开关电源 之BUCK变换器工作原理及Multisim实例仿真
- 格式:pdf
- 大小:1.24 MB
- 文档页数:11
Buck 变换器的建模与仿真(一)Buck 变换器的性能指标带有反馈控制回路Buck 变换器的电路图如图(1-1)所示,我们假定其工作在CCM 方式。
其基本电路参数为: 输入电压g V =2030V 输出电压V =12V 输出纹波125mV (1%)电压跌落250mV (最大,2003out I mA A =) 开关频率s f =100kHz 最大输出电流4A输入电流最大纹波0.4A(峰峰值)图(1-1)带有反馈控制回路的直流斩波电路(二)Buck 变换器参数的选择 1. 滤波电感0L 的选择 由diu Ldt=得 6.max 0.max ()(3012)410180H 0.14in out on out V V T dt L u di I μδ--⨯-⨯⨯====⨯⨯这里我们取0L 为180H μ 最大负载时的峰值电流为.max .max 40.054 4.22peak out out I I I A δ=+=+⨯=2. 滤波电容0C 的选择 由dui cdt=得 其向量形式为I j cU ω=I jcUω=所以需要穿越频率的带宽为2outc out outI f C V π∆=∆如果假定穿越频率为10kHz250892.8out c out V mZ m I ∆===Ω∆ 原则上为了留有设计裕量,电阻的阻抗按13计算阻抗选取 根据上面计算结果,我们可以在Rubycon 公司的ZL 系列,16V 中选取以下规格:C=330F μ,760C rms I mA =@105A C =︒ ,72ESR low R m =Ω@20A T C =︒ ,220ESR low R m =Ω@10A T C =-︒电容ESR 的阻抗应小于输出电容在穿越频率处的阻抗11482 6.2810330c out m f C k π==Ω⨯⨯86c Z m ≤==Ω设计余量不足,我们重新选ZL 系列中C=1000F μ,同样的过程,我们可以得出满足条件。
第一章概述1、1 直流―直流变换的分类直流—直流变换器(DC-DC)就是一种将直流基础电源转变为其她电压种类的直流变换装置。
目前通信设备的直流基础电源电压规定为−48V,由于在通信系统中仍存在−24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将−48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。
D C/DC变换就是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
主要有(1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。
(2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。
(3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。
(4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。
此外还有Sepic、Zeta电路。
1、2 直流—直流变换器的发展当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80~90)%。
日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商、2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。
第二章降压―升压斩波电路的设计2、1 基本工作原理电路原理图如图2-1所示,基本工作原理如下:b)Ra)ii2II图2-1: 降压―升压斩波电路原理图设电路中电感L值很大,电容C值也很大。
使电感IL与电容电压即负载电压uo基本为恒值。
目录1 Buck变换器技术........................................................................................................................... - 1 -1.1 Buck变换器基本工作原理............................................................................................... - 1 -1.2 Buck变换器工作模态分析............................................................................................... - 2 -1。
3 Buck变化器外特性........................................................................................................ - 3 -2 Buck变换器参数设计.................................................................................................................. - 5 -2.1 Buck变换器性能指标....................................................................................................... - 5 -2。
2 Buck变换器主电路设计................................................................................................ - 5 -2.2。
电力电子课程设计-BUCK电路闭环PID控制系统的MATLAB仿真CHANGZHOU INSTITUTE OF TECHNOLOGY课程设计说明书课程设计名称:电力电子题目:BUCK电路闭环PID控制系统的MATLAB仿真—15V/5V二级学院(直属学部): 电子信息与电气工程学院专业:电气工程及其自动化班级:07电单学生姓名: 学号:指导教师姓名: 职称:讲师2011 年 1 月电力电子课程设计任务书二级学院(直属学部):电子信息与电气工程学院专业:电气工程及其自动化班级:学生姓名指导教师韩霞职称讲师课题名称 BUCK电路闭环PID控制系统的MATLAB仿真-15V/5V1、根据设计要求计算滤波电感和滤波电容的参数值,设计PID补偿网络2、采用MATLAB中simulink中的simpowersystems模型库搭建闭环降压式变换器的仿真模型3、观察系统在额定负载以及突加、突卸80%额定负载时的输出电压和负载电课流的波形4、撰写课程设计说明书,要求包括:题一、封面二、目录工三、正文1、降压变换器的基本原理作2、BUCK变换器主电路参数设计2.1设计内容及要求内 2.2主电路设计(占空比、滤波电感、滤波电容的设计)3、BUCK变换器闭环PID控制的参数设计容 3.1主电路传函分析3.2补偿环节的设计4、BUCK变换器闭环系统的仿真4.1仿真参数及过程描述4.2仿真模型图及仿真结果5、总结(含心得体会)6、参考文献(不少于6篇)21、输入直流电压(V):15V IN2、输出电压(Vo):5V3、输出电流(I):10A N指标4、输出电压纹波峰-峰值 Vpp?50mV)5、锯齿波幅值Um=1.5V 目标6、开关频率(fs):100kHZ )要7、采样网络传函H(s)=0.3 求8、BUCK主电路二极管的通态压降V=0.5V,电感中的电阻压降V=0.1V,开DL关管导通压降V=0.5V,滤波电容C与电解电容R的乘积为75uΩ*F ONC第1天阅读课程设计指导书,熟悉设计要求和设计方法第2天根据设计原理计算相关主要元件参数以及完成PID系统的设计进第3天熟悉MATLAB仿真软件的使用,构建系统仿真模型程安第4天仿真调试,记录要求测量波形排第5天撰写课程设计说明书1、电力电子课程设计任务书本院编2、电力电子课程设计指导书本院编3、王创社,乐开端等,开关电源两种控制模式的分析与比较,电力电子技术,1998,3,78一81; 主4、徐辅东,电流型控制开关变换器的研究与优化,西南交通大学硕士论文,要2000年4月。
2 Buck 直流变换器的工作原理及动态建模DC/DC 变换器的概念7【】15【】19【】将一个固定的直流电压变换成可变的直流电压称之为DC/DC 变换,亦称为直流斩波。
用斩波器斩切直流的基本思想是:如果改变开关的动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。
Buck 变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。
基本的DC/DC 变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC 变换器和非隔离型DC/DC 变换器。
非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck )型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk 型,此外还有Sepic 型和Zeta 型变换器。
二电平Buck 直流变换器的工作原理及主电路图2【】13【】25【】26【】1 主电路拓扑Buck 变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。
它的拓扑为电压源、串联开关和电流负载组合而成。
如图所示:图 Buck 电路主电路拓扑为了分析稳态特性,简化推导公式的过程,特作如下假定。
(1) 开关晶体管、二极管均是理想元件。
也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。
(2) 电感、电容是理想元件。
电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。
(3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。
Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上获得单极性的输出电压。
Buck电路设计与MATLAB仿真LT利用simpowersystems中的模块建立所设计降压变换器的仿真电路。
输入电压为20V的直流电压源,开关管选MOSFET模块(参数默认),用Pulse Generator模块产生脉冲驱动开关管。
分别做两种开关频率下的仿真。
(1)使用理论计算的占空比(D=0.25),记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。
4、仿真过程::A.建立模型:建立仿真模型如下如所示:B. 记录数据:仿真算法选择ode23tb,最大步长为0.1s,占空比D=0.25进行仿真,记录数据如下表所示:开关频率f s(K Hz) 电感L(mH)电容C(μF)输出电压稳态值V o(V)输出电压纹波值ΔV o(V)电感电流波动值ΔI o(A)10 0.375500 4.736 0.0267 1 0.45 417 4.339 0.0275 0.875 0.1875500 6.435 0.0510 1.850 0.075100 4.745 0.0197 1.0140.09 83.3 4.396 0.0224 0.875与理论值对比开关频率f s(K Hz) 电感L(mH)电容C(μF)输出电压稳态值V o(V)输出电压纹波值ΔV o(V)电感电流波动值ΔI o(A)100.375500 5 0.025 1 0.45 417 5 0.025 0.833 0.1875 5005 0.025 2 500.075 100 5 0.025 1 0.09 83.3 50.0250.833C .仿真过程:当f s =10KHz,L=0.375mH C=500μF , 占空比D=0.25,电流连续的临界状态时,记录稳态直流电压值V o =4.736V ,稳态直流电压理论值5V计算稳态直流纹波电压的理论值2(1D)0.025V8s o o T V V CL-∆==,通过图中得到直流纹波电压为0.0267V当fs=10KHz,L=0.375mH, C=500μF,占空比D=0.25,电流连续的临界状态时,由(1)o SLV D T IL-∆=,得电感电流波动理论值是1A ,由图像得到电感电流波动值是1A ,与理论计算相符合Time/sP u l s e /VSwitch (fs=10KHz,L=0.375mH,C=500uF)Time/sI L /VInductor Current(fs=10KHz,L=0.375mH,C=500uF)Time/sU o /VUo (fs=10KHz,L=0.375mH,C=500uF)Figure-1 fs=10K Hz,L=0.375mH, C=500μF,占空比D=0.25,电流连续的临界状态取1.2倍临界电感值时,输出电压稳态值是4.399V ,理论值是5V ,纹波电压理论值0.025V记录波形测得纹波电压为0.0275V 电感电流波动理论值为0.833A ,由图像得到电感电流波动值是0.875ATime/sP u l s e /VPulse (fs=10KHz,L=0.45mH,C=417uF)Time/sI L /AInductor Current(fs=10KHz,L=0.45mH,C=417uF)取1.2倍电感值时0.1970.19750.1980.19850.1990.19950.20.20050.2010.2015Time/sU o /VUo (fs=10KHz,L=0.45mH,C=417uF)f s =50KHz,L=0.075mH, C=100μF, 占空比D=0.25,电流连续的临界状态时,记录稳态直流电压值V o =4.745V ,理论值是5V ,稳态直流纹波电压理论值0.025V ,由输出电压波形得到实际值为0.0197V电感电流波动理论值为1A ,测量值为1.014AFigure-2取1.2倍电感Time/sP u l s e /VPulse (fs=50KHz,L=0.075mH,C=100uF)Time/sI L /AInductor Current(fs=50KHz,L=0.075mH,C=100uF)x 10-3Time/sU o /VUo (fs=50KHz,L=0.075mH,C=100uF)Figure-3 f s =50KHz,L=0.075mH, C=100μF,占空比D=0.25,电流连续的临界状态取 1.2倍临界电感时,输出电压平均值为4.396V,理论值是5V,纹波电压理论值为0.025V,实际为0.0224V电感电流波动理论值为0.833A,实际值为0.875ATime/sP u l s e /VPulse (fs=50KHz,L=0.09mH,C=83.3uF)Time/sI L /AIductor Current(fs=50KHz,L=0.09mH,C=83.3uF)4.524.54 4.564.58 4.6 4.62 4.64x 10-3Time/sU o /VUo (fs=50KHz,L=0.09mH,C=83.3uF)Figure-4 取1.2倍电感时(2)画出电感电流波形,计算电流波动值并与理论公式对比记录数据如下表 开关频率f s (K Hz) 电感L(m H)电容C(μF)电感电流波动值ΔI o (A) 电感电流波动实际值ΔI o (A)100.375500 110.45 417 0.833 0.875 0.1875 500 2 1.8 500.07510011.014 0.09 83.3 0.8330.8750.10880.10890.1090.10910.10920.10930.10940.1095-1-0.50.511.52Time/sP u l s e /VSwitch (fs=10KHz,L=0.375mH,C=500uF)Time/sI L /VInductor Current(fs=10KHz,L=0.375mH,C=500uF)Figure-5 fs=10KHz,L=0.375mH, C=500μF,占空比D=0.25,电流连续的临界状态0.0250.02550.026-1-0.500.511.52Time/sP u l s e /VPulse (fs=10KHz,L=0.45mH,C=417uF)Time/sI L /AInductor Current(fs=10KHz,L=0.45mH,C=417uF)Figure-6 fs=10KH z,L=0.45mH, C=417μF,占空比D=0.250.02480.02490.025-1-0.500.51Time/sP u l s e /VTime/sI L /AInductor Current(fs=50KHz,L=0.075mH,C=100uF)Figure-7 f s =50KHz,L=0.075mH, C=100μF,占空比D=0.25,电流连续的临界状态0.02480.02490.025-1-0.500.511.52Time/sP u l s e /VPulse (fs=50KHz,L=0.09mH,C=83.3uF)Time/sI L /AIductor Current(fs=50KHz,L=0.09mH,C=83.3uF)Figure-8 f s =50KHz,L=0.09mH, C=83.3μF,占空比D=0.25(3)修改占空比,观察直流电压值的变化。
第一章概述1.1 直流―直流变换的分类直流—直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。
目前通信设备的直流基础电源电压规定为−48V,由于在通信系统中仍存在−24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将−48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。
D C/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
主要有(1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。
(2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。
(3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。
(4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。
此外还有Sepic、Zeta电路。
1.2 直流—直流变换器的发展当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。
日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商.2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。
第二章降压―升压斩波电路的设计2.1 基本工作原理电路原理图如图2-1所示,基本工作原理如下:b)Ra)ii2II图2-1: 降压―升压斩波电路原理图设电路中电感L值很大,电容C值也很大。
使电感IL和电容电压即负载电压uo基本为恒值。
题目:Vg 1.5VQ135m Ω100uH100uFR5ΩV D0.5V图1 buck-boost 变换器电路图一、开关模型的建模与仿真图2 buck-boost 变换器的开关模型占空比由0.806变化到0.7的电感电流波形占空比由0.806变化到0.7的电容电压波形图3 buck-boost 变换器的开关模型的仿真二、 大信号模型与仿真1、 开关导通时:Vg 1.5VR on35m ΩV-图4 开关导通时的工作状态此时,电感电压和电容电流方程:(t)v (t)v (t)(t)(t)(t)(t)L g on c di L i R dt dv v i C dt R ⎧==-⎪⎪⎨⎪==-⎪⎩2、 开关断开时:100uH100uFVi c+-0.5Vi图5 开关断开时的工作状态此时,电感电压和电容电流方程:(t)v (t)(t)(t)(t)(t)(t)L D c di L V v dt dv v i C i dt R ⎧==--⎪⎪⎨⎪==-⎪⎩3、平均方程电源电压、电感电流、电容电压变化的不大均为低频信号,则(t)(t)g g v v = ;(t)(t)i i =;v(t)v(t)=又因为:(t)v (t)L d i L dt= (t)(t)c d v i Cdt= 则有,电感电压平均方程:()()'v (t)d(t)v (t)(t)+d (t)(t)L g on D i R V v =---电容电流平均方程:''(t)(t)(t)(t)d(t)()d (t)((t))=d (t)(t)c v v v i i i R R R=-+--+ 输入电流平均方程:g (t)d(t)(t)i i =4、大信号模型:()()''g (t)d(t)v (t)(t)+d (t)(t)d (t)(t)=d (t)(t)(t)d(t)(t)g on D d i L i R V v dt v v C i dt R i i ⎧=---⎪⎪⎪-+⎨⎪⎪=⎪⎩由方程可得到三个等效电路:-+-+-+g (t)i v (t)g (t)v D (t)i 'D (t)i d (t)v Cdt(t)d i Ldt'(0.5D )VonDR '(t)D v v (t)g D 图6 buck-boost 变换器的大信号模型的等效电路大信号模型的仿真电路:图7 大信号模型仿真电路图大信号模型的仿真波形:占空比随时间变化的波形电容电压随占空比变化的波形图8 大信号模型仿真波形图三、 小信号模型假设,gv (t)=V +v (t)d(t)=D+d(t)(t)=(t)v(t)=V+v(t)(t)=(t)g g g g g i I i i I i ΛΛΛΛΛ⎧⎪⎪⎪⎪⎨+⎪⎪⎪⎪+⎩ 且各变量的扰动值远小于其稳态值。
实验三 BUCK降压变换电路仿真分析●实验名称:BUCK降压变换电路仿真分析●实验目的:掌握DC-DC变换中的基本模块BUCK降压转换电路的基本原理●实验原理介绍:BUCK电路是DC-DC变换电路中的基本模块,其主电路包括输入电源、开关管、续流二级管以及储能电感、滤波电容和负载,它们共同完成电能的转换和传递。
如图2-2所示,是BUCK电路基本结构图,它由一个开关S,一个二级管D,以及LC低通滤波器和负载所组成。
BUCK正常工作时,开关S被控制电路的控制,重复导通和关断,等效于输入电压为方波电压,通过L/C滤波器的滤波作用,最终获得近似于直流的输出电压U OUT.若BUCK电路工作在连续导通模式下,输出电压由输入电压和占空比共同决定,而与所接入的负载大小无关,因此设计相应工作模式的电路会比较简单可靠假如BUCK电路已经处于稳定工作状态,则可以判定输入电压、输出电压、输出负载电流以及占空比固定且不会发生变化。
本节的主要工作是通过对BUCK转换器主电路在连续工作模式下的稳态分析,推导出电路间各参数的关系。
BUCK连续工作模式分为两个状态:第一个状态是S导通、D关断;第二个状态是S关断、D导通。
定义开关S导通状态的持续时间为T ON,开关管S关断状态的持续时间为错误!未找到引用源。
,一个周期时间为T S,占空比记做DTTSOND=因为连续导通模式的每一个周期只存在两个状态,因此SOFFTDT⨯-=)1(学号实验日期成绩年月日开关导通时的等效电路第一个状态:S 导通,二极管D 由于承受反向电压而截至,等效的电路如图所示。
电感两端的承受正向压降,电感电流逐渐增加连续导通模式下的,稳态波形如图所示。
作用于电感上的电压直流值是恒定的,因此,电感电流呈线性增长,且满足下式LdtUUdioutinL-=则可以推出,电感纹波电流峰-峰值表达式为LD T U U i Sout in L ⨯⨯-=∆)(工作于连续导通模式下的BUCK 电路的波形第二个状态:S 关断,等效电路如图所示,由于流过电感的电流不能突变,电流从开关管S 转移到二极管D 上。