地源热泵技术与经济性分析
- 格式:ppt
- 大小:2.64 MB
- 文档页数:25
浅析地源热泵、冰蓄冷综合应用的经济性摘要:建筑节能是近年来世界建筑发展的一个基本趋向,也是当代建筑科学技术的一个新的生长点。
由于建筑能源的消耗占总能源消耗的60%以上,因此,在建筑节能中,冰蓄冷、地源热泵等节能技术的应用有着重要的影响力,同时有利于优化传统的空调冷热源型式,促进节能减排。
本文以省图书馆项目为例,浅析地源热泵与冰蓄冷技术综合运用的可行性方案和经济性分析。
关键字:公共建筑节能冰蓄冷地源热泵经济效益目前国建筑能耗占能源消耗总量的比重很大,而大型公共建筑中空调能耗约占整个建筑总能耗的40~60%;在空调系统中,能耗最大的部分集中在冷热源系统,因此,采取节能的冷热源技术对于降低大型公共建筑的总能耗具有显著效果。
冰蓄冷、地源热泵作为目前较为先进的节能技术,已经得到了广泛的应用,本文以某项目为例对其采用冰蓄冷和地源热泵空调系统方案与采用常规空调系统方案进行比较,分析综合采用冰蓄冷和地源热泵技术的经济性。
1、可再生能源利用技术——地源热泵土壤源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。
地表浅层土壤的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是热泵很好的供热热源和供冷冷源,这种温度特性使得地源热泵比传统空调系统运行效率要高,供热时比燃油锅炉节省70%以上的能源;制冷时比普通空调节能40%~50%。
2、移峰填谷——冰蓄冷系统冰蓄冷空调系统即在夜间用电低谷期采用电制冷机制冷,将制得冷量以冰的形式储存起来;在白天电价高峰期将冰融化释放冷量,用以部分或全部满足供冷需求。
蓄冰系统具有巨大的社会效益:蓄冰系统能够转移电力高峰用电量,平衡电网峰谷差,缓解供电压力,同时,也具有良好的经济效益,节省运行费用。
一、工程概况本项目位于省,建筑主体为图书馆,总建筑面积约10万㎡。
冬夏季冷负荷指标为130W/㎡,夏季空调冷负荷为13000KW,冬季热负荷指标为90W/㎡,冬季空调热负荷为5200KW。
地源热泵的工作原理及技术经济性分析一、什么是地源热泵地源热泵是一种利用地下浅层地热资源(也称地能,包含地下水、土壤或者地表水等)的既可供热又可制冷的高效节能空调系统。
地源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。
地能分别在冬季作为热泵供暖的热源与夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
热泵机组的能量流淌是利用其所消耗的能量(如电能)将吸取的全部热能(即电能+汲取的热能)一起排输至高温热源。
而其所耗能量的作用是使制冷剂氟里昂压缩至高温高压状态,从而达到汲取低温热源中热能的作用。
请参见能流图所示。
通常地源热泵消耗1kW的能量,用户能够得到5kW以上的热量或者4kW以上冷量,因此我们将其称之节能型空调系统。
与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或者70~90%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节约三分之二以上的电能,比燃料锅炉节约二分之一以上的能量;由于地源热泵的热源温度全年较为稳固,通常为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60% 。
因此,近十几年来,特别是近五年来,地源热泵空调系统在北美如美国、加拿大及法国、瑞士、瑞典等国家取得了较快的进展,中国的地源热泵市场也日趋活跃,能够估计,该项技术将会成为21世纪最有效的供热与供冷空调技术。
二、地源热泵国内外进展近况地源热泵的历史能够追朔到1912年瑞士的一个专利,欧洲第一台热泵机组是在1938年间制造的。
它以河水低温热源,向市政厅供热,输出的热水温度可达60o C。
在冬季使用热泵作为采暖需要,在夏季也能用来制冷。
1973年能源危机的推动,使热泵的进展形成了一个高潮。
目前,欧洲的热泵理论与技术均已高度发达,这种“一举两得”同时环保的设备在法、德、日、美等发达国家业已广泛使用。
地源热泵可行性报告地源热泵是一种应用广泛的热泵系统,可以将地下的温度差异转化为可用的能量。
它是一种高效节能、环保的取暖和制冷解决方案,因此在近年来越来越受到人们的重视。
本文将从经济、技术和环保角度探讨地源热泵的可行性,并为未来的决策提供一些参考。
一、经济角度地源热泵可以在减少能源消耗的同时为我们带来经济效益。
首先,它可以实现低成本供能,因为地下的温度非常稳定,并且比空气更容易传递热量。
其次,它降低了能源成本,可以实现与空调直接使用相比更高的能效比。
此外,该系统可以利用可再生能源取代传统的电能或燃料,大大降低能源价格波动的风险。
因此,在经济实力较为雄厚的城市和乡村地区,地源热泵已经成为一种切实可行的节能方法。
二、技术角度地源热泵的可行性不仅是基于成本和效益考虑的,也与其技术可行性紧密相关。
技术上,该系统是基于空气-水或水-水热泵技术的,其基本原理是通过循环介质将地下储存的低温热能,转移至室内空气或水系统中。
该系统需要先进行地下水井的开凿或者地下水井的深孔,以获取地下水温度的高低不同,再建立管道将温度传输至能量转移装置。
该系统相比传统的空调和暖气系统,有以下优势:不仅可以实现空气和水的自然供应,而且可以大大缩短热泵系统的生命周期和维护成本。
三、环保角度对于环保问题,地源热泵的可持续性是非常重要的。
由于它利用了地下储存的能量,不需要额外的化石燃料,因此能够显著降低排放量。
同时,该系统使用了低温热能,相对传统的取暖和制冷方式显著降低了能源的需求。
这对于减少地球气温变化和减低碳排放都具有重要意义。
此外,地源热泵的运行过程中会产生一定的噪音,对于此问题可以采用适当的措施进行处理。
结论:综合分析可知,地源热泵在经济、技术和环保方面都有着优越的表现。
政府可以通过投资项目,大力支持地源热泵系统的应用。
对于企业,应当认真负责地评估其现有能源利用和成本分析,以确定是否采用该系统。
地源热泵系统也应该在设计和实施时根据实际情况进行优化,例如根据建筑面积、机房布局和采用什么类型的土壤,来调整设备的容量和运行效率。
三、地源热泵技术的经济分析(一)、地源热泵的特点1、技术性:高效节能全年土壤温度(5m以下一般是16-24 ℃)相对稳定,夏季土壤中的温度低于对应气候条件下空气温度,冬季土壤温度高于空气温度,理论上讲,降低夏季冷凝温度和冬季提高蒸发温度都可提高循环效率,达到节能的效果,土壤对地面空气温度波动有衰减和延迟,在耗电量相同的条件下,分别提高夏季供冷量或冬季的供热量,能效比EER:3.9-6,即夏季投入1KW电能可得3.9-6KW热能,性能系数COP=2.65-5即冬季投入1KW电能,可得到3.0-5KW左右的热能;并且地埋管热交换器不需要除霜,减少了结霜和除霜的能耗,没有空气源热泵除霜时吹冷风感.2、技术性:性能稳定地下温度稳定:地下的平均温度基本稳定在16度到22度之间,不受室外环境空气变化温度影响—主机制冷热稳定,不会出现空气源热泵越是在需要空调的情况下越不好—如冬天温度越低越需要,这时候制热效果越差;夏天高温时候越需要制冷,制冷效果越差;夏季冷凝温度升高1℃或冬季蒸发温度下降1℃电耗约增加1-1.5%;空气源热泵标准状况:制冷:35℃DB,制热:7℃DB,6℃WB ,铜管长:5米;当室外温度0℃只有标况85%左右;-5℃:标况65%或开始采用辅助电加热;-10℃:标况50%,此时多数热泵已经停机采用辅助电加热;室外温度40℃,只有标况的85-90%.3、能耗低、初投资低、投资回报高地源热泵系统作为楼宇空调系统,其运行费用可大大降低。
用地源热泵系统供暖或制冷时,根据不同的地域、气候、资源、环境,运行费用可比传统中央空调系统降低25%-50%;可供暖、空调,还可在春夏秋采用热回收免费供生活热水做到冷暖热水三合为一;一套系统可以替换原来的锅炉加空调的两套装置或系统,减少设备初投资;地源热泵系统初投资增量回收期约2.5-8年不等。
4、可再生能源利用技术地表土壤和水体,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多。
冷却塔辅助冷却地源热泵经济性分析0 前言地源热泵是一种高效节能环保的热泵方式,但当应用于以冷负荷为主的建筑时,为了满足较大的冷负荷的需要,势必要加大地下埋管换热器的配置,增加初投资。
此外,热泵机组长时间连续运行导致地下埋管周围土壤温度升高,机组效率下降,能耗增加。
为了提高系统的效率和经济性,可以考虑使用辅助冷却装置。
冷却塔作为一种成型且成熟的设备是地源热泵理想的辅助冷却装置。
利用冷却塔辅助冷却的地源热泵系统如图1-1图1-1 辅助冷却地源热泵系统示意图在夏季需要供冷、冬季需要采暖的地区,当全年冷负荷大于热负荷时,如果按照冷负荷来确定地下埋管的长度,就会造成冬季埋管容量过大,由于钻井费用通常很高,会使投资费用大大增加。
同样对于大型的商业或是公共建筑而言,其全年的负荷分析表明,建筑物的冷负荷远大于热负荷,地下埋管换热器夏季排向埋管附近土壤的热量远大于冬季从土壤吸取的热量,再加之现代建筑玻璃幕墙的大量使用,建筑物的得热增加,照明设备及人员的大量散热等,更加剧了这种热量吸排的不平衡。
经过系统的长期运行,埋管周围土壤温度升高,夏季埋管内流动介质与周围土壤的温差降低,换热器能力减弱,影响系统性能和运行特性,为了满足建筑物冷负荷就需要加大埋管长度,同样会增加系统的初投资。
地源热泵系统初投资相对较高,主要在于钻井费用较高,所以尽量减少钻孔长度并且能够满足冷负荷要求是降低系统初投资的主导思想。
用冷却塔辅助地源热泵是一种好的方法,地下埋管换热器的长度按照冬季较小的负荷来确定,夏季未能由埋管承担的排热量由冷却塔来承担。
这种系统形式的初投资主要是增加了冷却塔的费用,但是却大大减少了地下埋管的费用。
在夏季,热泵运行费用中增加了辅助系统水泵和风机的能耗费用。
但是由于辅助系统有助于地源热泵机组效率的提高,所以热泵压缩机的能耗降低。
在冬季,由于埋管的减少,系统的效率降低,热泵压缩机的能耗会有所增加。
所以对于系统全年运行费用的比较,还要进行具体的计算。