M法T法测速单片机程序设计
- 格式:doc
- 大小:336.15 KB
- 文档页数:25
霍尔传感器测量电机转速一、背景随着单片机的不断推陈出新,特别是高性价比的单片机的涌现,转速测量控制普遍采用了以单片机为核心的数字化、智能化的系统。
本文介绍了一种由单片机C8051F060作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。
二、工作原理1、转速测量原理转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。
由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。
根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。
脉冲信号的周期与电机的转速有以下关系:式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期根据式(1)即可计算出直流电机的转速。
霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的2个侧面之间产生霍尔电势。
其大小和外磁场及电流大小成比例。
霍尔开关传感器由于其体积小、无触点、动态特性好、使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用。
在这里选用美国史普拉格公司(SPRAGUE)生产的3000系列霍尔开关传感器3013,它是一种硅单片集成电路,器件的内部含有稳压电路、霍尔电势发生器、放大器、史密特触发器和集电极开路输出电路,具有工作电压范围宽、可靠性高、外电路简单<输出电平可与各种数字电路兼容等特点。
2、转速控制原理直流电机的转速与施加于电机两端的电压大小有关,可以采用C8051F060片内的D/A转换器DAC0的输出控制直流电机的电压从而控制电机的转速。
在这里采用简单的比例调节器算法(简单的加一、减一法)。
MT法测速摘要在控制领域中,经常需要进行各种角度、位移量的测量。
当前,世界上正面临着一场新的技术革命,这场革命的重要基础之一就是测量技术。
测量技术的发展给人类社会和国民经济的各个部门及各个领域带来了巨大的、广泛的、深刻的变化,带动着传统工业和其他新兴产业的更新和变革,是当今人类社会发展的强大动力。
本设计为码盘转速测量系统,用来测量来自外部的不同的转速值。
实现转速的实时测量,显示。
具体应用AT89C51单片机为核心,旋转编码器实时轴转速测量,同时用LCD显示模块显示。
本文从转速测量原理入手,详细阐述了转速测量系统的工作过程,以及硬件电路的设计、显示效果。
本文吸收了硬件软件化的思想,实现了题目要求的功能。
关键词:转速测量,旋转编码器,单片机,LCD显示模块AbstractIn the control field, a variety of angles and displacement measurements often need to be carried out. At present, the world is facing a new technological revolution; one of the most important bases of the revolution is measurement. The development of measurement technology brings extensive,tremendous and profound changes to human society and all sectors of the national economy, changes the traditional industries and other emerging industries, becomes today's strongest driving force for development of human society .The encoder speed measurement system is designed to measure a different speed from the outside values,to achieve real-time speed measurement and display. Specific application use AT80C51 microcontroller as its core, rotary encoder measures real-time shaft speed, in both 8 serial Segment type LCD display module display. In this paper, detailed working process of speed measurement system is started with principle of speed measurement, and hardware circuit design and display. This paper has absorbed the idea of hardware and software to achieve with the subject required functionality.Key words: rotational speed measurement, rotary encoder,前言在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。
通常的测速方法包括M 法,T 法以及M/T 三种方法。
M 法的原则是记下固定时间T 内的脉冲数,所以这种方法比较适宜于高速区;T 法的原则是记下每个编码器脉冲之间的周期T ,所以这种方法比较适宜于低速区;而M/T 法结合了这两种方法的优点,因此测速范围和精度都得到了很好的保证。
Fig.1 M/T 测速上图阐述了M/T 测速的基本方法。
T0由一个定时器决定,而速度采样周期T 由T0之后的第一个脉冲决定,也就是说,T=T0+ΔT 。
m1代表时间T 内记下的编码器脉冲数,m2代表与时间T 对应的计数器脉冲数。
可以得到以下关系:60n f mech = (1) 这里,n: rpm, f mech : Hz.如果时间T (单位:秒)内电机转了x 圈,则T f x mech ⋅= (2)如果时间T 内记下的编码器脉冲数为m1,则Np m x 41= (3)如果与时间T 对应的计数器脉冲数为m2,则C L K f m T 2= (4)这里Np 为编码器线数, f CLK 为检测时间T 的计数器时钟频率,因此214m m Np f T x f CLK mech ⋅== (5) 如果定义Np f K CLK MT 4= (6) 则21m m K f MT mech ⋅= (7)Fig.2 编码器信号和计数操作Fig.3 测速的硬件结构图通过MTU 实现M/T 测速的过程中需要用到通道0和1,其硬件结构图如图3 所示。
通道1中的TCNT_1是一个上/下计数器,它的时钟源是从编码器过来的PGA 和PGB 信号,其相位相差90度,通过脉冲沿检测电路TCNT_1可以记下PGA 和PGB 信号的脉冲沿数,图2给出了TCNT_1和编码器信号之间的关系,因为同时检测PGA 和PGB 信号的上升沿和下降沿,所以TCNT_1频率是PGA 和PGB 信号频率的4倍。
通道0中的TCNT_0是一个向上计数器,TGRB_0是TCNT_0的捕获计数器,它被用来记录速度采样周期T 。
C51 单片机在电机转速测量仿真系统中的设计单片机电机转速测量系统仿真系统采用单片机中T1 计数器对转速脉冲进行计数。
定时器T1 工作于外部事件计数方式,对转速脉冲计数; T0 工作于定时器方式。
每到1 s 读1 次计数值,此值即为脉冲信号的频率,根据式(1)可计算出电机的转速。
转速检测装置的软件系统主要包括:测速主程序、数据处理子程序和显示子程序。
单片机上电后,系统进入准备状态。
首先进行初始化,然后读取脉冲数据进行运算,将转速显示在LCD 上。
需要这款仿真及C 语言程序的爱好者可从文章配图左上角网址上了解。
该单片机电机转速测量系统仿真仿真采用测频法“M法”测量电机转速。
即在一定测量时间T 内,测量脉冲发生器(替代输入脉冲)产生的脉冲数m1 来测量转速,计算式如下:n=60m/TP,式中:P-为转轴转一周脉冲发生器产生的脉冲数;n-转速单位:(转/分);T-定时时间单位:(秒)。
在该方法中,测量精度是由于定时时间T 和脉冲不能保证严格同步,以及在T 内能否正好测量外部脉冲的完整的周期,可能产生的1 个脉冲的量化误差。
因此,为了提高测量精度,T 要有足够长的时间。
定时时间可根据测量对象情况预先设置。
设置的时间过长,可以提高精度,但在转速较快的情况下,所计的脉冲数增大(码盘孔数已定情况下),限制了转速测量的量程。
而设置的时间过短,测量精度会受到一定的影响。
转速部分软件设计思路:AT89S52 单片机的P3.5 口接收传感器的信号。
电路由显示电路、AT89S52 单片机,单片机时钟电路,复位电路,等组成。
中断服务程序INT0,软件需要解决的是定时器T0 的记数和外部计数器T1 的协调工作。
由于测量的转速范围大,所以低速和高速都要考虑在内,软件工作流程:传感器检测出电机转动一转的脉冲数,由单片机的P3.5 端口送入单片机,由单片机的内部计数器T1 计数,启动计数时,发送一个信号TR0=1,内部定时器T0 开始时,TH0、TL0 设定初值为0。
m法测速和t法测速的原理引言:测速是指通过各种手段和设备来测量物体的速度。
在科学研究、工程技术和日常生活中,测速是一项非常重要的任务。
本文将介绍两种常见的测速方法:m法测速和t法测速。
一、m法测速的原理m法测速是一种基于位移和时间差的测速方法。
它的原理是通过测量物体的位移和运动时间来计算物体的平均速度。
具体步骤如下:1. 首先需要选择一个参考点,作为测速的起点。
2. 当物体经过参考点时,开始计时。
3. 当物体到达终点时,停止计时。
4. 根据物体的位移和运动时间,计算出物体的平均速度。
m法测速的关键在于准确测量物体的位移和运动时间。
为了提高测量的准确性,可以使用一些辅助设备,如光电门、雷达测速仪等。
这些设备可以自动记录物体经过的时间和位置,从而避免人为误差。
二、t法测速的原理t法测速是一种基于时间和加速度的测速方法。
它的原理是通过测量物体的加速度和运动时间来计算物体的速度。
具体步骤如下:1. 首先需要测量物体的加速度。
可以通过实验或使用传感器等设备来获取物体的加速度数据。
2. 在物体运动过程中,记录物体的加速度和时间。
3. 根据物体的加速度和运动时间,计算出物体的速度。
t法测速的关键在于准确测量物体的加速度和运动时间。
为了提高测量的准确性,可以使用高精度的传感器和计时设备。
同时,还需要注意物体的运动过程中是否存在加速度变化的情况,以及是否需要考虑其他因素对测量结果的影响。
比较与结论:m法测速和t法测速都是常见的测速方法,各有优劣。
m法测速适用于物体运动速度较低且稳定的情况,如测量行人的速度。
它的优点是简单易操作,不需要复杂的设备和技术。
然而,m法测速的准确性受限于位移和时间测量的误差,对于高速运动的物体可能不够精确。
t法测速适用于物体运动速度较高或加速度变化较大的情况,如测量车辆的速度。
它的优点是可以考虑加速度对速度的影响,更加准确。
然而,t法测速需要测量物体的加速度,这可能需要使用更复杂的设备和技术,并且对测量时间的要求较高。
用P89C51 RC+IA和EMP7064S实现转速测量
陈敬泉;尔联洁;邹云飞;扈红杰
【期刊名称】《电子技术应用》
【年(卷),期】2001(027)010
【摘要】介绍一种应用M/T法测速原理,采用单片机P89C51RC+IA和
EMP7064S实现转速测量的硬件电路实现方法,并给出了码盘脉冲预处理电路的可编程器件(EMP7064S)的实现.
【总页数】3页(P20-22)
【作者】陈敬泉;尔联洁;邹云飞;扈红杰
【作者单位】北京航空航天大学305;北京航空航天大学305;北京航空航天大学305;北京航空航天大学305
【正文语种】中文
【中图分类】TP3
【相关文献】
1.工程车辆牵引力及发动机转速实时测量系统设计与实现 [J], 张展;贾恒信
2.利用386微机实现宽转速范围高精度转速测量 [J], 贾策;杨萌
3.一种基于PLC的恒力矩变转速在线测量实现方法 [J], 张洁;马凤铭;张毅宁
4.主从同步定时模式的转速变M/T法测量设计与实现 [J], 许景波;殷宪宇;崔晓萌;刘智良;李兆;李军;陈好书
5.基于LabVIEW的离心机转速测量系统设计与实现 [J], 崔磊;崔江
因版权原因,仅展示原文概要,查看原文内容请购买。
运动控制系统课程设计学号:姓名:日期:2016/6/30M法、T法、M/T法测速单片机程序设计摘要数字测速具有测速精度高、分辨能力强、受器件影响小等优点,被广泛应用于调速高,调速范围大的调速系统和伺服系统。
本设计的数字转速测量是以单片机AT89C52为控制芯片,利用单片机三个定时器的特点,可以使用按键输入来调等参数以及测速方法的选择,以此来增强本设计的适整M法、T法测速法中Z、TC应性,运用转速测量M法、T法、M/T法,通过对光电编码盘输出的脉冲信号测量,获得电动机转速测量,有精度高,范围宽等特点。
测量结果将会显示在LCD1602液晶显示屏上。
关键词:数字测速,单片机,LCD1602,转速,测速法目录第1章绪论 (5)1.1 数字测速方法的原理与应用 (5)1.1.1 M法测速 (5)1.1.2 T法测速 (6)1.1.3 M/T法测速 (6)第2章系统总体设计 (8)第3章硬件设计 (9)3.1 硬件选型 (9)3.1.1 CPU主控模块的选型 (9)3.1.2显示器的选型 (10)3.2 硬件电路设计 (10)3.2.1时钟电路的设计 (10)3.2.2显示电路 (10)3.2.3速度检测电路 (11)3.2.4按键输入电路 (11)3.2.5复位电路 (12)第4章软件设计 (13)4.1 系统流程 (13)4.1.1 主程序流程设计 (13)4.1.2 M法测速程序设计 (14)4.1.3 T法测速程序设计 (15)4.1.4 M/T法测速程序设计 (15)第5章仿真结果 (17)5.1 测速功能仿真测试 (17)5.1.1 建立仿真文件 (17)5.1.2 测速功能测试 (18)5.2 仿真结果分析 (19)结论 (20)参考文献 (21)附录 (22)第1章 绪论1.1 数字测速方法的原理与应用1.1.1 M 法测速在一定时间T C 内测取旋转编码器输出的脉冲个数M 1用以计算这段时间内的转速,称作M 法测速。
m t法测速课程设计一、课程目标知识目标:1. 学生能理解m t法测速的基本原理,掌握相关物理概念,如平均速度、瞬时速度和时间间隔。
2. 学生能运用m t法进行物体运动速度的测量,并准确计算出速度值。
3. 学生了解m t法在现实生活中的应用,理解其在科学研究和工程技术中的重要性。
技能目标:1. 学生掌握使用m t法测速的实验操作步骤,具备独立完成实验的能力。
2. 学生能够运用数学知识对实验数据进行处理和分析,提高解决问题的能力。
3. 学生能够通过团队合作,共同完成实验任务,培养沟通与协作能力。
情感态度价值观目标:1. 学生对物理学科产生浓厚兴趣,增强学习物理的自信心。
2. 学生认识到科学技术在生活中的应用,培养创新意识和科学精神。
3. 学生通过实验探究,培养严谨、实事求是的态度,提高批判性思维能力。
本课程针对初中物理学科,结合学生年级特点,注重理论与实践相结合,提高学生的动手操作能力和科学素养。
课程目标具体、可衡量,有助于学生和教师在教学过程中明确预期成果,为后续的教学设计和评估提供依据。
二、教学内容本章节教学内容依据课程目标,结合教材内容进行选择和组织,主要包括以下部分:1. m t法测速基本原理:介绍平均速度、瞬时速度和时间间隔的概念,阐述m t法测速的物理原理。
2. 实验器材与操作:讲解实验所需器材及其使用方法,指导学生进行m t法测速实验操作,包括测量物体运动距离和时间。
3. 数据处理与分析:教授如何将实验数据整理成表格,运用数学知识进行数据处理,计算物体运动速度。
4. m t法在实际应用:介绍m t法在科学研究、工程技术等领域的应用,激发学生学习兴趣。
5. 教学案例解析:分析教材中的典型例题,引导学生运用所学知识解决实际问题。
教学内容安排与进度:第一课时:m t法测速基本原理及实验器材介绍第二课时:m t法测速实验操作及数据处理第三课时:m t法在实际应用及教学案例解析本章节教学内容具有科学性和系统性,旨在帮助学生扎实掌握m t法测速的相关知识,培养实验操作能力和数据分析能力。
自行车智能测速设计姓名:吴长华指导教师:程秀玲系别:电子电气工程系专业:应用电子技术长沙航空职业技术学院2012年4月摘要随着科技的迅速发展,单片机的应用也越来越广泛,并带动传统控制检测技术不断更新。
现在的车速表大多是电子式的,用LED数码管或LCD即时显示,显示更加直观。
电子式车速表采用接触车速传感器代替软轴传动,可使车速表的安装位置不受距离限制,进一步有效地克服了机械式车速表中的诸多不足。
本次设计给出了以AT89S52为核心,利用单片机的运算和控制功能,并采用系统化LCD显示模块实时显示所测速度的设计方案以及系统软件。
该方案由于使用了LCD显示模块,以及高效快速算法,因而可在节约系统资源和简化程序设计的基础上保证测量精度和系统实时性。
速度显示部分采用LCD显示, 因而节省了所需单片机的口线和外围器件, 同时也简化了显示部分的软件编程。
案实现了电动车速度即时显示。
关键词:单片机;霍尔传感器;LCD显示AbstractAlong with the quick development of science and technology, the application of SCM and more extensive, drive traditional control test technology constantly updated. Now the speed table is mostly electronic, use LED digital tube or LCD instantly shows, show more intuitive. Electronic speed table by using the contact speed sensor instead of soft shaft transmission speed table, can make the installation position of not affected by distance limit, further effectively overcome the speed to the table of mechanical some shortcomings.This design is given based on AT89S52 as the core, of the microcontroller calculation and control function, and by using the systematic LCD display module real-time display measured the speed of design program and system software.The scheme by using LCD display module, and quick and efficient algorithm, thus in saving system resources and simplify programming based on guarantee measuring precision and real-time system. Speed shows part adopts LCD display, thereby saving the required microcontroller mouth lines and peripheral equipments, simultaneously also simplifies shows part of the software programming. Case realized the electric car speed instantly shows.Keywords: SCM, Hall sensors; LCD display目录第一章绪论 (5)1.1 选题背景 (5)1.2 研究意义 (5)1.3 研究内容 (6)第二章总体方案设计 (7)第三章系统单元模块概述 (8)3.1 传感器选择 (8)3.2 单片机选型 (10)3.3 显示模块选型 (12)3.4 速度算法概述 (13)第四章系统硬件设计 (18)4.1 单片机的功能及其引脚 (18)4.2 液晶显示电路的原理与设计 (24)4.3 霍尔传感器电路设计 (24)4.4 数据处理过程 (29)第五章系统仿真分析 (32)第六章系统软件设计 (33)第七章总结与展望 (34)致谢 (35)参考文献 (36)附录1 (37)附录2 (38)第一章绪论1.1 选题背景在全球倡导绿色环保的大趋势下,我国加大了对车辆排放和噪声的管理,由于电动自行车具有无污染、低噪声和轻便快捷等优点,是一种绿色环保的交通工具。
编码器的测速原理:M/T法大家都比较清楚在闭环伺服系统中,编码器的反馈脉冲个数和系统所走位置的多少成正比,但对于怎样通过编码器所反馈的脉冲个数来求得电机的旋转速度了解的人就不是很多了。
根据脉冲计数来测量转速的方法有以下三种:(1)在规定时间内测量所产生的脉冲个数来获得被测速度,称为M法测速;(2)测量相邻两个脉冲的时间来测量速度,称为T法测速;(3)同时测量检测时间和在此时间内脉冲发生器发出的脉冲个数来测量速度,称为M/T法测速。
以上三中测速方法中,M法适合于测量较高的速度,能获得较高分辨率;T 法适合于测量较低的速度,这时能获得较高的分辨率;而M/T法则无论高速低速都适合测量。
以下只对T法测速进行详细介绍。
T法测速的原理是用一已知频率fc(此频率一般都比较高)的时钟脉冲向一计数器发送脉冲,计数器的起停由码盘反馈的相邻两个脉冲来控制,原理图见图1。
若计数器读数为m1,则电机每分钟转速为nM=60fc/Pm1(r/min)图1 T法测速原理其中P为码盘一圈发出的脉冲个数即码盘线数,m1为相邻两个脉冲间高频脉冲个数。
测速分辨率:当对应转速由n1变为n2时则分辨率Q的定义为Q=n2-n1,Q值越小说明测量装置对转速变化越敏感即分辨率越高。
因此可以得到T法测速的分辨率为Q=60fc/Pm1-60fc/P(m1+1)= n2M P/(60fc+ nMP)由上式可见随着转速nM的降低,Q值越小,即T法测速在低速时有较高的分辨率。
MT法测速之定量分析速度测量是工控系统中最基本的需求之一,最常用的是用数字脉冲测量某根轴的转速,再根据机械比、直径换算成线速度。
脉冲测速最典型的方法有测频率(M法)和测周期(T法)。
定性分析:M法是测量单位时间内的脉数换算成频率,因存在测量时间内首尾的半个脉冲问题,可能会有2个脉的误差。
速度较低时,因测量时间内的脉冲数变少,误差所占的比例会变大,所以M法宜测量高速。
如要降低测量的速度下限,可以提高编码器线数或加大测量的单位时间,使用一次采集的脉冲数尽可能多。
采用DSP实现M/T法测速。
利用DSP的捕获功能,确保测速的计时和码盘脉冲计数的同步。
时间测量的绝对误差小于0.2μs,并且与测速周期无关。
同时提出一种经济、实用的抗测速干扰方法。
理论推导和实验结果表明,该方案准确、可靠,适用的测速范围大。
1引言转速闭环控制系统中,电机转速作为反馈量构成闭环控制,转速测量的精度对控制系统性能的影响是不言而喻的。
光电码盘是目前广泛采用的测速手段。
它具有精度高、线性度好的优点。
采用光电码盘测速时,常用的测速方法有M法、T法和M/T法。
其中M/T法兼顾高低转速,是综合性能最佳的一种。
2M/T法测速原理和误差分析2.1M/T法测速的原理M/T法测速综合了M法与T法的长处,既记录测速时间内码盘输出的脉冲数M1,又检测同一时间间隔内高频时钟脉冲数M2。
设高频时钟脉冲的频率为f0,则测速时间。
习惯上转速常以每分钟转数来表示,则电机的转速可表示为:(1)式中,Z为电机每转一圈所产生的脉冲数(Z=倍频系数×码盘光栅数),如图1所示图1M/T法测速示意图2.2误差分析常规的M/T法测速中,测速时间是程序设定的计数时间TC,而脉冲数为TC时间内码盘输出脉冲个数。
由图1可看出,TC开始时刻与码盘输出脉冲上升沿并非一定同步到达。
同样,TC结束时刻也很难刚好与码盘的输出脉冲上升沿同步。
这两个时间差都与转速的大小有关,而与高频计数时钟的频率无关。
由此引起的计数和计时的时间偏差可能比高频时钟周期大得多,从而降低测速的精度。
由M/T法测速的误差根源可知:确保高频时钟脉冲计数器与码盘输出脉冲计数器同时开启与关闭是提高测速精度的关键所在。
3利用DSP实现高精度转速测量3.1TMS320F240系列控制器的特点作为电机数字控制的专用芯片,TMS320F240运算速度快,单指令周期为50ns。
其功能强大的事件管理器(Event Manager)为实时控制系统提供了良好的软、硬件基础。
该事件管理器中包括特殊的PWM产生功能,包括可编程的死区时间设定和空间矢量状态。
摘要在控制领域中,经常需要进行各种角度、位移量的测量。
当前,世界上正面临着一场新的技术革命,这场革命的重要基础之一就是测量技术。
测量技术的发展给人类社会和国民经济的各个部门及各个领域带来了巨大的、广泛的、深刻的变化,带动着传统工业和其他新兴产业的更新和变革,是当今人类社会发展的强大动力。
本设计为码盘转速测量系统,用来测量来自外部的不同的转速值。
实现转速的实时测量,显示。
具体应用AT89C51单片机为核心,旋转编码器实时轴转速测量,同时用LCD显示模块显示。
本文从转速测量原理入手,详细阐述了转速测量系统的工作过程,以及硬件电路的设计、显示效果。
本文吸收了硬件软件化的思想,实现了题目要求的功能。
关键词:转速测量,旋转编码器,单片机,LCD显示模块AbstractIn the control field, a variety of angles and displacement measurements often need to be carried out. At present, the world is facing a new technological revolution; one of the most important bases of the revolution is measurement. The development of measurement technology brings extensive,tremendous and profound changes to human society and all sectors of the national economy, changes the traditional industries and other emerging industries, becomes today's strongest driving force for development of human society .The encoder speed measurement system is designed to measure a different speed from the outside values,to achieve real-time speed measurement and display. Specific application use AT80C51 microcontroller as its core, rotary encoder measures real-time shaft speed, in both 8 serial Segment type LCD display module display. In this paper, detailed working process of speed measurement system is started with principle of speed measurement, and hardware circuit design and display. This paper has absorbed the idea of hardware and software to achieve with the subject required functionality.Key words:rotational speed measurement, rotary encoder, microcontroller, LCD display module目录前言 (1)第1章总体设计 (2)1.1转速测量系统的方法 (2)1.1.1 测频法“M法” (2)1.1.2 测周期法“T法” (3)1.1.3 测频测周法“M/T法” (4)1.1.4 转速测量系统中应用的方法 (5)1.2转速测量系统的总体框图 (5)第2章硬件设计 (6)2.1 旋转编码器 (6)2.1.1 增量式编码器 (6)2.1.2 绝对值编码器 (6)2.2 最小系统的设计 (7)2.2.1复位电路 (7)2.2.2 晶振电路 (7)2.3 1602简介 (8)2.3.1 1602的控制原理 (8)2.3.2 1602的基本的读写时序图 (9)第3章软件设计 (11)3.1 主程序初始化 (11)3.2序流程 (11)3.3中断程序流程图 (13)第4章结果仿真 (14)结论 (15)辞谢 (16)主要参考文献 (17)附录 (18)前言在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。
M法、T法测速单片机程序设计摘要本设计为M法、T法测速的单片机程序设计。
使用STC89C52单片机作为控制器,使用该单片机的外部中断和定时器对编码器的输出的脉冲进行采样来计算出电机的转速。
可以使用按键输入来调整M法、T法测速法中Z、Tc和Tt等参数以及测速方法的选择,以此来增强本设计的适应性。
参数选择结果和电机转速计算结果均显示在LCD1602上。
关键字:STC89C52,M法、T法测速,LCD1602,电机转速ⅠAbstractThis design as m, t-law velocity measurement of single-chip computer programming. Using STC89C52 single-chip computer as the controller, using the microcontroller's external interrupts and timers for encoder output pulse is sampled to calculate the speed of the motor. Can be adjusted using touchtone m, t law Velocimetry parameters such as z, Tt and Tc, as well as in speed measurement method of choice, as a way to enhance the adaptability of this design. Parameter selection and calculation of motor speed results are available on LCD1602.Keywords:STC89C52,M、T method, the LCD1602, Motor speedⅡ目录第1章绪论 (1)1.1 旋转编码器 (1)1.2 数字测速的精度指标 (2)1.2.1 分辨率 (2)1.2.2 测速误差率 (2)1.3 M法测速 (2)1.4 T法测速 (3)第2章硬件系统设计 (5)2.1 STC89C52介绍 (5)2.2硬件电路 (6)2.3.1时钟电路 (6)2.3.2 显示电路 (7)2.3.3 速度检测电路 (7)2.3.4 按键输入电路 (8)第3章系统软件设计 (9)3.1 主程序设计 (9)3.1 M法测速程序设计 (10)3.2 T法测速程序设计 (11)总结 (12)参考文献 (13)附录A 系统原理图 (14)附录B 主要C语言源程序 (15)Ⅲ第1章绪论1.1旋转编码器旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。
它分为绝对式和增量式两种。
技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。
单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组A/B相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。
1、增量式编码器增量式编码器轴旋转时,有相应的相位输出。
其旋转方向的判别和脉冲数量的增减,需借助后部的判向电路和计数器来实现。
其计数起点可任意设定,并可实现多圈的无限累加和测量。
还可以把每转发出一个脉冲的Z信号,作为参考机械零位。
当脉冲已固定,而需要提高分辨率时,可利用带90度相位差A,B的两路信号,对原脉冲数进行倍频。
增量式旋转编码器示意图如图1-1所示。
图1-1 增量式旋转编码器示意图第 1 页第 2 页2、绝对值编码器绝对值编码器轴旋转器时,有与位置一一对应的代码(二进制,BCD 码等)输出,从代码大小的变更即可判别正反方向和位移所处的位置,而无需判向电路。
它有一个绝对零位代码,当停电或关机后再开机重新测量时,仍可准确地读出停电或关机位置地代码,并准确地找到零位代码。
一般情况下绝对值编码器的测量范围为0~360度,但特殊型号也可实现多圈测量。
1.2 数字测速的精度指标1.2.1 分辨率分辨率定义:改变一个计数值所对应的转速变化量,用符号Q 表示。
当被测转速由n1变为n2时,引起记数值增量为1,则该测速方法的分辨率是分辨率Q 越小,说明测速装置对转速变化的检测越敏感,从而测速的精度也越高。
1.2.2 测速误差率测速误差率:转速实际值和测量值之差与实际值之比, 记作测速误差率反映了测速方法的准确性,δ越小,准确度越高。
测速误差率的大小决定于测速元件的制造精度,并与测速方法有关。
1.3 M 法测速M 法是测量单位时间内的脉数换算成频率,因存在测量时间内首尾的半个脉冲问题,可能会有2个脉的误差。
速度较低时,因测量时间内的脉冲数变少,误差所12n n Q -=100%n nδ∆=⨯第 3 页占的比例会变大,所以M 法宜测量高速。
如要降低测量的速度下限,可以提高编码器线数或加大测量的单位时间,使用一次采集的脉冲数尽可能多。
计算公式为:c 160ZT M n =时钟Z = 倍频系数 x 编码器光栅数。
M 法测速的分辨率:c c 1c 16060)1(60ZT ZT M ZT M Q =-+=M 法测速误差率:%1001%10060 )1(60 601c 1c 1c 1max⨯=⨯-=M ZT M ZT M ZT M δ 在上式中,Z 和 Tc 均为常值,因此转速 n 正比于脉冲个数。
高速时M1大,量化误差较小,随着转速的降低误差增大。
所以,M 法测速只适用于高速段。
1.4 T 法测速T 法是测量两个脉冲之间的时间换算成周期,从而得到频率。
因存在半个时间单位的问题,可能会有1个时间单位的误差。
速度较高时,测得的周期较小,误差所占的比例变大,所以T 法宜测量低速。
如要增加速度测量的上限,可以减小编码器的脉冲数,或使用更小更精确的计时单位,使一次测量的时间值尽可能大。
计算公式为:2060ZM f n =第 4 页T 法测速的分辨率)1(6060)1(602202020-=--=M ZM f ZM f M Z f Q T法测速误差率%10011%10060 60 )1(602202020max⨯-=⨯-=M ZM f ZM f M Z f δ 低速时,编码器相邻脉冲间隔时间长,测得的高频时钟脉冲个数M2多,所以误差率小,测速精度高,故T 法测速适用于低速段。
第2章硬件系统设计2.1 STC89C52介绍STC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
具有以下标准功能: 8k字节Flash,512字节RAM, 32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,2个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口。
另外 STC89X52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
最高运作频率35MHz,6T/12T可选。
单片机是指一个集成在一块芯片上的完整计算机系统。
尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。
同时集成诸如通讯接口、定时器,实时时钟等外围设备。
而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。
单片机也被称为微控制器(Microcontroler),是因为它最早被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对提及要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出第 5 页的处理器,从此以后,单片机和专用处理器的发展便分道扬镳图2-2 单片机原理图2.2硬件电路2.3.1时钟电路STC89C52内部有一个用于构成振荡器的高增益反相放大器,引脚RXD和TXD 分别是此放大器的输入端和输出端。
时钟可以由内部方式产生或外部方式产生。
内部方式的时钟电路如图4—2(a) 所示,在RXD和TXD引脚上外接定时元件,内部振荡器就产生自激振荡。
定时元件通常采用石英晶体和电容组成的并联谐振回路。
晶体振荡频率可以在1.2~12MHz之间选择,电容值在5~30pF之间选择,电容值的大小可对频率起微调的作用。
其电路图2-3如下所示:第 6 页图2-3 STC89C52的时钟电路2.3.2 显示电路本设计的显示部分使用的是液晶显示器LCD1602,该显示器只能显示英文字母和数字,所以参数的说明尤其英语意思或是符号代替。
屏幕上会显示参数、模式以及计算后的速度。
图2-4 显示电路原理图2.3.3 速度检测电路光电编码器是开漏输出,所以在和单片机连接时需要加上拉电阻。
编码器输出端连接到51单片机外部中断0引脚上所以就可以在每次接收到脉冲时就能触发外部中断。
第 7 页图2-5 测速电路原理图2.3.4 按键输入电路按键输入负责调整测速模式和改变参数的值,一个按键是确认按键,一个是加按键,另一个是减按键,即可完成模式选择和参数调整。
其电路图如图2-6所示。
图2-6 按键输入电路第 8 页第3章系统软件设计3.1 主程序设计本设计程序运行时,通过按键输入首先来选择测速方法,然后设定测速法中T 和Z等参数。
如果选择M法测速则外部中断0和定时器0同时打开,当计时时间Tc到时,读取外部中断中对脉冲个数M1,最终计算出转速并显示。
如果选择的是T法测速则只开外部中断0关闭定时器0,当外部中断检测到第一脉冲时打开定时器0开始计数。
检测到第二个脉冲是关闭定时器计算转速。
图3-1为主程序流程图。
图3-1 主程序流程图第 9 页3.1 M法测速程序设计选择M法测速模式后,打开外部中断0,同时开启定时器0开始一定时间的定时,外部中断开始计数脉冲个数。
当定时间到的时候关闭外部中断和定时器,读取外部中断计数的个数并计算速度。
M法测速程序流程如图 3-2所示。
图3-2 M法测速程序流程图第 10 页3.2 T法测速程序设计程序初始化完成后选择T法测速模式,只打开外部中断0,当外部中断检测到脉冲的第一个跳变时打开定时器0的中断开始计时。