这也正是SMPS极具吸引力的原因。
如上所述,根据电路拓扑的不同,SMPS可以将(DC-DC)直流输入电压转换成不同的直流输出电压。
实际应用中存在多种拓扑结构,比较常见有三种非隔离式DC-DC拓扑结构,按照功能划分为:降压(buck 图2a所示)、升压(boost图2b所示)、升/降压(buck-boost或反转图2c所示)。
形状记忆高分子材料引言形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。
1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。
这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。
而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。
1.形状记忆高分子材料的分类SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。
热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。
1.1 热致型SMP热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。
以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。
形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。
形状记忆聚合物及其多功能复合材料形状记忆聚合物及其多功能复合材料形状记忆聚合物(shape memory polymers,SMPs)是一种聚合物材料,具有特殊的自修复能力和形状记忆特性。
SMPs的基本特征是具有两种形态:一种是高温下的一种形态,是低弹性模量和高分子链密度的形态;另一种是低温下的一种形态,是高弹性模量和低分子链密度的形态。
SMPs的自修复能力是指在破坏或变形后,该材料可以通过热处理或其他方式恢复原来的形状和性能。
这种自修复能力使得SMPs在医学和航空航天等领域具有广泛的应用前景。
例如,SMPs可以用作医学中的生物医学材料,如微型支架、人工骨骼等,也可以用于制作机器人或机械手等。
SMPs的形状记忆特性是指该材料可以在一定的温度范围内,从一种形态转变为另一种形态,然后随着温度的变化再次恢复原来的形状。
这种形状记忆特性使得SMPs在多种领域具有重要的应用。
例如,SMPs可以用于制作自适应材料,在不同的环境中改变形状,在安全和保护等方面具有良好的应用前景。
在多功能复合材料中,SMPs可以与其他材料相结合,形成一种多功能的复合材料。
这种复合材料具有SMPs的形状记忆特性和其他材料的特点,如导电性、抗菌性和阻燃性等。
例如,SMPs可以与碳纤维相结合,形成一种具有形状记忆特性的复合材料,具有先进的机械性能和良好的导电性能,可以用于制作太空船的结构材料。
总之,形状记忆聚合物及其多功能复合材料在医学、航空航天等领域具有广泛的应用前景。
随着科技的发展和应用的不断推广,形状记忆聚合物及其复合材料将会更加完善和多样化,为我们的生活带来更多的便利和创新。
SMPS 功率器件性能分析比较Analysis and Comparison on SMPS Power Devices Characteristic赵忠礼 Zhao Zhongli北京时代新晨电子技术有限公司 100080 北京 Beijing Brilliance Time Electronic Technology Co., Ltd摘要:本文对SMPS 功率器件性能和一定应用条件下的sm f 和j T 的计算分析。
给出了器件选择和应用的原则。
Abstract : This article introduces SMPS Power Device characteristics and the calculation as well as the analysis of sm f and j T under specific condition. It also gives out the rule of the selection and application of the devices.关键词:SMPS 功率器件,分析和比较Keywords : SMPS Power Devices, Analysis and Comparison 引言:SMPS (Switching Mode Power Supply )朝着高频、高效、高可靠,高功率因数和低成本的方向发展。
功率器件则要求高速、高可靠、低损耗和低成本。
目前所用功率器件主要是MOSFET 和IGBT 。
功率MOSFET 的发展是围绕降低高压MOSFET 的导通电阻()DS ON R 的,为此出现了IGBT 和COOLMOS 。
IGBT 是在MOSFET 的漏极加一P +层,注入少子空穴实现电导调制作用,从而降低导通电压。
COOLMOS 则是利用P 型镶条的插入和降低漂移区的电阻实现电荷补偿作用达到降低()DS ON R 的目的。
在高速、低损耗MOS7的工艺基础上生产的MOS7-IGBT ,实现了高速、低损耗、低成本及短拖尾时间。