第八章 烯烃 亲电加成 自由基加成 共轭加成
- 格式:ppt
- 大小:2.72 MB
- 文档页数:129
烯烃亲电加成自由基加成共轭加成共轭烯烃物理性质的特点:1.红移2.易极化3.趋于稳定烯烃的反应:亲电加成:4种机理1.环正离子中间体机理:溴与烯烃的加成,溴鎓离子,主要产物为反式,苏型产物。
2.碳正离子中间体机理:顺式加成与反式加成皆有很大的机会。
3.离子对中间体机理:主要为顺式加成。
4.三中心过渡态机理:试剂的结构,反应的环境,过渡态的稳定性等等因素都会对机理的选择起影响。
马氏规则:碳碳双键与氢卤酸的加成主要产物为,卤素原子加到带有氢原子少的那一个上。
Notification:具体的特别情况仍然需要进一步的分析:借助电子效应,热力学上最稳定的那种产物,就是主要产物。
烯烃与硫酸,水,有机酸,醇和酚的反应:碳正离子机理,常常有重排产物,不采用。
与有机酸反应生成酯。
烯烃与次卤酸的加成:具体考虑机理之后,再去确定加成是顺式为主还是反式为主。
烯烃的自由基加成反应:反马氏加成Kharasch效应:过氧化物在光照条件下生成自由基。
(又名过氧化效应)书上只说了氢卤酸的kharasch效应,唯有HBr可行。
烯烃的氧化:环氧化反应:顺式加成,产物极其活泼,容易开环!;制取邻二醇:AcOH、H2O2与烯烃反应得到羟基酯,加热使其分解得到邻二醇。
高锰酸钾氧化:PH值对高锰酸钾的氧化能力有影响,需要校正PH值来引导反应方向。
特点:产率不高。
副产物极多!高锰酸钾(aq)用于烯烃的鉴别:注意:有干扰时,请慎用!现象:褪色,沉淀(MnO2)产生。
OsO4氧化烯烃:大量H2O2(低廉)和微量OsO4(昂贵)合作做氧化剂。
顺式加成。
烯烃的臭氧化-分解反应:臭氧氧化之后,得到的二级氧化产物在还原剂的庇护之下,生成两个羰基化合物用于对烯烃结构的推测:发挥想象,连接双键烯烃的硼氢化—氧化反应和硼氢化—还原反应:硼氢化:反马氏规则,顺式加成。
B2H6和烯烃反应生成烷基硼烷。
硼氢化—氧化反应:①碱性条件②底物为烷基硼③过氧化氢参与氧化反应生成硼酸酯(OH-为进攻离子)硼酸酯水解的到醇(ROH)与硼酸(B(OH)3)。
1. 烯烃的分类:累积二烯烃(H 2C=C=CH 2)、孤立二烯烃、共轭二烯烃2. 烯烃的结构特征:未参与杂化的p 轨道与烯烃平面垂直。
如果吸收一定的能量,克服了p 轨道的结合力,顺式或反式可以互转。
C=C 键的平均键能为610.9kJ ·mol -1,C-C σ键的平均键能为347.3 kJ ·mol -1,因此 键的键能大约为263.6 kJ ·mol -1。
二元取代烯烃比一元取代烯烃稳定8.3~12.5 kJ ·mol -1。
所以烯烃取代越多越稳定。
1,3-丁二烯是一个平面型分子。
键长均匀化是共轭烯烃的共性。
3. 烯烃的物理性质含2~4个碳原子的烯烃是气体,含5~15个碳原子的烯烃为液体,高级烯烃为固体。
所有烯烃都不溶于水,所有烃(C 、H )都不溶于水。
燃烧时,火焰明亮。
在sp n 杂化轨道中,n 数值越小,s 性质越强。
由于s 电子靠近原子核,它比p电子与原子核结合得更紧,轨道的电负性越大,所以电负性大小次序为s>sp>sp 2>sp 3>p 。
即碳原子的电负性随杂化时s 成分的增大而增大。
烯烃由 于sp 2碳原子的电负性比sp 3碳原子的大,比烷烃容易极化,成为有偶极矩的分子。
以丙烯为例,甲基与双键碳原子相连的键易于极化,键电子偏向于sp 2碳原子,形成偶极,负极指向双键,正极位于甲基一边。
因此当烷烃和不饱和碳原子相连时,由于诱导效应与超共轭效应成为给电子基团。
第八章 烯烃 亲核加成 自由基加成 共轭加成①在abC=Cab类型的烯烃中,顺型异构体总是偶极分子,而且沸点较高。
这对于识别顺反异构体是很有用的。
②也可以通过X射线衍射的方法测定相同基团之间的距离,以确定顺反异构体。
③核磁共振也是测定顺反异构体的有效方法。
共轭烯烃物理性质的特点:①紫外(电子)吸收光谱——向长波方向移动②易极化——折射率增高③趋于稳定——氢化热(烯烃催化加氢生成烷烃放出的热)降低。
十万种考研考证电子书、题库视频学习平台圣才电子书 第8章烯烃亲电加成自由基加成共轭加成习题8-1写出分子式为C 5H 6ClBr 和具有共轭结构的所有链形化合物的同分异构体及它们的中英文系统命名。
解:十万种考研考证电子书、题库视频学习平台圣才电子书习题8-2烯烃的顺反异构体在一定条件下可以相互转化,请设想三种使顺反异构体转换的方法,写出相应的反应式并阐明理由。
解:(1)在酸性条件下,与水加成,再脱水;(2)在500℃左右的高温下加热,烯短π键可断裂,发生构型转化;(3)与溴加成,后再在强碱作用下,脱除2分子HBr变成炔烃,最后用不同方法还原成烯烃。
反应式及理由略。
习题8-3写出溴与(Z)-2-戊烯加成的主要产物及相应的反应机理,分别用伞形式、锯架式、纽曼式费歇尔投影式来表示主要产物,该主要产物是苏型的还是赤型的?解:反应机理为:该产物是苏型的,其各种表示式如下:习题8-4写出(R)-4-甲基环己烯和溴加成的主要产物,并简述原因。
解:主要产物为:反应机理为:习题8-5写出(S)-3-甲基环己烯和溴加成的主要产物,并简述原因。
解:主要产物为:反应历程为:双邻位交叉构象是一种能量很高的禁阻构象,因此构型反转,得到热力学稳定的产物。
习题8-6写出1-甲基环己烯和溴加成的主要产物,并简述原因。
解:主要产物为:原因:双直键和双平键的构象相等,因为双直键的二溴化物有1,3—双直键的相互作用,但双平键的二溴化物中Br—C—C—Br为邻交叉型,有偶极—偶极的排斥作用,以上两种力能量几乎相等,互相抵消。
习题8-7完成下面的反应式,写出下列反应的反应机理。
解:反应机理如下:习题8-8写出下列化合物与溴的加成产物。
烯烃亲电加成自由基加成共轭加成共轭烯烃物理性质的特点:1.红移2.易极化3.趋于稳定烯烃的反应:亲电加成:4种机理1.环正离子中间体机理:溴与烯烃的加成,溴鎓离子,主要产物为反式,苏型产物。
2.碳正离子中间体机理:顺式加成与反式加成皆有很大的机会。
3.离子对中间体机理:主要为顺式加成。
4.三中心过渡态机理:试剂的结构,反应的环境,过渡态的稳定性等等因素都会对机理的选择起影响。
马氏规则:碳碳双键与氢卤酸的加成主要产物为,卤素原子加到带有氢原子少的那一个上。
Notification:具体的特别情况仍然需要进一步的分析:借助电子效应,热力学上最稳定的那种产物,就是主要产物。
烯烃与硫酸,水,有机酸,醇和酚的反应:碳正离子机理,常常有重排产物,不采用。
与有机酸反应生成酯。
烯烃与次卤酸的加成:具体考虑机理之后,再去确定加成是顺式为主还是反式为主。
烯烃的自由基加成反应:反马氏加成Kharasch效应:过氧化物在光照条件下生成自由基。
(又名过氧化效应)书上只说了氢卤酸的kharasch效应,唯有HBr可行。
烯烃的氧化:环氧化反应:顺式加成,产物极其活泼,容易开环!;制取邻二醇:AcOH、H2O2与烯烃反应得到羟基酯,加热使其分解得到邻二醇。
高锰酸钾氧化:PH值对高锰酸钾的氧化能力有影响,需要校正PH值来引导反应方向。
特点:产率不高。
副产物极多!高锰酸钾(aq)用于烯烃的鉴别:注意:有干扰时,请慎用!现象:褪色,沉淀(MnO2)产生。
OsO4氧化烯烃:大量H2O2(低廉)和微量OsO4(昂贵)合作做氧化剂。
顺式加成。
烯烃的臭氧化-分解反应:臭氧氧化之后,得到的二级氧化产物在还原剂的庇护之下,生成两个羰基化合物用于对烯烃结构的推测:发挥想象,连接双键烯烃的硼氢化—氧化反应和硼氢化—还原反应:硼氢化:反马氏规则,顺式加成。
B2H6和烯烃反应生成烷基硼烷。
硼氢化—氧化反应:①碱性条件②底物为烷基硼③过氧化氢参与氧化反应生成硼酸酯(OH-为进攻离子)硼酸酯水解的到醇(ROH)与硼酸(B(OH)3)。
烯烃的亲电加成反应烯烃的亲电加成反应烯烃的亲电加成反应与烯烃发生亲电加成的试剂,常见的有下列几种:卤素(Br2,Cl2)、无机酸(H2SO4,HCl,HBr,HI,HOCl,HOBr)及有机酸等。
1.与卤素加成主要是溴和氯对烯烃加成。
氟太活泼,反应非常激烈,放出大量的热,使烯烃分解,所以反应需在特殊条件下进行。
碘与烯烃不进行离子型加成。
(1)加溴:在实验室中常用溴与烯烃的加成反应对烯烃进行定性和定量分析,如用5%溴的四氯化碳溶液和烯烃反应,当在烯烃中滴入溴溶液后,红棕色马上消失,表明发生了加成反应,一般双键均可进行此反应。
CH2=CH2+Br2→BrCH2CH2Br卤素与烯烃的加成反应是亲电加成,反应机制是二步的,是通过环正离子过渡态的反式加成,主要根据以下实验事实:(a)反应是亲电加成:是通过溴与一些典型的烯烃加成的相对反应速率了解的:可以看到,双键碳上烷基增加,反应速率加快,因此反应速率与空间效应关系不大,与电子效应有关,烷基有给电子的诱导效应与超共轭效应,使双键电子云密度增大,烷基取代越多,反应速率越快,因此这个反应是亲电加成反应。
当双键与苯环相连时,苯环通过共轭体系,起了给电子效应,因此加成速率比乙烯快。
当双键与溴相连时,溴的吸电子诱导效应超过给电子共轭效应,总的结果起了吸电子的作用,因此加成速率大大降低。
(b)反应是分二步的:如用烯烃与溴在不同介质中进行反应,可得如下结果:上述三个反应,反应速率相同,但产物的比例不同,而且每一个反应中均有BrCH2CH2Br产生,说明反应的第一步均为Br+与CH2=CH2的加成,同时这是决定反应速率的一步;第二步是反应体系中各种负离子进行加成,是快的一步。
(上述三个反应,如溴的浓度较稀,主要产物为溴乙醇和醚。
)(c)反应是通过环正离子过渡态的反式加成,而且是立体选择性的反应(stereoselectivereaction)。
所谓环正离子过渡态,是试剂带正电荷或带部分正电荷部位与烯烃接近,与烯烃形成碳正离子,与烯烃结合的试剂上的孤电子对所占轨道,与碳正离子轨道,可以重叠形成环正离子,如形成活性中间体环正离子,这是决定反应速率的一步。
烯烃的亲电加成反应
烯烃是一种含有双键的有机化合物,双键上的云电子密度较高,因此容易发生亲电加成反应。
亲电加成反应是指一个亲电子试剂(如卤素、酸、羰基化合物等)攻击烯烃双键,形成一个新的化学键。
具体而言,烯烃的亲电加成反应发生的机理可以分为两种情况:
1. 烯烃与电子亲和力强的亲电子试剂反应
例如,卤素可以与烯烃发生亲电加成反应,生成卤代烃。
反应过程中,卤素的正电荷通过共价键与双键上的π电子形成新的化学键,同时烯烃的一个碳原子上的π电子与卤素之间的连接断裂。
2. 烯烃与亲电子试剂之间发生共轭加成反应
共轭加成反应是指亲电子试剂首先攻击烯烃双键上的π电子,形成一个共轭体系,然后在这个体系中发生加成反应。
例如,羰基化合物可以与烯烃发生共轭加成反应,生成羰基双键和烷基链。
反应过程中,羰基化合物的碳原子上的正电荷通过共价键与双键上的π电子形成一个共轭体系,然后这个体系中的双键上的π电子攻击羰基化合物的羰基,形成新的化学键。
总之,烯烃的亲电加成反应是很重要的有机化学反应,可以用来合成许多有机化合物。
因此,对烯烃的亲电加成反应的研究具有重要的理论和实际意义。
- 1 -。