2021年八年级数学下册 6.3分式方程第三课时教案 人教新课标版
- 格式:doc
- 大小:22.50 KB
- 文档页数:4
新课标人教版初中数学八年级下册第十六章《16.3分式方程》精品教案教学目标(一)知识与技能目标经历分式方程概念、分式方程的解法过程,会解可化为一元一次方程的分式方程的解法,会检验根的合理性,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.(二)过程与方法目标经历“实际问题-分式方程方程模型-求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.(三)情感与价值目标在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点和难点1.教学重点:分式方程的解法及应用.2.教学难点:理解解分式方程时产生增根的原因,分式方程的应用.教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法与应用.教学过程1、情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量.你能找出这一问题中的所有等量关系吗?分组交流若设第一块试验田每公顷的产量为x kg,则第二块试验田每公顷的产量是__________kg.根据题意,可得方程_____________________2、解读探究(1)从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.求该客车由高速公路从甲地到乙地所需的时间.这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为x h,那么它由普通公路从甲地到乙地所需的时间为_________h.根据题意,可得方程_________________.学生分组探讨、交流,列出方程等量关系:①客车在高速公路上行驶的平均速度=在普通公路上的平均速度+45②由高速公路从甲地到乙地所需的时间×2=普通公路从甲地到乙地所需的时间方程:=+45(2)王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元;后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元;原定的人数是多少?你能找出这一问题中所有的等量关系吗?如果设原定是x人,那么每人平均分摊________元;人数增加到原定人数的2倍后,每人平均分摊________元;根据题意,可得方程________议一议:上面所得到的方程有什么共同特点?分母中含有未知数的方程叫做分式方程.分式方程与整式方程有什么区别?做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x满足怎样的方程?3、随堂练习(1)据联合国《2003年全球投资报告》指出,中国吸收外国投资额达530亿美元,比上一年增加了13%.设我国吸收外国投资额为亿美元,请你写出满足的方程.你能写出几个方程?其中哪一个是分式方程?(2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2.5千米/小时,求轮船的静水速度.(3)根据分式方程编一道应用题,然后同组交流,看谁编得好4、学习小结本节课你学到了哪些知识?有什么感想?作业:P80习题3.6教学反思:。
八年级数学下册分式方程教案一、教学目标:1. 让学生理解分式方程的定义及其表示方法。
2. 培养学生解决实际问题,提高学生运用分式方程解决实际问题的能力。
3. 培养学生独立思考、合作交流的能力,提高学生的数学素养。
二、教学重点与难点:重点:理解分式方程的定义及其表示方法。
难点:解决实际问题,运用分式方程求解。
三、教学准备:1. 教师准备PPT,展示分式方程的定义、表示方法及求解步骤。
2. 准备一些实际问题,用于引导学生运用分式方程解决。
四、教学过程:1. 导入:通过复习分数的概念,引导学生思考分数与方程的关系,从而引入分式方程。
2. 讲解:a. 讲解分式方程的定义:含未知数的分数方程叫分式方程。
b. 讲解分式方程的表示方法:一般形式为\( \frac{A}{B} = \frac{C}{D} \),其中A、B、C、D为表达式,且B、D不为0。
c. 讲解求解分式方程的步骤:i. 去分母:将分式方程两边同乘以B和D的最小公倍数。
ii. 去括号:根据分配律,去掉方程中的括号。
iii. 移项:将未知数项移至方程的一边,常数项移至方程的另一边。
iv. 合并同类项:将方程中的同类项合并。
v. 求解:解得未知数的值。
3. 练习:让学生独立解决PPT上展示的一些简单分式方程问题,教师进行个别指导。
4. 应用:让学生分组讨论,合作解决一些实际问题,运用分式方程求解。
5. 总结:对本节课的内容进行总结,强调分式方程的定义、表示方法和求解步骤。
五、课后作业:1. 请完成PPT上的练习题。
2. 请选择一道实际问题,运用分式方程解决,并将解题过程写下来。
3. 预习下一节课的内容。
六、教学拓展:1. 引导学生思考分式方程在实际生活中的应用,例如:比例问题、利润问题等。
2. 引导学生探讨分式方程与其他类型方程的关系,例如:一元一次方程、一元二次方程等。
七、教学评估:1. 通过课堂练习和课后作业,评估学生对分式方程的理解和运用能力。
课题:分式方程(三)学习目标:1.能进行简单的公式变形2.熟练解分式方程学习重点:解分式方程学习难点:进行公式变形学习过程:一、预习新知:填空: ⒈方程2101x x-=-的解是 ⒉当x = 时,424x x --的值与54x x --的值相等 ⒊已知x =3是方程112x a -=-的解。
则a = ⒋如果关于x 的方程7766x m x x--=--有增根,则增根为 ,m 的值为 。
⒌下列关于x 的方程①153x -= ②144x x =- ③313x x -=- ④11x a b =-中是分式方程的是 (填序号)。
( )6分式方程41322x x-=++的解是 ( ) A .x =-2 B .x =2 C .x =1 D .x =-1 7将方程243211x x x -=-++去分母化简后得到的方程是 A .2230x x --= B .2250x x --= C .230x -= D .250x -=8分式方程()2933x x x x x =+--出现增根,那么增根一定是 A .0 B .3 C .0或3 D .19对于分式方程3233x x x =+--有以下几种说法:①最简公分母为()23x -;②转化为整式方程23x =+,解得5x =;③原方程的解为3x =;④原方程无解,其中正确的说法的个数为( ) A .4个 B .3个 C .2个D .1个10下列分式方程去分母后所得结果正确的是( )A .12111x x x +=--+ 解:()()1121x x x +=-+- B .512552x x x+=-- 解:525x x +=- C .222242x x x x x x -+-=+-- 解:()()2222x x x x --+=+ D .2131x x =+- 解:()213x x -=+ 二、课堂展示:(1)在公式12111R R R =+中,1R R ≠,求出表示2R 的公式(2)在公式1221P P V V =中,20P ≠,求出表示2V 的公式三、随堂练习: ⑴已知r R S n += (S R ≠),求n ; ⑵已知m a e m a -=+(1e ≠-),求a ;⑶已知RV S U V =-(0R S +≠),求V (4)在公式10V V gt =-中,已知0V 、1V 、g ≠0,求t(5)若分式3254x x +-的值为1,则x 等于 四、当堂检测解方程:(1)63041x x -=+- (2)2536111x x x -=+--(3)已知RV S U V =-(0R S +≠),求u (4)已知31x y x -=-,试用含y 的代数式表示x =5、小结与反思:。
教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.教学重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.教学难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.教学过程:一、复习预习1.回忆一元一次方程的解法,并且解方程2.完成本章引言的问题,小组议一议:方程的特征,然后概括出分式方程的概念__________________________________。
3.分式方程与整式方程的区别是___________________________________。
二、应用举例1、下列方程中,哪些是分式方程?哪些是整式方程?,,,,,,,2、探究:如何解方程在教师的引导下,师生共同探析。
方程两边同时乘以(20+v)(20-v)得100(20-v)=60(20+v)解得:v=5检验:将v=5代入分式方程,左边=4=右边【此步应强调,学生容易漏掉此步。
】所以v=5是原分式方程的根.【让学生掌握解答步骤】3、学生用同样的方法尝试解方程:解分式方程的一般步骤:1.去分母,在方程的两边都乘最简公分母,约去分母,化成整式方程;――化整2.解这个整式方程;――解整3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。
——验根4、试一试:(P28)例1.解方程:(P28)例2.解方程:三、作业练习1、课本29页练习:解方程2、解方程(1) (2)(3)(4)3、X为何值时,代数式的值等于2?4、课本32页习题16.3第1(1)(4)(5)(8)题。
23540 5BF4 寴36126 8D1E 贞36404 8E34 踴20945 51D1 凑29429 72F5 狵33278 81FE 臾825772 64AC 撬?3h30599 7787 瞇25857 6501 攁37381 9205 鈅。
八年级数学下册分式方程教案一、教学目标1. 让学生理解分式方程的定义及其表示方法。
2. 培养学生解决分式方程的能力,提高学生的逻辑思维和运算能力。
3. 引导学生运用数学知识解决实际问题,培养学生的应用能力。
二、教学内容1. 分式方程的定义及表示方法。
2. 分式方程的解法及步骤。
3. 分式方程在实际问题中的应用。
三、教学重点与难点1. 重点:分式方程的定义、表示方法、解法及应用。
2. 难点:分式方程的解法及在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的定义、表示方法和解法。
2. 利用实例分析,让学生学会将实际问题转化为分式方程,并解决问题。
3. 采用小组合作学习,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:引导学生回顾分式的定义,引入分式方程的概念。
2. 新课:讲解分式方程的定义、表示方法,并通过示例让学生熟悉分式方程的解法。
3. 练习:布置一些简单的分式方程练习题,让学生巩固所学知识。
4. 实例分析:引入实际问题,让学生学会将问题转化为分式方程,并解决问题。
6. 作业布置:布置一些分式方程的综合练习题,让学生进一步巩固所学知识。
六、教学评估1. 课堂问答:通过提问学生,了解他们对分式方程的理解程度和掌握情况。
2. 练习题:布置课堂练习题,评估学生对分式方程解法的掌握情况。
3. 小组讨论:观察学生在小组合作学习中的表现,评估他们的团队协作能力和沟通能力。
七、教学拓展1. 引导学生思考:分式方程在实际生活中的应用有哪些?2. 介绍分式方程的其他解法:除了课堂讲解的解法,还可以介绍其他解分式方程的方法,如换元法、消元法等。
3. 布置研究性学习任务:让学生探究分式方程在实际问题中的应用,增强他们的实践能力。
八、教学反思1. 反思教学效果:回顾本节课的教学内容,评估学生对分式方程的掌握情况,思考如何改进教学方法,提高教学效果。
2. 学生反馈:听取学生的意见和建议,了解他们在学习过程中的困惑和问题,为下一节课的教学做好准备。
《分式方程》(第3课时)教案doc初中数学[教学目标]1. 明白分式方程的意义, 会解可化为一元一次方程的分式方程.2, 了解分式方程产生增根的缘故, 会判定所求得的根是否是分式方程的增根.3. 会列出方程解决简单的实际咨询题, 并能依照实际咨询题的意义检验所得结果是否合理.此外, 通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程, 体验解决咨询题的差不多策略, 进展应用意识和解决咨询题的技能.[教学过程(第三课时)]1. 情境创设课本以3个实际咨询题, 引导学生学习用分式方程解决实际咨询题的差不多方法, 进一步感受〝实际咨询题一建立方程一求解并讲明〞的过程.有时, 所列出的分式方程尽管有解, 但解却不符合实际情形, 这时原实际咨询题无解, 例3的设置正是为了表达这一点.2. 探究活动采纳〝个人摸索一小组交流一汇报方案’’的方式, 尝试从不同角度寻求解决咨询题的方法, 并能用文字、图表等手段清晰地表达解决咨询题的过程, 并会讲明结果的合理性. 例如:关于例4, 有以下两种解决方案可供选择:假设每小组有x名学生, 可得分式方程: , 解得x=10, 即每小组有10名学生;假设原先每人平均做c面彩旗, 可得分式方程:, 解得x=8, 从而确定每个小组有 10名学生.例5能够仿惯例4设计解决方案, 但由于例5中的数量关系较例4略为复杂, 因此可用表格的方式进行分析, 找出数量之间的相等关系, 从而得到方程.如:依照〝乙公司比甲公司人均多捐20元〞, 得方程:通过例6的探究和求解, 让学生感受在解决实际咨询题时, 存在如此的现象: 所列方程以及求得的根尽管正确, 但不符合咨询题的实际意义, 因此原实际咨询题仍旧无解.解分式方程(组)的检验是不可缺少的步骤.只是要注意检验的目的有两个方面:一方面是看所得数值是不是原方程的增根, 另一个方面, 关于应用题来讲, 还要检查所得的解是否合乎实际意义。
一、教学目标1. 让学生理解分式方程的定义和特点,掌握分式方程的解法。
2. 培养学生运用分式方程解决实际问题的能力。
3. 提高学生的数学思维能力和解决问题的能力。
二、教学内容1. 分式方程的定义和特点2. 分式方程的解法3. 分式方程在实际问题中的应用三、教学重点与难点1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是含未知数的分母和分式方程的转化。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为分式方程。
3. 采用合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入:通过复习分式的知识,引导学生了解分式方程的定义和特点。
2. 新课讲解:讲解分式方程的解法,举例说明解题步骤。
3. 案例分析:分析实际问题,引导学生将问题转化为分式方程,并解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结与拓展:总结本节课的重点内容,布置课后作业,鼓励学生拓展学习。
一、教学目标1. 让学生理解分式方程的定义和特点,掌握分式方程的解法。
2. 培养学生运用分式方程解决实际问题的能力。
3. 提高学生的数学思维能力和解决问题的能力。
二、教学内容1. 分式方程的定义和特点2. 分式方程的解法3. 分式方程在实际问题中的应用三、教学重点与难点1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是含未知数的分母和分式方程的转化。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为分式方程。
3. 采用合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入:通过复习分式的知识,引导学生了解分式方程的定义和特点。
2. 新课讲解:讲解分式方程的解法,举例说明解题步骤。
3. 案例分析:分析实际问题,引导学生将问题转化为分式方程,并解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
2.分式的乘除法一、教学目标:1、知识与技能目标:1、分式的乘除运算法则2、会进行简单的分式的乘除法运算2、过程与方法目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
3、情感态度与价值观目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
二、教学重点:分式乘除法的法则三、教学难点:分式乘除法的法则四、课时安排1课时五、教具学具准备小黑板一块六、教学方法类比方法七、教学过程活动一:黑板展示1442225599⎧⎪⎨⨯÷⨯÷⎪⎩、复习小学分数乘除法法则;2255、计算下列各题:,,,3377活动二:联想猜测:黑板背面展示:a d a db c b c?,a d a cb c b d−−→÷⨯←−−?阅读课本74p至例1——例2结束(除“做一做”外),仔细观察各步运算,通过小组讨论交流,并与分数的乘除法的法则类比,总结出分式的乘除法的法则。
(分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.)活动三:当堂训练1、根据题意,列出分式,完成“做一做”2、76p随堂练习,习题3.3知识技能第1题八、课堂小结:1.分式的乘除法的法则2.分式运算的结果通常要化成最简分式或整式.3. 学会类比的数学方法九、巩固练习课本P77习题3.3第2、4题3.分式的加减法 一、教学目标:1、知识与技能目标:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;2、过程与方法目标:根据学生已有的经验,通过一些问题的提出。
诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结出规律。
3、情感态度与价值观目标:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
第三章分式总课时:10课时执笔人:使用人:备课时间:第四周上课时间:第六周第7课时:3、4分式方程(2)教学目标知识与技能:(1)能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.(2)经历“实际问题——分式方程模型——求解——解释解的合理性”的过程.过程与方法:(1)学会举一反三,进一步提高分析问题与解决问题的能力.(2)提高学生的阅读理解能力,从多角度思考问题,注意检验,解释所获得结果的合理性.情感态度与价值观:初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;.教学重点:找等量关系列分式方程教学难点:找等量关系列分式方程教学过程第一环节:回顾(5分钟,教师引导学生分析问题,解决问题)1.列一元一次方程解应用题的一般步骤有哪些?2.列一元一次方程解下列应用题:某工人原计划13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?首先请一位学生分析题中的已知条件和未知条件,列出题中所反应的等量关系式,再让所有学生列出方程并解出方程.大部分学生依然记得列方程解应用题的基本方法,并能很快解出这一题.只有小部分学生有些困难,在老师和同学的帮助下也能完成.第二环节:练一练(5分钟,学生独立完成)[来源:数理化网]解下列分式方程: x x 1803120=+ 经过上一节课的学习,学生都能熟练解分式方程.但是部分学生没有先化简,方程两边应先除以60,再解方程,对于这一点老师应强调,因为实际应用题中的数据有时很大,如果不化简,会给计算带来麻烦.第三环节:想一想(5分钟,学生小组合作探究,全班交流)[来源:学§科§网] 你能用所学过的知识和方法为下列应用题列出方程吗?(1).一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时.现在该从甲站到乙站所用其所的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米/时,请根据题意列出方程.(2)“华联”商厦进货员在苏州用80000元购进某品牌衬衫,后又在上海用176000元购进这种品牌衬衫,数量是从苏州购进的2倍,只是单价比苏州的贵4元,请问从苏州购进的衬衫每件多少元? 引导学生通过独立思考和小组讨论的形式,用所学过的列方程解应用题的一般方法去解决问题,鼓励学生大胆尝试. 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.第四环节:试一试(5分钟,学生尝试独立解决,后全班交流)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元, 所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.[来源:数理化网](1)你能找出这一情境中的等量关系吗? (2)根据这一情境你能提出哪些问题? (3) 你能利用方程求出这两年每间房屋的租金各是多少吗?学生都能找出所有房屋的总租金和每间房屋的租金以及房屋总数之间的关系式,并能提出解出房屋总数的问题,应用列方程的一般方法解决这个问题,并能多角度思考问题,提出很多不同问题.第五环节:做一做(8分钟,小组合作探究解决问题)某市从今年1月1日起调整居民用水价格,每立方米水费上涨31,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.首先,老师询问学生家中的每月用水情况,要求学生能关心家庭生活,又得到了节约用水的教育.学生根据一个月的总水费等于每一吨水费乘以一个月的用水的总吨数,再根据“小丽家今年7月份的用水量比去年12月份的用水量多5立方米”这一条件,列出等量关系式,从而列出分式方程,有了前面的基础,学生能很快和老师一起完成上述过程.第六环节:学生小结(2分钟,教师引导学生总结)你能用自己的语言总结这节课的主要内容,并谈谈你的感受.第七环节:反馈练习(10分钟,学生先独立完成,后全班交流)独立完成下列问题:1. 小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,困此他们所买的科普书比所买的文学书少1本,这种科普书和这种文学书的价格各是多少?2. 某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划成本生产120吨的时间相等,那么适合x 的方程是( )A .x x 1803120=+ B.x x 1803120=- C.3180120+=x x D.3180120-=x x 3.全民健身活动中,组委会组织了长跑队和自行车进行宣传,全程共10千米,自行车队速度是长跑队的速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车车队晚到了2小时候,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为 ( )A.215.210210+=+x x B.5.02105.210-=-xx C.5.025.21010-=-x x D.5.025.21010+=-x x 以上练习题密切联系学生生活实际,又关注社会热点问题,学生大部分能将实际问题转化为数学模型,并进行解答,解释解的合理性。
八年级分式方程教案一、教学目标1. 让学生掌握分式方程的定义及其基本性质。
2. 培养学生解决实际问题能力,提高分析问题和解决问题的能力。
3. 培养学生合作交流意识,提高学生的数学思维能力。
二、教学内容1. 分式方程的定义及例题解析。
2. 分式方程的解法及技巧。
3. 分式方程在实际问题中的应用。
三、教学重点与难点1. 重点:分式方程的定义、解法及应用。
2. 难点:分式方程的解法,特别是含字母系数和分式系数的情况。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的定义和性质。
2. 运用案例分析法,通过例题解析,使学生掌握分式方程的解法。
3. 利用实践操作法,让学生在解决实际问题中运用分式方程。
4. 采用小组讨论法,培养学生合作交流和团队协作能力。
五、教学过程1. 导入新课:以生活中的实际问题引入分式方程的概念,激发学生兴趣。
2. 知识讲解:讲解分式方程的定义、性质及解法。
3. 例题解析:分析并解答典型例题,使学生掌握解题技巧。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 实际应用:让学生解决实际问题,体验分式方程在生活中的应用。
7. 课后作业:布置作业,巩固所学知识。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评价1. 评价学生对分式方程定义的理解程度。
2. 评价学生运用分式方程解决实际问题的能力。
3. 评价学生在团队合作中沟通交流和协作解决问题的能力。
七、教学拓展1. 探讨分式方程在实际生活中的其他应用。
2. 介绍分式方程在高等数学中的应用。
八、教学资源1. 教学PPT:呈现分式方程的定义、性质、解法及应用。
2. 例题及练习题:提供典型例题和课后练习,巩固所学知识。
3. 实际问题素材:用于引导学生将分式方程应用于实际问题。
九、教学建议1. 注重学生基础知识的培养,确保学生掌握分式的基本性质。
2. 鼓励学生积极参与课堂讨论,提高学生的数学思维能力。
3. 针对不同学生,给予适量辅导,确保学生掌握分式方程的解法。
八年级数学下册分式方程教案一、教学目标1. 让学生理解分式方程的定义及其表示方法。
2. 培养学生掌握解分式方程的基本步骤和技巧。
3. 提高学生解决实际问题中涉及分式方程的能力。
二、教学内容1. 分式方程的定义及表示方法。
2. 解分式方程的基本步骤:去分母、去括号、移项、合并同类项、化系数为1。
3. 分式方程的应用举例。
三、教学重点与难点1. 重点:分式方程的定义、表示方法以及解分式方程的步骤。
2. 难点:解分式方程过程中的运算技巧和错误防范。
四、教学方法1. 采用讲解法,讲解分式方程的定义、表示方法和解题步骤。
2. 采用案例分析法,分析实际问题中的分式方程,引导学生学会应用。
3. 采用练习法,让学生在练习中巩固知识,提高解题能力。
五、教学过程1. 导入:回顾八年级上册学习的方程知识,引导学生思考如何解决实际问题中的分式方程。
2. 新课:讲解分式方程的定义、表示方法,并通过示例演示解分式方程的步骤。
3. 案例分析:分析实际问题中的分式方程,引导学生运用所学知识解决实际问题。
4. 练习:布置一些分式方程题目,让学生独立解答,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调解分式方程的注意事项。
6. 作业:布置课后作业,巩固所学知识。
六、教学策略1. 案例引导:通过分析具体案例,让学生理解分式方程在实际问题中的应用。
2. 小组讨论:组织学生进行小组讨论,分享解题心得,互相学习,提高解题能力。
3. 互动提问:教师提问,学生回答,激发学生思考,巩固所学知识。
4. 练习巩固:布置针对性练习题,让学生在练习中掌握解分式方程的技巧。
七、教学评价1. 课堂表现:评价学生在课堂上的参与程度、提问回答等情况。
2. 练习成果:评价学生在课后练习中的解答正确与否,解题思路是否清晰。
3. 小组讨论:评价学生在小组讨论中的表现,包括合作意识、交流能力等。
八、教学拓展1. 介绍分式方程在实际问题中的应用,如工程问题、经济问题等。
题型一:化简求值题1、已知0152=+-x x,求(1)1-+x x ,(2)22-+x x ,(3) 44-+x x 的值.2、先化简后求值(1) 已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2) 已知:432z y x ==,求22232z y x xz yz xy ++-+的值;(3) 已知:0132=+-a a ,试求)1)(1(22a a a a --的值.已知:511=+y x ,求y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 11+. 已知:31=+x x ,求1242++x x x 的值.已知:21=-x x ,求221x x +的值.若0)32(|1|2=-++-x y x ,求y x 241-的值.若0106222=+-++b b a a ,求b a ba 532+-的值.题型二:求待定字母的值 若111312-++=--x N x M xx,试求N M ,的值.若关于x 的分式方程3132--=-x m x 有增根,求m 的值.若分式方程122-=-+x a x 的解是正数,求a 的取值范围. 提示:032>-=a x 且2≠x ,2<∴a 且4-≠a .题型三:解含有字母系数的方程解关于x 的方程: )0(≠+=--d c d c x b a x b x a 211+=)2(a b ≠提示:(1)d c b a ,,,是已知数;(2)0≠+d c .题型四:用常规方法解分式方程解下列分式方程(1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型五:特殊方法解分式方程解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .分式方程的应用解分式方程的步骤:①去 ,化 方程为 方程;②解 方程;③验 ;④写结论.2.列方程应用题的步骤是: ①审; ②设; ③列; ④解; ⑤答.3.行程问题中路程、速度、时间的关系是: .4. 工程问题中工作量、工作时间时、工作效率的关系是 . 例题讲解1、两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
2021年八年级数学下册 16.3分式方程第三课时教案人教新课标版情境导入:
1、某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年多500元,所有房屋出租金第一年为9.6万元,第二年为10.2万元。
(1)你能找出这一情境中的等量关系吗?
(2)根据这一情境你能提出哪些问题?
(3)你利用方程求出这两年每间房屋的租金各是多少?
2、解读探究
问:能从不同的角度找出这一情境中的等量关系吗?大家分组探讨一下
探讨后综合:等量关系有下面一些:(1)第二年每间房屋的租金=第一年每间房屋的租金+500。
(2)第一年出租的房屋间数=第二年出租的房屋间数。
(3)出租的房屋间数=所有出租的房屋的租金÷每间房屋的租金
若设第一年每间房屋的租金为x元
列出方程为
例3某市从今年1月1日起调整居民的用水价格,每立方米水费上涨。
小丽家去年12月份的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月份的用水量比去年12月份的用水量多5,求该市今年居民用水的价格
相互交流一下,看这道题中有哪些等量关系?
等量关系:小丽家今年7月份的用水量-小丽家去年12月份的用水量=5
解:设该去年居民的用水价格为x 元/,则今年的水价为(1+)x 元/ 根据题意得
515)3
11(30=-+x x 练习:1、某自来水公司水费计算办法如下:若每户每月用水不超过5m 3,则每立方米收费1.5元,若每户每月水超过5m 3
,则超出部分每立方米收取较高的定额费用,1月份,张家用水量是李家用水量的,张家当月水费是17.5元,李家当月水费是27.5元,超出5m 3的部分每立方米收费多少元?
解:设超出5m 3部分的水,每立方米收费x 元,则1月份,张家超出5m 3部分的水费为(17.5-1.5×5)元,超出5m 3的用水量为
李家超出5m 3部分的水费为(27.5-1.5×5)元,超出5m 3的用水量为
根据题意,得
3
2555.15.27555.15.17⨯⎪⎭⎫ ⎝⎛+⨯-=+⨯-x x 解这个方程,得
x=2
经检验,x=2是所列方程的根。
所以超出5m 3部分的水,每立方米收费2元。
1.为了方便广大游客到昆明参加游览“世博会”,铁道部临时增开了一列南宁
——昆明的直达快车,已知南宁——昆明两地相距828km,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h,比普通快车早4h到达昆明,求两车的平均速度?
解:设普通快车的平均速度为xhm/h,则直达快车的平均速度为1.5km/h,依题意,得
解得:x=46
经检验,x=46,是方程的根,且符合题意。
∴x=46,1.5x=69
2.编一道可化为一元一次方程的分式方程的应用题,并解答,编题要求:①要
联系实际生活,其解符合实际;②根据题意列出的分式方程中含两项分式,不含常数项,分式的分母均含有未知数,并且可化为一元一次方程;③题目完整,题意清楚。
解所编应用题为:
甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用时间与乙做6个所用的时间相等,求甲、乙每小时各做多少个?
解设甲每小时做x个,那么乙每小时做(x-2)个,根据题意,有
∴x=5,x-2=5-2=3
答:甲每小时做5个,乙每小时做3个。
分式方程的应用主要是解应用题,能归纳一下列分式解应用题的步骤吗?
教师可以总结列方程解应用题的基本步骤是:审、设、列、解、答.
(1)审——仔细审题,找出等量关系.
(2)设——合理设未知数.
(3)列——根据等量关系列出方程(组).
(4)解——解出方程(组).
(5)答——答题.
学习小结:本节课你学到了哪些知识和方法?
作业:
教学反思:t27883 6CEB 泫$34134 8556 蕖
26097 65F1 旱<40023 9C57 鱗 Nk30562 7762 睢?22525 57FD 埽n。