实验四 回溯算法
- 格式:doc
- 大小:112.00 KB
- 文档页数:4
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
算法设计与分析实验报告实验名称_____回溯算法_____学院________数学与计算机学院____ 班级_______信科00000___________ 学号_______6666666666__________ 姓名_____000000________________ 2016年月日{if(((a+b)==24)||((a-b)==24)||((a*b)==24)||(b!=0&&a%b==0&&a/b==24)){//如果经过上面的计算得到解while(!route.empty()){node now=route.front();printf("%d%c%d=%d\n",now.a,now.oper,now.b,now.sum);//依次输出前面的计算过程route.pop();}if((a+b)==24){if(b>a) swap(a,b);printf("%d+%d=%d\n",a,b,a+b);}if((a-b)==24) printf("%d-%d=%d\n",a,b,a-b);if((a*b)==24) {if(b>a) swap(a,b);printf("%d*%d=%d\n",a,b,a*b);}if(a%b==0&&b!=0&&(a/b)==24) printf("%d/%d=%d\n",a,b,a/b);//a/b比较特殊,要求结果必须是整数flag=true;//表示找到解,一旦找到任何一个解就退出}return ;}queue <node> temp=route;node x;x.a=a,x.b=b,x.sum=a+b,x.oper='+';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a+b,num[cur+1],temp);//(((a*b)*c)*d) 模型temp=route;x.a=a,x.b=b,x.sum=a*b,x.oper='*';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a*b,num[cur+1],temp);temp=route;x.a=a,x.b=b,x.sum=a-b,x.oper='-';temp.push(x);dfs(cur+1,a-b,num[cur+1],temp);if(b!=0&&a%b==0){//a/b需要验证合法性temp=route;x.a=a,x.b=b,x.sum=a/b,x.oper='/';temp.push(x);dfs(cur+1,a/b,num[cur+1],temp);}temp=route;x.a=b,x.b=num[cur+1],x.sum=b+num[cur+1],x.oper='+';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b+num[cur+1],temp);//a*((b*c)*d) 模型temp=route;x.a=b,x.b=num[cur+1],x.sum=b*num[cur+1],x.oper='*';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b*num[cur+1],temp);temp=route;x.a=b,x.b=num[cur+1],x.sum=b-num[cur+1],x.oper='-';temp.push(x);dfs(cur+1,a,b-num[cur+1],temp);if(num[cur+1]!=0&&b%num[cur+1]==0) {temp=route;x.a=b,x.b=num[cur+1],x.sum=b/num[cur+1],x.oper='/';temp.push(x);dfs(cur+1,a,b/num[cur+1],temp);}}int main(){//freopen("point24.in","r",stdin);//输入输出重定向//freopen("point24.out","w",stdout);queue <node> t;scanf("%d %d %d %d",&num[0],&num[1],&num[2],&num[3]);while(!flag){dfs(1,num[0],num[1],t);printf("%d %d %d %d\n",num[0],num[1],num[2],num[3]);if(!next_permutation(num,num+4)) break;}if(!flag) printf("No answer!\n");system("pause");return 0;}。
算法设计与分析实验报告1.骑士游历问题(采用回溯法):在国际象棋的棋盘(8行×8列)上放置一个马,按照“马走日字”的规则,马要遍历棋盘,即到达棋盘上的每一格,并且每格只到达一次。
若给定起始位置(x0,y0),编程探索出一条路径,沿着这条路径马能遍历棋盘上的所有单元格。
2. 行列变换问题(采用分支限界法):给定两个m n方格阵列组成的图形A和图形B,每个方格的颜色为黑色或白色,如下图所示。
行列变换问题的每一步变换可以交换任意2行或2列方格的颜色,或者将某行或某列颠倒。
上述每次变换算作一步。
试设计一个算法,计算最少需要多少步,才能将图形A变换为图形B。
图形A图形B}}实例:2. 行列变换问题的程序:package ;import graph{static int sour, dest;//sour是图形的初始整数,dest是图形的目的整数static int ans[]=new int[1<<16];//静态变量(即全局变量),用于存放图形变换的路径int m=4,n=4,x;int row[]=new int[4];int col[]=new int[4];void setx(int x){=x;}int getx(){return ;}x/=2;}}}public static void output(int N){if(N=={outb(N);return;}output[N]);//[N]存放着从初始值到目的值的遍历路径outb(N);}}实例:实验成绩:指导教师:年月日精心搜集整理,。
回溯算法实验报告实验目的:回溯算法是一种递归算法,通常用于解决有限集合的组合问题。
本实验旨在通过实现回溯算法来解决一个具体的问题,并对算法的性能进行评估。
实验内容:本实验将以八皇后问题为例,展示回溯算法的应用。
八皇后问题是一个经典的问题,要求在一个8x8的棋盘上放置8个皇后,使得任意两个皇后不能在同一行、同一列或同一对角线上。
算法步骤:1. 创建一个二维数组,表示棋盘。
初始化所有元素为0,表示棋盘上无皇后。
2. 逐行进行操作,尝试在每一列放置皇后。
在每一列,从上到下逐个位置进行尝试,找到一个合适的位置放置皇后。
3. 如果找到合适的位置,则将该位置标记为1,并向下一行进行递归操作。
4. 如果当前位置无法放置皇后,则回溯到上一行,尝试放置皇后的下一个位置。
5. 当所有皇后都放置好后,得到一个解。
将该解加入结果集中。
6. 继续回溯,尝试寻找下一个解。
7. 当所有解都找到后,算法终止。
实验结果:在本实验中,我们实现了八皇后问题的回溯算法,并进行了性能测试。
根据实验结果可以看出,回溯算法在解决八皇后问题上表现出较好的性能。
实验中,我们使用的是普通的回溯算法,没有进行优化。
对于八皇后问题来说,回溯算法可以找到所有解,但是随着问题规模的增加,算法的执行时间也会大大增加。
回溯算法是一种非常灵活的算法,可以用于解决各种组合问题。
对于规模较大的问题,回溯算法的时间复杂度很高,需要考虑优化算法以提高性能。
在实际应用中,可以结合其他算法,如剪枝等技巧,来改进回溯算法的性能。
回溯算法是一种非常有价值的算法,值得进一步研究和应用。
《算法设计与分析》实验报告实验4 回溯算法一、实验目的:掌握回溯算法的设计思想与设计方法。
二、实验环境1、硬件环境CPU:Intel(R) Celeron(R) CPU 1007U @ 1.5GHz内存:4G硬盘:500G2、软件环境操作系统:Windows7编程环境:Visual C++ 6.0编程语言:C三、实验内容1、问题有一个背包,最大限重为C,有n个物品,重量分别为W=<w1, w2, …, w n>,要求找出一个装载方案,使得放入背包物品的重量最大。
输出装载方案和该方案下的背包所装物品总重量。
2、数据结构(1)解的结构一维数据(1)<0 1 0 1 1 1 1>(2) <0 0 1 0 1 1 0>(2)搜索空间的结构3、算法伪代码ReBack(i)1、If i>n then<x1,x2,x3,...xn>是解2、Else while Si≠∅do3、Xi Si中最小值4、SiSi-{Xi}5计算Si+16ReBack(i+1)4、算法分析时间复杂度:O(2n)空间复杂度:O(n)5、关键代码(含注释)#include<stdio.h>int n,c,bestp;//物品的个数,背包的容量,最大重量int w[10000],x[10000],bestx[10000];//w[i]物品的重量,x[i]暂存物品的选中情况,bestx[i]物品的选中情况void Backtrack(int i,int cw){ //cw当前包内物品重量int j;if(i>n)//回溯结束{if(cw>bestp){bestp=cw;for(i=0;i<=n;i++) bestx[i]=x[i];}}elsefor(j=0;j<=1;j++){x[i]=j;if(cw+x[i]*w[i]<=c){cw+=w[i]*x[i];Backtrack(i+1,cw);cw-=w[i]*x[i];}}}6、实验结果(1)输入:C=152,n=7,W=<90, 80, 40, 30, 20, 12, 10> 输出:(2)输入:C=954,n=7,W=<2, 23, 163, 241, 311, 479, 487> 输出:四、实验总结(心得体会、需要注意的问题等)回溯算法也称试探法,是一种系统的搜索问题的解的方法。
实验四回溯法的应用------跳马算法学号:012124345 姓名:梁文耀一、实验目的掌握使用回溯法求解问题的基本思路;理解其特点。
二、实验思想算法的基本思路是:定义结构体:struct PLACE{int x, int y}表示棋盘上的位置。
依题意,马每跳一步之后都可以从七个不同的方向选择下一步的跳马,当然,前提是跳的这一步在棋盘内且它前面的任何一步都没跳到这一格子上(限界),就可以认为这一步跳成功,否则跳马不成功。
若跳马不成功,则找下一个方向尝试跳马,若七个方向都跳马不成功,则回溯。
假设棋盘的行(列)数为n。
在本算法中设置这样一个全局数组:c[8][2]={{2,1},{2,-1},{1,2},{1,-2},{-2,1},{-2,-1},{-1,2},{-1,-2}}; 来记录跳马的八个方向。
三、程序分析(主要算法)int map[12][12], status[12][12], kp;int start,finsh;int c[8][2]={{2,1},{2,-1},{1,2},{1,-2},{-2,1},{-2,-1},{-1,2},{-1,-2}};int flag = 0;void prt(int a[][12]) /* 打印棋盘状态*/{int i,j;printf("\n");for (i=2;i<=9;i++){for (j=2;j<=9;j++)printf("%4d",a[i][j]);printf("\n");}}void status2(void) /* 计算棋盘各点条件数*/ {int i,j,k,i2,j2,kz;for(i=0;i<12;i++)for(j=0;j<12;j++)status[i][j]=100;for(i=2;i<=9;i++)for(j=2;j<=9;j++){kz=0;for (k=0;k<=7;k++){i2=i+c[k][0];j2=j+c[k][1];if (map[i2][j2]<50) kz++;}status[i][j]=kz;}//prt(status);}void sort1(int b1[],int b2[]) /* 对8个可能的方向按条件数排序*/ {int i,j,mini,t; /*b1[]记录状态值(升序),b2[]记录排序后的下标*/ for (i=0;i<=7;i++){mini=i;for (j=i+1;j<=7;j++)if (b1[j]<b1[mini]) mini=j;t=b1[i]; b1[i]=b1[mini]; b1[mini]=t;t=b2[i]; b2[i]=b2[mini]; b2[mini]=t;}}void init1(void) /* 初始化*/{int i,j;for(i=0;i<12;i++)for(j=0;j<12;j++)map[i][j]=100;for(i=2;i<=9;i++)for(j=2;j<=9;j++)map[i][j]=0;status2();}void search(int i2,int j2) /* 利用递归回溯进行搜索*/ {if (flag == 1)return ;int b1[8],b2[8],i,i3,j3;kp++;for(i=0;i<=7;i++)//8个方向{b2[i]=i;b1[i]=status[i2+c[i][0]][j2+c[i][1]];}//forsort1(b1,b2);for(i=0;i<=7;i++)//检查是否可以走{i3=i2+c[b2[i]][0]; //按照排序中的方向查找j3=j2+c[b2[i]][1];if (map[i3][j3]==1 && kp==65){prt(map);flag = 1;}if (map[i3][j3]==0)//若有路可以走,则执行下面操作{map[i3][j3]=kp;search(i3,j3); //递归调用map[i3][j3]=0; //若还没有走完并且已经没有路走则恢复0状态}//if}//forkp--;//回朔}//searchint main(){int row, column;char ch;//int start,finsh;while (true){//打印提示信息cout<<" 1: 开始程序"<<endl;cout<<" 2: 退出程序"<<endl;cout<<"注意:"<<endl;cout<<""<<endl;cout<<"输入选择(1 或2):"<<endl;//如果输入信息不正确,继续输入do{ch = (char)_getch();}while(ch != '1' && ch != '2');system("cls");//选择3,返回if (ch == '2'){cout<<"退出!!!"<<endl;return 0;}//选择1,进入操作程序else{init1();cout<<"输入初始位置(行row)(1<=row<=8):"<<endl;cin>>row;row = row + 1;cout<<"输入初始位置(列column)(1<=column<=8):"<<endl;cin>>column;column = column + 1;map[row][column] = 1;kp = 1;start = clock();cout<<"遍历结果:"<<endl;search(row,column);flag = 0;finsh = clock();cout<<"算法运行时间:"<<finsh-start<<endl;kp = 1;}//结束cout<<endl<<"Press Any Key To Contimue:"<<endl;_getch();system("cls");}//whilereturn 0;}四、心得体会这程序和以前做的迷宫问题很相象,写起来不是很困难. 确定限界函数,在只有满足限界函数的前提下得到解,不满足限界条件时就要回溯,回到上一个节点,再从另外的方向出发。
回溯算法实验报告(一)回溯算法实验报告1. 简介回溯算法是一种经典的解决问题的方法,特别适用于求解排列组合问题、迷宫问题以及图的搜索等。
本实验旨在探究回溯算法的原理、应用以及优缺点。
2. 原理回溯算法是一种递归的算法,通过不断试错来找出问题的解。
其基本思想是: - 从问题给定的初始解开始,逐步构建一个候选解; - 当候选解不满足约束条件时,进行回溯,返回上一步重新构建候选解;- 当所有候选解都被尝试过且都不满足约束条件时,算法停止。
3. 应用回溯算法在很多领域都有广泛的应用,以下列举几个常见的例子:1. 排列组合问题:如求解一个数组的全排列; 2. 迷宫问题:如求解从起点到终点的路径; 3. 图的搜索:如深度优先搜索(DFS)和广度优先搜索(BFS)。
4. 优缺点回溯算法有以下优点: - 适用性广:可以解决多种问题,特别擅长于求解排列组合和搜索类问题; - 简单直观:算法思想直观,易于理解和实现。
但回溯算法也有一些缺点: - 效率较低:因为回溯算法需要枚举所有可能的解,所以在问题规模较大时,时间复杂度较高; - 可能存在重复计算:如果问题的解空间中存在重复的子问题,回溯算法可能会进行重复的计算。
5. 实验结论通过本实验我们可以得出以下结论: 1. 回溯算法是一种经典的解决问题的方法,可应用于多个领域; 2. 回溯算法的基本原理是试错法,通过逐步构建候选解并根据约束条件进行回溯,找到问题的解;3. 回溯算法的优点是适用性广、简单直观,但缺点是效率较低且可能存在重复计算。
因此,在实际应用中,我们需要根据具体问题的特点来选择适合的算法。
回溯算法在问题规模较小时可以快速得到解答,但对于规模较大的问题,可能需要考虑其他高效的算法。
6. 探索进一步改进回溯算法的方法虽然回溯算法在解决一些问题时非常有用,但对于问题规模较大的情况,它可能会变得低效且耗时。
因此,我们可以探索一些方法来改进回溯算法的性能。
6.1 剪枝策略在回溯算法中,我们可以通过剪枝策略来减少无效的搜索路径,从而提高算法的效率。