华侨大学大学物理练习题答案
- 格式:doc
- 大小:1.14 MB
- 文档页数:16
大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章 稳恒磁场练 习 一1. 已知磁感应强度为20.2-⋅=m Wb B 的均匀磁场,方向沿x 轴正方向,如图所示。
求:(1) 通过图中abcd 面的磁通量;(2) 通过图中befc 面的磁通量;(3) 通过图中aefd 面的磁通量。
2. 如图所示,在被折成钝角的长直导线通中有20安培的电流。
求A 点的磁感应强度。
设a=2.0cm , 120=α。
3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。
4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。
求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。
练习二1.一载有电流I的圆线圈,半径为R,匝数为N。
求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。
求圆柱轴线上任一点P处的磁感应强度。
3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。
求:(1) 两平面之间任一点的磁感应强度;(2) 两平面之外任一点的磁感应强度;(3) i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。
在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。
计算通过此平面的磁通量。
(铜材料本身对磁场分布无影响)。
练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。
2.矩形截面的螺绕环,尺寸如图所示。
(1) 求环内磁感应强度的分布;(2) 证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。
大学物理C1练习题答案(新版)大学物理C1练习题答案力学练习题(一)一、选择题1.D2.B3.B4.D二、填空题1. 2sin A t -ωω 210,1,2,2k k +=πω2. 17.27 2.73(m)r i j ?=+ 0.350.06(m /i j =+v 1.16(m /s)=v3. (1)10 m ,(2)15.7 m三、计算题1. 232210(SI)3t x t ==+v 2./s)=±v力学练习题(二)一、选择题1.D2.D3.C 二、填空题1. sin g -θ cos g θ 2c o s g θv2. 3243t t - 2126t t -3. 55.9/min v m = '东偏北2636或26.6 4. 1212()F m m g m m +-+ 2112(2)m F m g m m ++ 三、计算题1. (1)0mg2. 00(1)R R t μ=+v v v 0(2)ln 2R R t s μμ==v3. (1)7m /s (2)11m /s 222(3)4m/s 605m/s 605m/s t n a a a ===力学练习题(三)一、选择题1.C2.A3.A4.D二、填空题1. 6m /s2. 12J3. 18N s ?三、计算题1. (1)26.49N (2)4.7N s ?2. 12.96m /s3. 0.301m /s力学练习题(四)一、选择题1.C2.B3.B D二、填空题1. 4s 15m/s2.12Ma 3. ln 2J k三、计算题1. 2(1)0.5rad /s - (2)0.25N m -? (3)75rad2. 2(1)10.3rad /s 1(2)9.08rad s -? 力学练习题(五)一、选择题1.C2.D3.B二、填空题1. 0.4rad /s2. 2112(kg m s )k -?? 3(N m)k ?三、计算题1. 21212()m t g m μ+=v v 2. 0(1)78.8=θ (2)4.87m /s (3)3.95J3. 0(1)4ω 22003(2)2W mr =ω 振动和波动练习题(一)一、选择题1.B 2.B 3.D二、填空题1.2,4,12s π-,2π-,2cos()22t ππ-,sin()22t πππ--,2cos()222t πππ--,π2.4T ,12T ,6T3.1︰1三、计算题1.(1)22.010cos(4)3x t m ππ-=?+(2)242.010cos(4)3x t m ππ-=?+ 2.(1)200/k N m =(2)0,0.1,0t x m ===v (3)0.1cos(10)x t m =振动和波动练习题(二)一、选择题1.C 2.C二、填空题1111221122sin sin cos cos A A tg A A -++,2,0,1,2k k ?π?=±=,(21),0,1,2k k ?π?=±+= 2.3cos(5)6t π+,)2t π+ 3.F kx =-,cos[()]x y A t uω?=-+,波沿传播方向传播x 距离落后的时间,波沿传播方向传播x 距离落后的相位。
华侨大学厦门工学院2011—2012学年第二学期期中考试《大学物理A (一)》考试试卷1、(本题3分) (0604)某物体的运动规律为d v /dt = -k v 2t ,式中的k 为大于零的常量。
当t = 0时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt (B) 0221v v +-=kt(C) 021211v v +=kt (D) 021211v v +-=kt [ C ]2、(本题3分)(0094)如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心。
(B) 它的速度均匀增加。
(C) 它的合外力大小变化,方向永远指向圆心。
(D) 它的合外力大小不变。
(E) 轨道支持力的大小不断增加。
[ E ]解 如上图受力分析可见 A能转化为动能可知,下滑过程动能应越来越大,可见答案B也是错误的。
对于答案E有: Rv m mg N R v m mg N 22+==-θθsin sin3、(本题3分) (0412)如图,一质量为m 的物体,位于质量可以忽略的直立弹簧正上方高度为h 处,该物体从静止开始落向弹簧,若弹簧的劲度系数为k ,不考虑空气阻力,则物体下降过程中可能获得的最大动能是(A) mgh (B) mgh +22m g k(C) mgh -222m g k (D) mgh +222m g k解答: 选物体 弹簧 地球为系统,系统只有保守力做功,机械能守恒。
最大动能应该是物体压缩弹簧下降过程中重力等于弹性力的时候,设此时最大动能为E max 。
据机械能守恒定律有----------------------------------------------------------------------------------------------------------------------------------------密-----------------封----------------线-------------------内------------------------------------封----------------线-------------------内-------------------不封----------------线-------------------内-------------------不----------------线-------------------内-------------------不__________________________________系______级系______级________________________专_______专业______班 姓班 姓名:__________________________ 学号:()mzx E kx x h mg +=+221式中x 满足kx =mg,即x =mg/k 代入前式即得答案D4、(本题3分) (0367)质量为20g 的子弹沿X 轴正向以500 m/sX 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量大小为(A) 9N ·s (B) -9N ·s (C) 10N ·s (D) -10N ·s [ A ]解答 根据动量定理,有()S N mv mv I ⋅-=-⨯=-=95005002012.式中负号表示方向。
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
物理部分课后习题答案标有红色记号的为老师让看的题27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度;解:1由运动方程消去时间t 可得轨迹方程,将t =,有21)y =或 1=2将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+=3 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量;求1质点的速度;2速率的变化率;解 1质点的速度为sin cos d rv R ti R t j dtωωωω==-+ 2质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+;求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小;解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量;解 由冲量的定义,有2.02.02.02(63)(33)18I Fdt t dt t t N s ==+=+=⎰⎰2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力空气阻力和摩擦力f kv =-k 为常数作用;设撤除牵引力时为0t =,初速度为0v ,求1滑行中速度v 与时间t 的关系;20到t 时间内飞机所滑行的路程;3飞机停止前所滑行的路程;解 1飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有dvf mkv dt ==- 即 dv k dt v m=- 两边积分,速度v 与时间t 的关系为2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球半径的2倍即2R ,试以,m R 和引力恒量G 及地球的质量M 表示出:(1) 卫星的动能;(2) 卫星在地球引力场中的引力势能.解 1 人造卫星绕地球做圆周运动,地球引力作为向心力,有22(3)3Mm v G m R R= 卫星的动能为 2126k GMmE mv R ==2卫星的引力势能为3p GMmE R=-00v t v dv k dt v m =-⎰⎰2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以500/m s的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后停止;求:(1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少;解 子弹与木块组成的系统沿水平方向动量守恒12mv mv Mu =+对木块用动能定理2102Mgs Mu μ-=-得 1 2212()2m v v Mgsμ-==322(210)(500100)0.16219.80.2-⨯⨯-=⨯⨯⨯ 2 子弹动能减少2212121()2402k k E E m v v J -=-= 114页3-11,3-9,例3-2 如图所示,已知物体A 、B 的质量分别为A m 、B m ,滑轮C 的质量为C m ,半径为R ,不计摩擦力,物体B 由静止下落,求1物体A 、B 的加速度; 2绳的张力;3物体B 下落距离L 后的速度; 分析: 1本题测试的是刚体与质点的综合运动,由于滑轮有质量,在运动时就变成含有刚体的运动了;滑轮在作定轴转动,视为圆盘,转动惯量为例3-2图212J mR =; 2角量与线量的关系:物体A 、B 的加速度就是滑轮边沿的切向加速度,有t a R β=; 3由于滑轮有质量,在作加速转动时滑轮两边绳子拉力12T T ≠; 分析三个物体,列出三个物体的运动方程:物体A 1A T m a = 物体B 2B B m g T m a -= 物体C ''22111()22C C T T R J m R m Ra ββ-=== 解 112B A B Cm g a m m m =++;2112A B A B C m m g T m m m =++, 21()212A C AB Cm m g T m m m +=++;3对B 来说有,2202v v aLv -===例3-4 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止 已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量 分析: 利用积分求圆形平板受桌面的摩擦力矩,运用转动定律求出平板的角加速度,再用运动学公式求转动的圈数.解:在距圆形平板中心r 处取宽度为dr 的环带面积,环带受桌面的摩擦力矩为r r r RmgM d 2d 2⋅π⋅π=μ总摩擦力矩为mgR M M Rμ32d 0==⎰ 故平板的角加速度为M Jβ=222 可见圆形平板在作匀减速转动,又末角速度0ω=,因此有2022M Jθωβθ==设平板停止前转数为n,则转角2n θπ=,可得22003416J R n M ωωμ==πgπ3-2:如题3-2图所示,两个圆柱形轮子内外半径分别为R 1和R 2,质量分别为M 1和M 2;二者同轴固结在一起组成定滑轮,可绕一水平轴自由转动;今在两轮上各绕以细绳,细绳分别挂上质量为m 1和m 2的两个物体;求在重力作用下,定滑轮的角加速度;解: m 1:1111a m g m T=-m 2:2222a m T g m=-转动定律:βJ T R T R =-1122其中:2222112121R M R M J += 运动学关系:2211R a R a ==β 解得:222221111122)2/()2/()(R m M R m M gR m R m +++-=β3-6 一质量为m 的质点位于11,y x 处,速度为j v i v v y x+=, 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.解: 由题知,质点的位矢为j y i x r11+=作用在质点上的力为i f f -=所以,质点对原点的角动量为v m r L⨯=0)()(11j v i v m i y i x y x +⨯+=k mv y mv x x y )(11-=作用在质点上的力的力矩为k f y i f j y i x f r M1110)()(=-⨯+=⨯=3-11 如题3-11图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求:1初始时刻的角加速度; 2杆转过θ角时的角速度. 解: 1由转动定律,有2123()=l mgml β 则 lg23=β 2由机械能守恒定律,有22110232()-=lml ωmg sin θ题3-11图所以有 lg θωsin 3=3-13 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 可看作匀质圆盘,在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3-13图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. 1问它能升高多少2求余下部分的角速度、角动量和转动动能.解: 1碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有 题3-13图gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==2圆盘的转动惯量212=J MR ,碎片抛出后圆盘的转动惯量2212'=-J MR mR ,碎片脱离前,盘的角动量为J ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即'=+'0J ωJ ωmv R式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωωωω'-=-)21()21(2222mR MR mR MR 得ωω=' 角速度不变圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为222)21(21ωmR MR E k -=258页8-2,8-12,8-178-7 试计算半径为R 、带电量为q 的均匀带电细圆环的轴线过环心垂直于圆环所在平面的直线上任一点P 处的场强P 点到圆环中心的距离取为x .解 在圆环上任取一电荷元dq ,其在P 点产生的场强为 ()2204Rx dqdE +=πε方向沿dq 与P 点的连线.将其分解为平行于轴线的分量和垂直于轴线的分量,由电荷分布的对称性可知,各dq 在P 点产生的垂直于轴线的场强分量相互抵消,而平行于轴线的分量相互加强,所以合场强平行于轴线, 大小为:E =E ∥=()()()23220212222044cos R x qxR x x R x dq dE q +=+⋅+=⎰⎰πεπεθ 方向:q >0时,自环心沿轴线向外;q <0时,指向环心.8-12 两个均匀带电的同心球面半径分别为R 1和R 2R 2>R 1,带电量分别为q 1和q 2,求以下三种情况下距离球心为r 的点的场强:1r <R 1;2R 1<r <R 23r >R 2.并定性地画出场强随r 的变化曲线解 过所求场点作与两带电球面同心的球面为高斯面,则由高斯定理可知: (1) 当r <R 1时,0,04cos 2=∴=⋅==Φ⎰E r E dS E e πθ(2) 当R 1<r <R 2时,2010124,4cos rq E q r E dS E e πεπθ=∴=⋅==Φ⎰(3) 当r >R 2 时,()()2021021244cos rq q E q q r E dS E e πεεπθ+=∴+=⋅==Φ⎰8-13 均匀带电的无限长圆柱面半径为R ,每单位长度的电量即电荷线密度为λ. 求解8-7图E12解8-12图 场强随r 的变化曲线圆柱面内外的场强.解 过所求场点作与无限长带电圆柱面同轴的、长为l 的封闭圆柱面,使所求场点在封闭圆柱面的侧面上.由电荷分布的对称性可知,在电场不为零的地方,场强的方向垂直轴线向外设λ>0,且离轴线的距离相等的各点场强的大小相等. 所以封闭圆柱面两个底面的电通量为零,侧面上各点场强的大小相等,方向与侧面垂直与侧面任一面积元的法线方向平行.设所求场点到圆柱面轴线的距离为r ,当r <R 即所求场点在带电圆柱面内时,因为0,02000cos cos =∴=⋅=++==Φ⎰⎰E rl E dS E dS E e πθ;当r >R 即所求场点在带电圆柱面外时,rE l rl E e 002,2πελελπ=∴=⋅=Φ . 8-15 将q=×10-8C 的点电荷从电场中的A 点移到B 点,外力作功×10-6J .问电势能的增量是多少 A 、B 两点间的电势差是多少哪一点的电势较高若设B 点的电势为零,则A 点的电势是多少解 电势能的增量:J 100.56-⨯==-=∆外A W W W A B ;A 、B 两点间的电势差:V 100.2105.2100.5286⨯-=⨯⨯-=-=-=---q W W q W q W U U B A B A B A <0, ∴ B 点的电势较高;若设B 点的电势为零,则 V 100.22⨯-=A U .8-17 求习题8-12中空间各点的电势.解 已知均匀带电球面内任一点的电势等于球面上的电势Rq 04πε,其中R 是球面的半径;均匀带电球面外任一点的电势等于球面上的电荷全部集中在球心上时的电势.所以,由电势的叠加原理得:(1) 当r <R 1即所求场点在两个球面内时:20210144R q R q U πεπε+=;(2) 当R 1<r <R 2即所求场点在小球面外、大球面内时:2020144R q rq U πεπε+=;当r >R 2即所求场点在两个球面外时:r q q r q r q U 0210201444πεπεπε+=+=当r >R 2即所求场点在两个球面外时:rq q rq rq U 0210201444πεπεπε+=+=285页9-3,9-49-3.如图,在半径为R 的导体球外与球心O 相距为a 的一点A 处放置一点电荷+Q ,在球内有一点B 位于AO 的延长线上,OB = r ,求:1导体上的感应电荷在B 点产生的场强的大小和方向;2B 点的电势.解:1由静电平衡条件和场强叠加原理可知,B 点的电场强度为点电荷q 和球面感应电荷在该处产生的矢量和,且为零,即04130=+'=r rE E p B πε r r a E B30)(41+-=πε 2由电势叠加原理可知,B 点的电势为点电荷q 和球面感应电荷在该处产生的电势的标量和,即rq V V BB 04πε+'=由于球体是一个等势体,球内任一点的电势和球心o 点的电势相等aq V V V B 0004πε+'==因球面上的感应电荷与球心o 的距离均为球的半径R,且感应电荷的总电贺量为零,所以感应电荷在o 点产生的电势为零,且00V V =',因此aq V V B 004πε==所以, B 点的电势 aq V B 04πε=9-4.如图所示,在一半径为R 1 = cm 的金属球A 外面罩有一个同心的金属球壳B.已知球壳B 的内、外半径分别为R 2 = cm,R 3 = cm,A 球带有总电量Q A = ×10-8 C,球壳B 带有总电量Q B = ×10-8 C.求:1球壳B 内、外表面上所带的电量以及球A 和球壳B 的电势;2将球壳B 接地后再断开,再把金属球A 接地,求金属球A 和球壳B 的内、外表面上所带的电量,以及球A 和球壳B 的电势.习题图解:1在导体到达静电平衡后,A Q 分布在导体球A的表面上.由于静电感应,在B 球壳的内表面上感应出负电荷A Q ,外表面上感应出正电荷A Q ,则B 球壳外表面上的总电荷B A Q Q +;由场的分布具有对称性,可用高斯定理求得各区域的场强分布)(4),(02120211R r R r Q E R r E A<<=<=πε)(4),(03204323R r rQ Q E R r R E BA >+=<<=πε E 的方向眼径向外.导体为有限带电体,选无限远处为电势零点;由电势的定义可计算两球的电势B A V V 和. A 球内任一场点的电势A V 为)(4144321020204321321332211R Q Q R Q R Q rd r Q Q r d r Q rd E r d E r d E r d E V BA A A RB A R R A R R R R R R rA ++-=++=⋅+⋅+⋅+⋅=⎰⎰⎰⎰⎰⎰∞∞πεπεπεB 球壳内任一点的电势B V 为30204344333R Q Q dr r Q Q rd E r d E V B A R B A R R rB πεπε+=+=⋅+⋅=⎰⎰⎰∞∞9-5.两块无限大带电平板导体如图排列,试证明:1相向的两面上图中的2和3,其电荷面密度大小相等而符号相反;2背向的两面上图中的1和4,其电荷面密度大小相等且符号相同. 解:因两块导体板靠得很近,可将四个导体表面视为四个无限大带点平面;导体表面上的电荷分布可认为是均匀的,且其间的场强方向垂直导体表面;作如图所示的圆柱形高斯面,因导体在到达静电平衡后内部场强为零,导体外的场强方向与高斯面的侧面平行,由高斯定理可得习题图320320σσεσσ-=∴+=; 再由导体板内的场强为零,可知P 点合场强0)2()2()2(204030201=-++-+εσεσεσεσ 由 32σσ-= 得41σσ-=9-7. 一平行板电容器,充电后极板上的电荷面密度为σ = ×10-5 C . m -2,现将两极板与电源断开,然后再把相对电容率为εr = 的电介质充满两极板之间.求此时电介质中的D 、E 和P . 解:当平行板电容器的两板与电源断开前后,两极板上所带的电荷量没有发生变化,所以自由电荷面密度也没有发生变化,由 1-'=r r εσεσ ∴极化电荷面密度rr )(εεσσ1-='对于平行板电容器σ'=P 0r E εεσ)1(-'=∴1-'=r r D εσε 且E D P ,,的方向均沿径向.9-11.圆柱形电容器由半径为R 1的导线和与它同轴的导体圆筒构成,其间充满相对电容率为εr 的电介质.圆筒内半径为R 2.电容器长为L,沿轴线单位长度上的电荷为± λ,略去边缘效应,试求:1两极的电势差;2电介质中的电场强度、电位移、极化强度; 3电介质表面的极化电荷面密度.解:1 设导线上的电荷均匀地分布在导线的表面上,圆筒上的电荷均匀的分布在圆筒的内表面上,可由高斯定理求得各区域的场强110R ,rE <=习题图10-6ByOlllzx12022R r ,R rE r >>=επελ23,0R r E >= ∴两极的电位差1201202ln 2ln 221R R R R r l d E u r r R R επελεπελ==⋅=⎰2 由第1问知,电介质中的电场强度 rE r επελ02=电位移rr r E D πλεε20== 极化强度 0)1(εε-=r P rr r πελε2)1(-=329页10-9,10-1010-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(2)总通量0B ds Φ=•=⎰⎰10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度; 2通过图中矩形面积的磁通量 ()31r r =解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()r d Ir I B P -+=πμπμ22 (1) 在导线等距的点有 2d r =, dI B πμ2= (2) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d -10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方习题图10-10习题图10-6By Olllzx向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度10-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(3)总通量0B ds Φ=•=⎰⎰ 10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度;通过图中矩形面积的磁通量 ()31r r =2解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()rd Ir I B P -+=πμπμ22(3) 在导线等距的点有002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aI a I a μμθθππμπμπ=-=-=--=2d r =, dI B πμ2= (4) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d - 10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则00123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性习题图10-10002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aIa I aμμθθππμπμπ=-=-=--=习题图10-1401231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯.方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则习题图10-1400123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性01231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯. 367页11-1,11-511-1 一载流I 的无限长直导线,与一N 匝矩形线圈ABCD 共面;已知AB 长为L ,与导线间距为a ;CD 边与导线间距为bb ›a;线圈以 v 的速度离开直导线,求线圈内感应电动势的方向和大小;解 由于I 为稳恒电流,所以它在空间各点产生的磁场为稳恒磁场;当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量发生变化,故有感应电动势产生;取坐标系如图a 所示;设矩形线圈以速度 v 以图示位置开始运动,则经过时间t 之后,线圈位置如图b 所示;取面积元ldx dS =,距长直导线的距离为x ,按无限长直载流导线的磁感应强度公式知,该面积元处B 的大小为 B =xπμ20I 通过该面积元的磁通量为 ldx xIBdS d πμ20==Φ 于是通过线圈的磁通量为 ()⎰⎰⎰++++==Φ=Φvt b vt a vtb vt a xldxI ldx x I d t πμπμ2200 =πμ20Il ㏑vta vtb ++ 由法拉第电磁感应定律可知,N 匝线圈内的感应电动势为()()()⎥⎦⎤⎢⎣⎡++-+++-=Φ-=202vt a v vt b v vt a vt b vt a lIN dt d N E πμ ()()()()vt a vt b vvt b v vt a lIN +++-+-=πμ20令t = 0,并代入数据,则得线圈刚离开直导线时的感应电动势()ab a b NlIv b a lIvN dtd NE t πμπμ2112000-=⎪⎭⎫ ⎝⎛-=Φ-== 按楞次定律可知,E 感应电动势的方向沿顺时针方向;11-5 在无限长螺线管中,均匀分布着与螺线管轴线平行的磁场B t;设B 以速率dtdB=К变化К为大于零的常量;现在其中放置一直角形导线 abc;若已知螺线管截面半径为R,l ab =,求:1螺线管中的感生电场EV;2bc ab ,两段导线中的感生电动势;解 1由于系统具有轴对称性,如图所示,可求出感生电场;在磁场中取圆心为O ,半径为()R r r <的圆周,根据感生电场与变化磁场之间的关系m V LS d BE dl d S dtt Φ∂=-=-∂⎰⎰可得222V dBE r r r dtπππκ=-=- 有2V rE κ=-()R r < 由楞次定律可以判断感生电场为逆时针方向;2解法一 用法拉第电磁感应定律求解;连接Ob Oa ,和Oc ,在回路OabO 中,穿过回路所围面积的磁通量为1222124l BS Bl R ⎛⎫Φ=-=-- ⎪⎝⎭则11222221112424d l dB l E l R l R dt dt κ⎛⎫⎛⎫Φ=-=--=- ⎪ ⎪⎝⎭⎝⎭而ab oa bo ab E E E E E =++=1 所以12221124ab l E E lk R ⎛⎫==- ⎪⎝⎭方向由a 指向b同理可得 1222124bc l E lk R ⎛⎫=- ⎪⎝⎭方向由b 指向c解法二 也可由感生电场力做功求解;由于1中已求出EV;则122224bab V ak l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰122224cbc V bk l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰11-1.解: 1由电磁感应定律812)1(--=Φ-t dtd i ε2)2(102.3-⨯-=i ε2 2106.1-⨯==RI iε由于磁通量是增加的,所以线圈中产生的感应电动势使R 中产生感应电流的方向是由左向右11-4解:由题意可知金属棒沿杆下滑的速度为重力加速度所引起t BgL L Bgt l d B V )cos sin (cos sin )(θθθθε==⋅⨯=⎰11-5解:由于I 为稳定电流,所以它在空间各点产生的磁场为稳恒磁场.当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量回发生变化,故有感应电动势产生.取坐标系如图;设矩形线圈以速度V 从图示位置开始运动,经过时间t 之后,线圈位置如图b 所示,取面积元ds=ldx,距长直导线的距离为x,按无限长直载流导体的磁感应强度公式知,该面积元外B的大小为x I B πμ20= 通过该面积元的磁通量为ldx x I Bds d ⋅==Φπμ20 于是通过线圈的磁通量为⎰⎰⎰++++⋅=⋅=Φ=Φvt b vt a vt b vt a xldx x I ldx x I d t πμπμ22)(00 va vtb IL ++=ln 20πμ 由法拉第电磁感应定律可知,N 匝线圈中的感应电动势为])()()([220vt a v vt b v vt a vt b vt a ILN dt d N E ++-+++-=Φ-=πμ -=))(()()(20vt b vt a v vt b v vt a IN +++-+πμ 令t=0,代入数据,得到线圈,刚离开直导线时的感应电动势)11(200ba LIVN dt d N E t -=Φ-==πμ )(100.32.01.02)1.02.0(0.30.52.010104737V --⨯=⨯⨯-⨯⨯⨯⨯⨯⨯=ππ 按楞次定律E 的方向为图b 中的顺时针方向1、 一质点作匀速率圆周运动,其质量为m,线速度为v,半径为R;求它对圆心的角动 量;它相对于圆周上某一点的角动量是否为常量,为什么答:它对圆心的角动量Rmv ,是常量;它相对于圆周上某一点的角动量不是常量;4、彗星绕太阳作椭圆轨道运动,太阳位于椭圆轨道的一个焦点上,问系统的角动量是否 守恒 近日点与远日点的速度哪个大答:在彗星绕太阳轨道运转过程中,只受万有引力作用,万有引力对太阳不产生力矩,系统角动量守恒;近日点 r 小 v 大,远日点 r 大 v 小;这就是为什么彗星运转周期为几十年,而经过太阳时只有很短的几周时间;彗星接近太阳时势能转换成动能,而远离太阳时,动能转换成势能;8.利用角动量守恒定律简要分析花样滑冰、跳水运动过程;答:对这一力学现象可根据角动量守衡定律来解释;例如旋转着的芭蕾舞演员要加快旋转时,总是将双手收回身边,这时演员质量分布靠近转轴,转动惯量变小,转动速度加快,转动动能增加;3-5题图。
练习一 (磁)1. (C)2.a 4I 0πμ,⊗3.)412(R 2I 0ππμ+-, ⊗4. 可看成许多平行的无限长载流直导线组成,其中一宽为θRd dl =的直导线载有电流dl RIdI π=θθπμθπd sin R2I)2cos(dB dB 20x -=+=⎰-=-=ππμθθπμ02020x RI d sin R 2I Bθθπμθπd cos R 2I )2sin(dB dB 20y =+= 0d cos R2I B 020y ==⎰πθθπμ )T (i1037.6i RI B 620O -⨯-=-=πμ5. 将此盘看成无数同心带电圆环组成,半径为r的圆环带电rdr2dq πσ⋅=圆环转动形成的电流为rdr dq 2dI ωσπω==则 dr r dIdB ωσμμ00212== 各B d 同向R 21dr 21dB B 00R 0σωμωσμ===∴⎰⎰练习二 (磁)1. (B)2. 变量 ,I ομ-3. 1∶1, 304. 在横截面上以轴点为圆心,作半径为r 的圆形环路则 (1) a r < ⎰=⋅Ll d B 0, 0=∴B(2) b r a << I a b a r rB l d B L )()(22222--==⋅⎰ππμπο , ra b Ia r B )(2(22)22--=∴πμο (3) b r <I rB l d B L⎰==⋅ομπ2,rIB πμο2=∴ 5. 取电流元 dI=(I/b)dx则 )x r b (b 2Idx)x r b (2dIdB 00-+=-+=πμπμrbr ln b 2I )x r b (b 2IdxB b00+=-+=⎰πμπμ 方向向里练习三 (磁)1.(B )2. 03. 1∶14.取面积元xdx ahydx dS ==,它距长直载流导线为 (b+x )m d φ=S d B ⋅=xdx ahx b I⋅+)(2πμο=dx xb ba hI )1(2+-πμο ∴ m φ=⎰m d φ=ahIπμο2dx xb ba)1(0⎰+-=ahI πμο2[b ab ln b a +-]5. 在横截面上以轴点为圆心作半径为r 的圆形环路,由环路定理可得:R r < 222r R I rB ππμπο⋅= r R I B 22πμο=内R r ≥ I rB ομπ=2 rIB πμο2=外 矩形纵截面 外内S S S +=,其总磁通量为:⎰⎰⋅+⋅=S 外S 内m S d B S d Bφ)m 1l (2ln 212I ldr r 2I ldr R2Ir R 2R 0R20=+=+=⎰⎰)(πμπμπμο 练习四 (磁)1. (D)2. (B)3. (B)4. AB 处的B )6a3b (2IB AB -=πμο,⊗,受力)6a3b (2aI I F 211-=πμο, 方向AB ⊥向左1I 在BC 上与1I 相距x 的电流元l d I 2处的xIB πμο21=,⊗,由B l d I F⨯=⎰22 及 2330cos dxdx dl ==得6a 3b 3a 3b ln 3I I 23dx x 2I I F 21a 33b a63b 212-+=⋅=⎰+-πμπμοο 方向:在∆平面里BC ⊥向外 同理知23F F =,CA F ⊥3向外(在∆平面里)。
由对称性知合力无y 分量60cos 6a 3b 3a 3b ln 3I I 2)a 63b (2I aI F F 2121x -+⨯+--==∴πμπμοο 5.(1)由安培环路定律和磁场叠加原理,可得导线间的B 为)x d 3(2Ix 2I B -+=πμπμοο, 滑块受到的磁力 5ln I IBdx f 2d 52d 2⎰==πμο常量===∴5ln 2πμοm I m fa又00=U 5ln 212ομπmlIa l t ==∴(2) 215ln 2)(πμοm l I at V t ⋅==练习五 (磁)1. (C)2. (D)3. 矫顽力大,剩磁也大 永久磁铁4. I R 221π, IB R 221π,ϕsin RIB 2 5. B 垂直于y 轴而与x 轴成锐角6. (1) 朝东(2) 已知电子的能量 E k =(1/2)mv 2=1.2×104eV所以电子的速度 v=(2E k /m)1/2(1)电子的电量 e=1.6×19-19 C 电子的质量 m=9.11×10-31kg 设电子通过的距离为s 、偏转间距为 x 则有Rmv evB f 2== (2)222)x R (s R -+= (3) 联解(1),(2),(3)得 m 1098.2mE 8eBs R 2s x 3k22-⨯==≈7. 证: 将此盘看成无数同心带电圆环组成,半径为r 的圆环带电 rdr 2dq πσ⋅=圆环转动形成的电流为 rdr dq 2dI ωσπω==该圆电流的磁矩为 rdr r SdI dp 2m ωσπ⋅== 方向沿盘面轴线 该圆电流在磁场中受到的磁力矩为 dr r B B dp dM 3m πωσ==各M d同向 4BR dr r B M 4R3σωππωσ==⎰证毕.练习六 (磁)1.(B )2.(D )3. ① (D),② (B),③ b , 2RBv4.-VBL 215. dx Kxl S d B d m 1=⋅=φθφθθcos l Kl 21xdx Kl 221)cos 1(l 2)cos 1(l 1m 22==⎰+- θωθθφεsin 21sin 21221221l Kl dt d l Kl dt d m i =⋅=-= 练习七 (磁)1.(A )2.(D )3. 0.15T4.(1)自感 212ln 212D Dh N S d B INI N L D D ⎰=⋅==πμφο (2)H D D h N L 138.0ln 2212==πμο5. 在棒上取一长度元dl ,该长度元的速度 θωsin l v =,该长度元上的电动势为ldl sin B dl sin vB d 2i θωθε==OP 棒上的电动势为 2L2i )sin L (B 21ldl sin B θωθωε==⎰练习八 (磁)1. 变化的磁场,E q F=2. 导体在磁场中运动(切割磁力线)时,自由电荷受洛仑兹力而在导体内定向移动所致;磁场随时间变化所产生的涡旋电场可对载流子做功。
3. 0 4. 3.7 H 5. -800 Wb/s6. 在正方形线圈取一长条形面积元dr d dS ⋅= ,其所在处的磁感强度dr )r1d r 1(2I B 0--=πμ )34ln(2Id dr )r 1d r 1(2Id BdS 0d3d 20m πμπμφ=--==⎰⎰dtdI )34ln(2d dt d 0m i πμφε==7. (1) 取面积元 ldr dS = ldr r2IBdS d 0m πμφ== ada ln 2Il ldr r 2I 0da a0m +==⎰+πμπμφ (2) ad a ln 2l N I N M 0m +==πμφ (3) t cos )ada ln(2l NI dt dI M00M ωπωμε+-=-= 练习九 (磁)1. (C)2. 0 ,42228R r I πμο 3. 略4. R 2vB i ⋅=ε P 端电势高5. (1)两线圈内电流绕向相反,各点B=0,则0=ψ 0==∴IL ψ(2)此时两线圈完全耦合 121L L L M ==IL 4)M L M L (I 121122211=+++=+++=ψψψψψH L I L 2.041===ψ(3) 此时也为完全耦合,但二者磁通不能相加 21ψψψ==I L L IM L I LI 11122)(2=⋅=+=H L L 05.01== 练习十 (磁)1. (C)2. 0 ,221ab B ωε=,高 3. 1.5 mH 4. 22.6 J/m 3 5. 线框中只有两条坚直边切割磁力线,以顺时针方向为正,线框中的感应电动势为 ))l d (2I d 2I (vl l vB l vB 10022221i +-=-=πμπμε)l d (d 2vl Il 1210+=πμ, 顺时针方向6. (1) 00I i ,x2i B ==πμ10l l l 0000l l l l l l ln 2I v dx x 2I vvBdx 100100+===⎰⎰++πμπμε V a >V b (2) t cos I i 0ω=, 以abcda 作为回路正方向1020l l l 202l l l ln 2il dx x 2il dx Bl 100+===⎰⎰+πμπμφ )t cos v t sin l (l l l ln 2I ]il [dt d l l l ln 2dt d 20100020100ωωωπμπμφε-+=+-=-=练习十一 (磁)1. B2. D3. B4.t cos a 2r I 20ωμπt sin Ra 2r I 20ωωμπ 5.θtg BL mgRaθtg BLmg由b 向a6. 解:(1) 设线圈转至任意位置时圆线圈的法向与磁场之间的夹角为θ,则通过该圆线圈平面的磁通量为θcos r πB 2=Φ, nt 2t π==ωθ∴nt 2cos r πB 2π=Φ在任意时刻线圈中的感应电动势为nt 2sin n 2r NB td d N2πππ=-=Φε nt 2sin n BNr 222ππ=t Τ2sin I nt 2sin R n NBr 2R i m 2πππ2===E当线圈转过π /2时,t =T /4,则 987.0R /NBn r 2I i 2m ===2π A(2) 由圆线圈中电流I m 在圆心处激发的磁场为==')r 2/(NI B m 0μ 6.20×10-4T 方向在图面内向下,故此时圆心处的实际磁感强度的大小500.0)B B (B 2/1220≈'+= T 方向与磁场B的方向基本相同.解:筒以ω旋转时,相当于表面单位长度上有环形电流π2L Q ω⋅,它和通电流螺线管的nI 等效.按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为: Lπ2Q B 0ωμ=(方向沿筒的轴向)筒外磁场为零.穿过线圈的磁通量为: L2a Q B a π202ωμΦ==在单匝线圈中产生感生电动势为=-=t d d ΦE )t d d (L 2Qa20ωμ-0020Lt 2Qa ωμ= 感应电流i 为 020RLt 2Qa R i ωμ==Ei 的流向与圆筒转向一致.练习一(振动)1.(C ) 2.(B ) 3.(B ) 4. km 2π5. 15×10-2COS (6πt+π/2) 6.(1) t=0时, a=2.5ms -2N 5ma F == (2) 5a max =, 其时1)t 5sin(=-πN 10a m F max max == x=±0.2m7. 由曲线可知A =10cm.t=0 ⎩⎨⎧<-==-=0sin 10cos 105ϕωϕVo Xo ⇒=ϕ32π由图可知质点由位移为Xo =-5cm 和Vo<0的状态,到x =0和V>0的状态所需时间t=2s ,代入方程得 O=10cos (2ω+2π/3)即 2ω+2π/3=3π/2 ∴ ω=5π/12故得 X = 0.1cos (5πt/12+2π/3) (SI )练习二(振动)1. (B)2. (C)3. (A)4. (1) s 19.4T s5.1A /v Av 1m m =⇒==∴=-ωω(2) 222m s /m 105.4A a -⨯==ω(3) )SI ()2/t 5.1cos(02.0x 2/ππφ+==5. (1) 对小物体在竖直方向有 mg-N=ma N=m (g-a )当N=0,即 a=g 时,小物体开始脱离振动物体.已知 A=10cm . =ωmk=50 rad ·s-1∴amax = A ω2= 5ms -2< g 故小物体不会离开.(2)若a max >g 小物体与振动物体分离,开始分离的位置由N=0求得:g= a max = -ω-2x x=-g/ω2=-19.6cm 即在平衡位置上方19.6cm 处开始分离.由 a max =ω2A >g可得 A >g/ω2=19.6cm练习三(振动)1. (E )2.(C )3.43,g l ∆π24.(1)令22P kA 412E kx 21E ===, 则 x 2=A 2/2 ∴)m (54.3A 22x ±=±= (2)令=t ∆ωπ/4,则 43)3/(44t =⨯==ππωπ∆(S ), 5, 解:(1) 由题意 kA F m =,m x A =,m m x F k /=.16.021212===m m m x F kx E J (2) π===2mm m x A vv ω rad /s由 t = 0, φcos 0A x ==0.2 m , 0sin 0<-=φωA v可得 π=31φ则振动方程为)312cos(4.0π+π=t x练习四(振)1. (B)2. (B)3. 5×10-2m 4. 4×10-2m ,2π 5. 依题画出旋转矢量图,由图可知两谐振动的相位差为π/2. 6. 解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x 则 )cos(2122122212φφ-++=A A A A A ① 以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm又 22112211cos cos sin sin arctg φφφφφA A A A ++= ②≈127°≈2.22 rad ∴)22.22cos(05.0+π=t x (SI)练习五(波)1.(C )2.(B )3. 2π/54. 0.06sin(πt/2-5π/4)5. (1) 由P 点的运动方向,则可判定该波向左传播.对原点O 处质点,t=0时,有⎪⎩⎪⎨⎧<-==0sin A V cos A 2/A 20ϕωϕ∴4πϕ= ∴O 处振动方程为:y 0=Acos (500πt+π/4)波动方程为:y=Acos[2π(250t+x/200)+π/4] (SI ) (2)距O 点100m 处质点振动方程是: y 1=Acos (500πt+5π/4) (SI )振动速度为 V=-500πAsin (500πt+5π/4) (SI ) 6.练习六(波)1. (C)2. (A)3. (D)4. a/b5. 解:(1) O 处质点,t = 0 时 0cos 0==φA y , 0sin 0>-=φωA v 所以 π-=21φ 又 ==u T /λ (0.40/ 0.08) s= 5 s 故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) (2) P 处质点的振动方程为 ]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 6. 解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz ,T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ ∴ )2121cos(5.0π+π=t y (SI)练习七(波)1. (B )2. (B )3. R 22/R 21 4. 1.27×10-2Wm -2, 3.18×10-3Wm -25.(1) P=ω/t=2.7×10-3J ·S -1(2) I = P/S = 9.00×10-2Js -1m -2(3)341065.2/--⨯==Jm u I ω6. 已知 A=0.1m , T=1S , λ=8m 波沿x 轴负向传播,则波函数y=0.1cos[2π(t+x/λ)+ϕ]在x=λ/2处有 )t 2cos(1.0y 0ϕππ++=而4/0πϕπ=+ 4/30πϕ-=∴x (m)y (m)0u 0.512t = 0-1∴ 波函数为y=0.1cos[2π(t+x/8)-3π/4]于是有 (1)x=λ/4处的振动方程为 y=0.1cos (2πt-π/4)(2)x=-λ/4处的振动方程为 y=0.1cos (2πt-5π/4)其振动速度为 )45t 2sin(2.0dt dy πππ--= 且 12/T t ms 444.0)45sin(2.0dt dy -==--=πππ练习八(波)1.(D )2. 03. 0.5m4. 4. 相同,相同,2π/35. 解:=-π--=∆)(21212r r λφφφ422412/r r π-=π+π-πλλ464.0)cos 2(2/1212221=++=∆φA A A A A m 6. (1) )/x 2t cos(A y λππω-+= (2) )/x 2/L 4t cos(A y λπλπω+-'='练习九(波)1. (B )2. (B)3. Acos2π(t/T-x/λ),A4. 1×102,0.15.(1)L=3×λ/2, λυ= u ∴L=3u/2υ=(3/2)×(320/400)=1.2m (2)弦的中点是波腹,故 y=3×10-3cos (2πx/0.8)cos (800πt+ϕ) 式中ϕ可由初始条件来选择.6.(1)由图知B 点的初相为ϕ=π,波向x 轴正向 传播,则波动方程为y=cos[2πυ(t-x/u )+π](2)若以反射点为D 为原点,并以此时刻为t=0,由条件X o =0,υ0﹥0, 得ϕ=-π/2则入射波波函数为y 1=Acos[2πυ(t-x/μ)-π/2]因反射点为节点,有半波损失,故反射波的波函数为y 2=Acos[2πυ(t+x/μ)+π/2](3)合成波的波函数为:y= y 1+y 2=2Asin(2πx/λ)cos2πυt 波腹位置:当,2)1K 2(x2,1x2sinπλπλπ+== 4)1k 2(x λ+= (k=0,1,2,····)因原点在反射点,x ﹤0, ∴波腹坐标为x=-λ/4,-3λ/4,-5λ/4,…… 波节位置:当sin(2πx/λ)=0,,2kx ,K x2λπλπ==(k=0,1,2,····)∴波节坐标为 x=0,-λ/2,-λ,-3λ/2,……练习十(波)1. (A)2. ωλSw/2π3. 5π4. 由0Su uννυ-=知驶向观察者时有 440=3300ν/(330-s ν) (1)离开观察者时有 392=3300ν/(330+s ν) (2)两式解得392(330+s ν)=440(330-s ν)。