红外探测器
- 格式:pdf
- 大小:251.45 KB
- 文档页数:13
红外探测器原理
红外探测器是一种能够感知红外辐射的传感器,其原理基于物体的热辐射特性。
红外辐射是指波长长于可见光的电磁辐射,通常处于0.75μm至1000μm的范围内。
红外探测器主要应用于红外成像、红外测温、红外遥控以及红外安防等领域。
红外探测器的原理主要有热释电、热电偶、焦平面阵列等几种。
热释电原理是基于物质在吸收红外辐射后产生温度升高,从而产生电荷变化的
现象。
热释电探测器的工作原理是通过将红外辐射转化为热能,再将热能转化为电能,最终得到电信号。
这种原理的探测器具有快速响应、高灵敏度的特点,但需要外部电源供电。
热电偶原理是利用两种不同材料的接触产生的塞贝克效应,当其中一种材料吸
收红外辐射时,产生的热量使得两种材料的接触点产生温差,从而产生电压信号。
热电偶探测器的优点是工作稳定、寿命长,但对环境温度变化敏感。
焦平面阵列是一种集成式的红外探测器,由多个微小的红外探测单元组成,每
个单元都能够独立感知红外辐射并转化为电信号。
焦平面阵列探测器具有高分辨率、高灵敏度和多功能集成的特点,广泛应用于红外成像领域。
除了以上几种原理外,红外探测器还可以根据探测方式分为主动式和被动式。
主动式红外探测器通过发射红外辐射并测量其反射回来的信号来实现探测,常用于红外遥控和红外测距。
被动式红外探测器则是通过感知周围环境中的红外辐射来实现探测,常用于红外安防和红外监测。
总的来说,红外探测器通过感知物体的红外辐射来实现探测,其原理多种多样,应用也十分广泛。
随着科技的不断进步,红外探测器的性能将会不断提升,为各种领域的应用提供更加可靠、高效的技术支持。
红外探测器是什么,红外探测器的原理和使用方法如今,随着社会的进步,经济的发展,越来越多人开始重视安防产品,家庭安防产品销售量开始逐年增长,红外探测器普及到越来越多的家庭,那么,什么是红外探测器的原理和使用方法?一、什么是红外探测器?红外探测器是将入射的红外辐射信号转变成电信号输出的器件。
红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。
要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。
一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。
现代红外探测器所利用的主要是红外热效应和光电效应。
这些效应的输出大都是电量,或者可用适当的方法转变成电量。
二、红外探测器的原理无线红外探测器的基本原理是,将入射的红外辐射信号转变成电信号输出的器件。
红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。
要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。
一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。
在红外线探测器中,热电元件检测人体的存在或移动,并把热电元件的输出信号转换成电压信号。
然后,对电压信号进行波形分析。
于是,只有当通过波形分析检测到由人体产生的波形时,才输出检测信号。
例如,在两个不同的频率范围内放大电压信号,且将被放大的信号用于鉴别由人体引起的信号。
于是,误将诸如热电元件的爆米花噪声一类噪声当作为由人体所产生而在准备加以检测乃得以防止。
三、红外探测器的使用方法而红外探测器有很多种类,不同分类的红外探测器有不同的使用方法。
1. 接近探测器:是一种当入侵者接近它时能触发报警的探测装置。
在接近探测器中,通常有一个高频率的LC震荡电路,震荡电路的LC回路通过导线连通到外部的金属部件上。
当人体靠近时,通过空间的电磁偶合,会改变LC回路的谐振频率,引起震荡频率改变,探测器的检测电路能够识别这种频率的改变而发出警示信号。
红外探测器的操作方法红外探测器是一种能够感应红外辐射并将其转化成可见光或电信号的仪器。
它常用于安防领域、温度测量、红外成像和通信等应用中。
下面将详细介绍红外探测器的操作方法。
1. 检查设备在开始操作红外探测器之前,需要先检查设备是否完好无损。
确保红外探测器的电源正常接通,连接端口没有松动或损坏。
2. 设置工作模式根据实际需要,设置红外探测器的工作模式。
通常有以下几种模式可供选择:单脉冲检测模式、双脉冲检测模式、宽带检测模式等。
根据应用需求选择合适的模式可以提高探测器的灵敏度和性能。
3. 调节灵敏度根据环境条件和需要,调节红外探测器的灵敏度。
一般情况下,灵敏度调节旋钮可用于设定红外探测器对红外辐射的感应范围。
根据需要,适当调节灵敏度可以提高探测效果。
4. 定位红外源在使用红外探测器之前,需要确定感兴趣的红外辐射源的方向和位置。
可以通过肉眼观察或使用其他辅助设备进行定位,以确保红外探测器能够准确捕捉到红外辐射。
5. 启动红外探测器在调整好红外探测器的各项参数后,将其启动。
通常通过按下电源开关或相应控制按钮来完成启动操作。
一些高级红外探测器还可以通过遥控器进行操作。
6. 检测红外辐射一旦红外探测器启动,它将开始检测其感兴趣区域内的红外辐射。
根据探测器的工作模式和灵敏度设置,它将捕获红外辐射并将其转化成可见光或电信号进行显示或记录。
7. 红外成像对于可见光以外的红外辐射,一些红外探测器还可以进行红外成像。
通过使用红外阵列探测器和图像处理技术,可以将红外辐射转化为热图或红外图像,以便于人们观察、分析和记录。
8. 数据处理与输出在红外探测器进行红外辐射检测后,一些先进的探测器还可以对数据进行处理和分析。
它们可以测量辐射强度、温度、频率等参数,并将结果通过显示屏或输出端口进行显示、记录或传输。
9. 关闭红外探测器在使用完红外探测器后,需要及时关闭它以节约能源和延长设备使用寿命。
通常通过按下电源开关或相应的控制按钮来完成关闭操作。
如今,随着社会的进步,经济的发展,越来越多人开始重视安防产品,家庭安防产品销售量开始逐年增长,红外探测器普及到越来越多的家庭,那么,什么是红外探测器的原理和使用方法?一、什么是红外探测器?红外探测器是将入射的红外辐射信号转变成电信号输出的器件。
红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。
要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。
一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。
现代红外探测器所利用的主要是红外热效应和光电效应。
这些效应的输出大都是电量,或者可用适当的方法转变成电量。
二、红外探测器的原理无线红外探测器的基本原理是,将入射的红外辐射信号转变成电信号输出的器件。
红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。
要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。
一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。
三、红外探测器的使用方法而红外探测器有很多种类,不同分类的红外探测器有不同的使用方法。
1. 接近探测器:是一种当入侵者接近它时能触发报警的探测装置。
在接近探测器中,通常有一个高频率的LC震荡电路,震荡电路的LC回路通过导线连通到外部的金属部件上。
当人体靠近时,通过空间的电磁偶合,会改变LC回路的谐振频率,引起震荡频率改变,探测器的检测电路能够识别这种频率的改变而发出警示信号。
接近探测器比较适用于室内,如对写字台、文件柜、保险柜等一些特殊物件提供保护,也可以用于对门窗的保护。
通常被保护的物件是金属的,实际上可以构成保护电路的一部分,因而只要有人试图破坏系统时,就会立即触发报警。
2.移动/震动探测器机器:能够探测固定物体位置被移动的传感器称为移动探测器。
其实运动是无处不在的,地球在转动,地球上的任何东西都在“移动”,这里所要探测的其实是相对的移动,比如放置在桌面上的物体被移开了桌面、停放的车辆被开动或搬动了等等。
红外探测器原理
红外探测器原理是基于红外辐射的特性。
红外辐射是一种在光谱中长波段的电磁辐射,对于人眼来说是不可见的。
红外探测器利用一种特殊的材料,被称为红外探测传感材料。
这种材料能够吸收红外辐射并转变为电信号。
当红外辐射照射到探测器上时,探测器内部的红外探测传感材料会吸收辐射能量并导致材料内部的电荷分布发生变化。
探测器内部还包含一个电路,用于测量和放大红外探测传感材料中由辐射能量引起的电荷变化。
这样,探测器就可以将红外辐射转化为电信号,从而进行信号处理和分析。
通常,探测器还配备了滤光片,用于选择特定波长的红外辐射,以增强探测器的准确性和灵敏度。
红外探测器的工作原理可归纳为以下几个步骤:辐射能量被红外探测传感材料吸收后,产生电荷变化;电荷变化被探测器内部的电路接收并放大;放大后的电信号经过信号处理和分析,可以得到关于红外辐射的信息。
红外探测器广泛应用于安防监控、火灾报警、人体检测、无人驾驶等领域。
通过感知红外辐射,探测器能够实时准确地识别和监测目标物体,具有很高的应用价值。
红外探测器工作原理
红外探测器是一种能够探测红外辐射的装置,主要原理基于物体发出的红外辐射与红外探测器的相互作用。
红外辐射是指波长范围在0.75-1000微米之间的电磁辐射,对应于频率范围在300-400 THz之间。
红外探测器常用的工作原理包括热电偶、热电阻、半导体等。
下面将分别介绍这些工作原理:
1. 热电偶原理:热电偶是由两种不同材料的导线接触形成的,它们之间存在热电效应。
当其中一侧受到红外辐射时,它的温度会升高,从而在热电偶的两端产生温差,进而产生电压差。
这个电压差可以用来检测红外辐射的强度。
2. 热电阻原理:热电阻器材料的电阻值随温度的变化而变化。
红外辐射会使热电阻器材料的温度升高,从而导致其电阻值发生变化。
测量热电阻器的电阻值变化,可以间接检测红外辐射的存在。
3. 半导体原理:半导体材料对红外辐射具有很好的吸收能力。
在半导体红外探测器中,人们常用的是InSb(砷化铟)、HgCdTe(汞镉铟)、Si(硅)等材料。
这些材料的能带结构使得它们能够吸收红外辐射而产生电荷载流子。
通过测量电荷载流子的变化,可以检测红外辐射的存在。
总之,红外探测器的工作原理是基于物体发出的红外辐射与红
外探测器的相互作用。
不同的原理适用于不同的应用场景,但都能够实现红外辐射的探测和测量。
红外对射探测器安装方法1. 红外对射探测器简介红外对射探测器是一种常用于安防系统的设备,它主要通过红外线的发射和接收来探测物体的存在和移动。
该设备通过将红外线发射器和接收器分别安装在需要监测的区域内,当有物体通过时,红外线会被物体遮挡,从而触发报警。
2. 安装前准备在开始安装红外对射探测器之前,需要做一些准备工作:- 确定好安装位置:根据监测范围和安全需求,选择合适的位置安装红外对射探测器。
通常情况下,应选择高度合适、视野开阔的位置来安装。
- 确认供电情况:检查供电线路是否满足红外对射探测器的电源要求,可以根据需要预留插座或使用电池供电系统。
- 确保设备完整:检查购买的红外对射探测器是否完整,包括发射器、接收器、安装支架和连接线等。
3. 安装步骤步骤一:确定安装位置根据前期准备中确定的位置,使用工具测量并标记出发射器和接收器的安装位置。
确保两者之间的距离适当,并且没有任何遮挡物。
步骤二:固定安装支架使用螺丝和螺母将安装支架固定在准备好的位置上。
确保支架稳固可靠,并可以将发射器和接收器安装在上面。
步骤三:连接发射器和接收器将发射器和接收器分别连接到供电线路或电池系统上,确保电源接线正确无误。
根据设备的说明书,可以使用连接线将发射器和接收器与安装支架固定在一起。
步骤四:调整和测试根据实际需求,适当调整红外对射探测器的角度和高度,确保能够有效监测到所需区域的移动。
在调整完毕后,可以进行测试。
通过检测显示器或报警主机,观察红外对射探测器是否能够正常工作。
步骤五:定期维护和检查安装完成后,定期维护和检查红外对射探测器是非常重要的。
按照设备的说明书,定期清洁和校准设备,确保其正常的工作状态。
4. 安全注意事项在安装红外对射探测器时,需要注意以下安全事项:- 确保安装位置不会干扰他人的正常活动。
- 在安装过程中,注意安全防护和措施,避免发生意外伤害。
- 在使用电源时,必须注意电压和电流是否符合设备要求,避免电源过载或短路等问题。
红外探测器的工作原理红外探测器的工作原理是基于物体发出的红外辐射来检测物体。
红外辐射是指物体在温度高于绝对零度时由于分子振动而产生的电磁波。
而红外辐射的峰值波长通常在0.75 ~ 1000微米之间。
红外探测器主要是利用材料在受到红外辐射时表现出与可见光不同的电学或热学性能来实现探测。
红外探测器有多种工作原理,主要包括热感型、半导体型、光感型和红外成像型。
一、热感型红外探测器热感型红外探测器又称热成像器,主要是基于物体辐射发射热能与温度之间的关系来实现红外探测。
热感型红外探测器由热敏阻、热电偶和热成像阵列等元件组成,其中,热敏阻和热电偶主要是用于单点测量,而热成像阵列则是用于红外成像。
热感型红外探测器的优点是能够在全天候、全天场合下工作,而且具有高灵敏度、高时间分辨率和高空间分辨率等优点。
热感型红外探测器的工作原理如下:当物体受到热辐射时,会发射出一定波长的红外光,并且这些红外光的能量随着温度的升高而增加。
当这些红外光照射到探测器上时,就会导致探测器表面的温度发生变化。
这种温度变化会影响到热敏阻或热电偶的电阻值或电势差,从而产生电信号。
热成像阵列则是由若干个小区域组成,每个小区域都能够分别感知到不同位置的红外辐射,从而实现红外图像的捕捉。
半导体型红外探测器主要是通过半导体材料与红外辐射的相互作用来实现探测。
半导体型红外探测器的材料主要包括铱化铟(InSb)、砷化镓(GaAs)、铟化镉(HgCdTe)等。
其中,铱化铟和砷化镓的峰值灵敏度较高,而银镉铟复合材料的响应速度较快。
半导体型红外探测器的优点是能够同时感知红外和可见光,并且具有快速响应、高分辨率和较宽的频带范围等优点。
半导体型红外探测器的工作原理如下:当红外辐射照射到半导体材料上时,会导致半导体中的载流子发生复合,从而产生电荷。
这些电荷会在电场的作用下被分离,形成电荷信号。
利用这些电荷信号,就可以实现红外辐射的探测。
光感型红外探测器主要是基于光电效应原理来探测红外辐射。
红外探测器应用场景的实际应用情况1. 应用背景红外探测器是一种能够感知并测量红外辐射的设备,广泛应用于许多领域。
红外辐射是一种波长超过可见光的电磁辐射,其具有热量传导、热辐射和热对流等特性。
红外探测器利用物体的红外辐射来实现目标检测、温度测量、人体检测等功能。
红外探测器的应用场景非常广泛,下面将详细介绍几个典型的实际应用情况。
2. 应用过程2.1 红外人体检测红外探测器在人体检测领域具有广泛应用。
其工作原理是通过检测人体发出的红外辐射来实现人体的检测和跟踪。
红外人体检测技术在安防领域得到了广泛应用,可以用于监控摄像头、入侵报警系统等。
在一个 typic 的应用场景中,红外探测器被安装在一个室内监控系统中。
当有人进入被监控区域时,红外探测器会检测到人体发出的红外辐射,并将信号传输给监控系统。
监控系统会接收到红外探测器的信号,并根据信号的强弱和变化来判断是否有人进入监控区域。
如果有人进入,则可以触发相应的报警,比如发出警报声音或自动拍摄照片,以便后续的处理和调查。
红外人体检测技术的优势在于其不受光线影响,可以在黑暗的环境下正常工作。
此外,红外辐射可以穿透一些遮挡物,如玻璃、塑料等,使得人体检测更加可靠。
然而,红外人体检测技术也存在一些局限性,比如对于低温物体的检测效果较差,容易受到温度变化的影响。
2.2 红外温度测量红外探测器在温度测量领域也有广泛应用。
利用红外辐射的特性,红外温度测量技术可以非接触地测量物体的表面温度。
这种技术在工业生产、医疗诊断、环境监测等领域得到了广泛应用。
在一个 typic 的应用场景中,红外探测器被用于测量机械设备的温度。
通过将红外探测器对准设备表面,可以测量设备表面的温度。
红外探测器会将红外辐射转换成电信号,并通过信号处理器将其转换为温度值。
这样,工作人员可以根据测得的温度值来判断设备是否正常运行,是否存在过热等问题。
红外温度测量技术的优势在于其非接触性和快速性。
相比于传统的接触式温度测量方法,红外温度测量不需要与物体接触,避免了传感器和物体之间的热量交换,从而减小了测量误差。
8.2红外探测器8.2.1 热探测器
8.2.2 光子探测器
8.2 红外探测器的分类
•红外探测器是能将红外辐射能转换成电能的一种光敏器件,是红外探测系统的关键部分,常常也被称为红外传感器。
它的性能好坏,直接影响系统性能的优劣。
因
此,选择合适的、性能良好的红外探测
器,对红外探测系统相当的重要。
•常见的红外探测器分为两种:热探测器和光子探测器。
8.2.1 热探测器
•工作原理:热探测器利用探测元件吸收红外辐射后产生温升,然后伴随发生某些物理性能的变化。
测量这些物理性能的变化就可以测量出它吸收的能量或功率。
•过程:第一步是热探测器吸收红外辐射引起温升;第二步是利用热探测器某些温度效应吧温升转变成电量的变化。
•常见类型:常利用的物理性能变化有下列四种,热敏电阻型,热电偶型,热释电
型,高莱气动型。
热敏电阻型探测器
•热敏物质吸收红外辐射后,温度升高,阻值发生变化。
阻值变化的大小与吸收的红外辐射能量成正比。
利用物质吸收红外辐射后电阻发生变化而制成的红外探测器叫做热敏电阻。
热敏电阻常用来测量热辐射。
•热敏电阻有金属和半导体两种。
•热敏电阻的电阻与温度的关系:
•R(T)--电阻值
• T--温度
•A,C,D--随材料而变化的常数
T
D C e
AT
T
R/
)
(−
=
•金属热敏电阻,电阻温度
系数为正,绝对值比半导
体小,电阻与温度的关系
基本上是线性的,耐高温
能力较强,多用于温度的
模拟测量。
•半导体热敏电阻恰恰相反,用于辐射探测,如报
警、防火系统、热辐射体
搜索和跟踪。
•常见的是NTC型热敏电阻.
热电偶型红外探测器
•热电偶也叫温差电偶,是最早出现的一种热电探测器件,其工作原理是热电效应。
由两种不同的导体材料构成的接点,在接点处可产生电动势。
热电偶接收辐射的一端称为热端,另一端称为冷端。
•热电效应:如果把这两种不同的导体材料接成回路,当两个接头处温度不同时,回路中即产生电流。
•为提高吸收系数,在热端都装有涂黑的金箔构成热电偶的材料,既可以是金属,也可以是半导体。
在结构上既可以是线、条状的实体,也可以是利用真空沉积技术或光刻技术制成的薄膜
•实体型的温差电偶多用于测温,薄膜型的温差电堆(有许多个温差电偶串联而成)多用于测量辐射。
温差电偶和温差电堆的原理性结构如下图所示
•热电偶型红外探测器的时间常数较大,所以响应时间较长,动态特性较差,北侧辐射变化频率一般应在10HZ以下。
•在实际应用中,往往将几个热偶串联起来组成热电堆来检测红外辐射的强弱
热释电型红外探测器
•热释电型红外探测器是由具有极化现象的热释电晶体或称“铁电体”制作的。
热释电晶体是压电晶体中的一种,具有非中心对称的结构。
自然状态下,在某
些方向上正负电荷中心不重合,在晶体表面形成一定量的极化电荷,称为自
发极化。
晶体温度变化是,可引起警惕正负电荷中心发生位移,因此表面的
极化电荷即随之变化。
•热释电晶体在温度变化时所表现的热释电效应示意图
•通常其表面俘获大气中的浮游电荷而保持电平衡状态。
处于电平衡状态的铁电体,当红外线照射到其表面上时,引起铁电体(薄片)温度迅速升高,极化强度很快下降,束缚电荷急剧减少;而表面浮游电荷变化缓慢,跟不上铁电体内部的变化。
•热释电效应:从温度变化引起极化强度变化到在表面重新达到电平衡状态的极短时间内,在铁电体表面有多余浮游电荷出现,这相当于释放出一部分电荷,这种现象称为热释电效应.
•由于自由电荷中和面束缚电荷所需时间较长,大约需要数秒钟以上,而晶体自发
•极化的驰豫时间很短,约为10-12秒,因此热释电晶体可响应快速的温度变化.
高莱气动型探测器
•高莱气动型探测器又称高莱(Golay)管,是高莱于1947年发明的。
它
是利用气体吸收红外辐射能量
后,温度升高、体积增大的特
性,来反映红外辐射的强弱。
其
结构原理如下图所示:
•高莱气动型探测器的设计思想是这样的,当没有红外辐射入射
时,上半边光栅的不透光的栅线
刚好成像到下半边光栅透光的栅
线上,而上半边的透光栅线刚好
成像到下半边光栅不透光栅线上,于是没有光量透过下半光栅射到光电探测器上,因此输出结果就是零这种探测器的特点是灵敏度高,性能稳定。
但响应时间长,结构复杂,强度差,只是用于试验时使用。
8.2.2 光子探测器
•光子型红外探测器是利用某些半导体材料在红外辐射的照射下,产生光电效应,使材料的电学性质发生变化,通
过测量电学性质的变化,可以确定红外辐射的强弱。
利用光电效应所制成的红外探测器统称光子探测器。
主要特点是灵敏度高,响应速度快,响应频率高。
但其一般需在低温下工作,探测波段较窄。
•根据光子探测器的工作原理一般可分为外光电探测器和内光电探测器。
内光电探测器又分为光电导探测器,光生伏特探测器和光磁电探测器。
•1.外光电探测器(PE器件)
•当光入射到某些金属、金属氧化物或半导体表面时,如果光子能量足够大,能使其表面发射电子,这种现象统称为光电子发射,属于外光电效应。
光电管、光电倍增管都属于这种类型的光子探测器。
它的响应速度比较快只适用于近红外辐射或可见光范围内使用。
• 2.光电导探测器
•当半导体吸收入射光子后,半导体内有些电子和空穴从原来不导电的束缚状态转变到能导电的自由状态,从而使半导体的电导率增加,这种现象称为光电导效应。
利用半导体的光电导效应制成的红外探测器叫做光电导探测器,是目前,它是种类最多应用最广的一类光子探测器。
•3.光生伏特探测器(PU器件)
•当红外辐射照射在某些半导体材料结构的PN结上,在PN结内电场的作用下,P区的自由电子移向N区,N区的空穴向P区移动。
如果PN结是开路的,则在PN结两端产生一个附加电势称为光生电动势。
利用光生电动势效应制成的探测器称为光生伏特探测器或结型红外探测器。
• 4. 光磁电探测器在样品横向加一磁场,当半导体表面吸收光子后所产生的电子和空穴随即向体内扩
散,在扩散过程中由于受横向磁场的作用,电子和空穴分别向样品两端偏
移,在样品两端产生电位差。
这种现象叫做光磁电效应。
利用光磁电效应制成的探测器称为光磁电探测器(简称PEM器件)。