电激励重复频率非链式HF激光器
- 格式:docx
- 大小:44.65 KB
- 文档页数:10
一、概述随着激光技术的不断发展,高频(HF)激光器作为一种新型的激光器得到了广泛的关注和研究。
HF激光器具有脉冲能量大、脉冲宽度短、中心波长短和调制性能好等优点,被广泛应用于激光雷达、激光通信和激光测距等领域。
然而,HF激光器在发展过程中还存在着一些问题,其中一个主要问题就是预电离的设计。
二、HF激光器预电离设计的重要性1. HF激光器预电离设计的作用HF激光器预电离设计是为了提高激光放电的效率和稳定性,预电离可以在激光放电过程中提供充分的电子数目,使激光气体在激光脉冲过程中得到更好的放电条件,从而提高激光器的脉冲能量和脉冲宽度。
2. 影响预电离设计的因素HF激光器预电离设计受到多种因素的影响,例如激光气体成分、激光气体压力、激光脉冲参数等都会影响预电离的效果。
三、HF激光器预电离设计的方法1. 传统的HF激光器预电离设计方法传统的HF激光器预电离设计方法主要是通过选择合适的气体组成和气体压力来实现预电离效果,这种方法简单直接,但受到激光气体的物理和化学性质的限制。
2. 基于数值模拟的HF激光器预电离设计方法基于数值模拟的HF激光器预电离设计方法是通过建立激光放电的数学模型,利用计算机模拟和分析不同预电离条件下的激光放电过程,从而优化预电离设计。
这种方法可以充分考虑激光气体的物理和化学性质,并且可以得到更精确的预电离效果。
四、HF激光器预电离设计的数值模拟1. 建立数学模型建立HF激光器预电离的数学模型是进行数值模拟的第一步,需要考虑激光气体的物理和化学性质以及激光脉冲参数等因素,建立合理的数学方程。
2. 模拟和分析利用计算机对HF激光器预电离过程进行模拟和分析,通过改变激光气体成分、压力和激光脉冲参数等因素,得到不同预电离条件下的激光放电状态,从而分析影响激光放电的关键因素。
3. 优化设计根据模拟和分析的结果,对HF激光器的预电离设计进行优化,选择最合适的预电离条件,从而提高激光器的脉冲能量和脉冲宽度。
电激励中红外氟化氢激光器应用需求
红外氟化氢激光器具有较高的输出功率和较窄的光谱线宽,在许多领域有着广泛的应用需求。
以下是一些常见的应用需求:
1. 遥感与环境监测:红外氟化氢激光器可以用于大气污染检测、空气质量监测以及气象探测等领域。
其较窄的光谱线宽和高输出功率使其在探测和测量大气成分、气体浓度等方面具有优势。
2. 工业制造与检测:红外氟化氢激光器可用于材料加工、焊接、切割和表面处理等领域。
其高功率和较长的作用距离使其在工业生产中具备高效、精确的加工能力。
同时,它也可以在质检领域用于检测缺陷、材料分析等。
3. 医疗与生物科学:红外氟化氢激光器在医学领域有广泛的应用,例如激光治疗、激光手术和医学成像等。
其具有较强的穿透性,可以用于深层组织治疗和显影。
4. 近红外成像与通信:红外氟化氢激光器在近红外成像和通信领域也具有重要应用。
近红外光的穿透能力强,可以应用于显影和成像,同时在光通信领域也具有数据传输速率高、抗干扰能力强等特点。
需要注意的是,具体应用中的技术细节和要求可能因不同的任务而有所不同,建议根据具体需求进行进一步的研究和咨询。
电激励重复频率非链式HF激光器易爱平;刘晶儒;唐影;黄珂;黄欣;于力;马连英【期刊名称】《光学精密工程》【年(卷),期】2011(019)002【摘要】采用电子束和气体放电两种激励方式开展重复频率非链式HF激光研究.基于全固态脉冲功率源SPG200建立了重复频率HF实验装置,探索了产生重频大面积均匀电子束的技术途径,利用法拉第筒对进入激光气室的电子束的轴向均匀性进行了诊断,开展了激光器输出特性研究和重频实验调试,在C2 H6:SF6=0.035,总气压为35 kPa时,激光器输出能量最大约为4.8 mJ,并实现了最高30 Hz的HF激光稳定输出.采用峰化电容及紫外自动预电离技术设计研制了放电激励重频HF激光器,研究了SF6气体放电特性和重频运行稳定性.研究发现SF6气体放电具有典型的辉光放电、电压维持和电弧放电三阶段特征.在充电电压为28 kV,总气压为12 kPa,C2H6含量为8%时,放电激励HF激光器最大脉冲能量约 600 mJ,比能量输出达到8.5J/1,激光器的电光转换效率约为2.5%.该激光器在1-50 Hz实现了重频输出,首脉冲能量>500 mJ,在10 Hz时稳定输出能量约为200 mJ,【总页数】7页(P360-366)【作者】易爱平;刘晶儒;唐影;黄珂;黄欣;于力;马连英【作者单位】西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024【正文语种】中文【中图分类】TN248.5【相关文献】1.非链式重复频率HF激光器激光介质净化技术 [J], 马连英;周松青;黄超;黄珂;李高鹏;安晓霞2.放电引发的非链式高功率重复频率HF/DF激光器 [J], 黄珂;易爱平;朱峰;唐影;赵柳;马连英;冯国斌;叶锡生;刘晶儒3.放电激励重复频率非链式HF激光器 [J], 易爱平;叶锡生;刘晶儒;唐影;黄珂;马连英;于力;黄欣;朱峰;沈炎龙4.用于泵浦非链式HF/DF化学激光器的重复频率电子束发生器研究 [J], 高怀林;杨华;杨艳霞5.非链式化学HF(DF)激光器工作气体中电子分离的非稳定性和气体放电等离子体的自组织现象 [J], BELEVTSEV A A;FIRSOV K N;KAZANTSEV S Yu;KONONOV I G;张来明因版权原因,仅展示原文概要,查看原文内容请购买。
第27卷 第5期2019年5月 光学精密工程 Optics and Precision Engineering Vol.27 No.5 May 2019 收稿日期:2018-12-05;修订日期:2019-01-21. 基金项目:国防科技创新特区项目;激光与物质相互作用国家重点实验室基金资助项目(No.SKLLIM1610)文章编号 1004-924X(2019)05-1060-09长时间运转100Hz放电引发非链式HF激光器黄 超*,黄 珂,马连英,朱 峰,易爱平(西北核技术研究所激光与物质相互作用国家重点实验室,陕西西安710024)摘要:为了获得稳定的、大能量重频中红外HF激光输出,基于紧凑型、闭环放电引发非链式HF中红外化学激光器,从能量影响因素、解决措施和实验验证三个方面系统性地研究了100Hz重频HF激光的能量稳定性。
首先结合非链式HF化学激光动力学过程和静态重频实验,分析发现了影响重频放电引发非链式HF化学激光器脉冲能量稳定性的三个主要因素,包括均匀体放电难以维持、基态HF分子强的消激发效应和工作气体的持续消耗。
然后利用工作气体循环流动置换增益区气体,当增益区气体流速为9m/s时激光器100Hz重频运行的放电状态维持良好,获得100Hz/55W的激光输出。
最后,采用分子筛吸附分离基态HF分子纯净工作气体以及实时补给工作气体,提升了重频HF激光器长时间运行的能量稳定性。
实验结果表明:100Hz重频放电引发非链式HF激光器获得了30s的长时间稳定输出,激光能量下降率可优于10%。
综合工作气体循环流动、分子筛吸附基态HF分子和工作气体实时补给,放电引发非链式HF激光器实现了高重频长时间的稳定输出。
关 键 词:中红外激光;化学激光;HF激光;放电引发;能量稳定性中图分类号:TP245 文献标识码:A doi:10.3788/OPE.20192705.1060Hundred-Hertz nonchain HF laser with long operation periodbased on initiated dischargeHUANG Chao*,HUANG Ke,MA Lian-ying,ZHU Feng,YI Ai-ping(State Key Laboratory of Laser Interaction with Matter,NorthwestInstitute of Nuclear Technology,Xi′an 710024,China)*Corresponding author,E-mail:huangchao@nint.ac.cnAbstract:The aim of this investigation was to achieve stable and high-energy repetitive pulsed mid-in-frared HF laser operation.A systemic study of pulsed energy stability based on a compact,closed-cir-cle,electric-discharge nonchain HF chemical laser with a repetition frequency of 100Hz was per-formed.Initially,the three main factors that influence pulse energy stability in an electric-dischargenonchain HF chemical laser were identified based on chemical reaction kinetics and experimental re-sults without gas flow.In part,the experiments involved the nonmaintenance of uniform volume dis-charge and the intense de-excitation effect of excited HF molecules via collision deactivation withground state HF molecules,in addition to the consumption of the working gas.Then,using circularflow,the working gas in the gain region was replaced.Moreover,by maintaining a uniform volumedischarge,a 100Hz repetition-rate HF laser was realized when the gas flow rate in the gain region was9m/s.This resulted in an average laser power of approximately 55Wat this repetition rate.Finally,the pulse energy stability of the laser was notably improved when the molecular sieve only absorbedground-state HF molecule to purify the working gas,which is replenished in real-time.The experi-mental results show that the pulse energy stability of the HF laser was feasible for operation periodsof 30s,and the average decrease in energy is less than 10%.It is possible to operate for longer peri-ods at a high repetition rate with little loss of the average energy via a combination of recirculation gasflow,selective removal of the ground state HF molecules using a molecular sieve,and by allowing asmall replenishment of the working gas.Key words:mid-infrared laser;chemical laser;HF laser;discharge initiation;energy stability1 引 言 由于波长特殊性,中远红外波段激光倍受关注[1-7],并在军事领域和工业应用方面有着广泛的需求。
高功率重频电化学HF激光器BULAEV V D;GUSEV V S;FIRSOV K N;KAZANTSEV S Yu;KONONOV IG;LYSENKO S L;MOROSOV Yu B;POZNYSHEV A N【摘要】研制了高功率、高重频非链式HF激光器,并研究了脉冲模式和重频模式下在SF6的混合气中增加电极边缘电场强度而不使用其它措施即可实现自持体引发放电的可能性,得到了重复频率为20Hz,脉冲能量为67J,转换效率为3%的激光输出.【期刊名称】《中国光学》【年(卷),期】2011(004)001【总页数】5页(P26-30)【关键词】化学激光器;非链式脉冲HF激光器;自引发体放电;SF6混合气体【作者】BULAEV V D;GUSEV V S;FIRSOV K N;KAZANTSEV S Yu;KONONOV I G;LYSENKO S L;MOROSOV Yu B;POZNYSHEV A N【作者单位】国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区;国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区;俄罗斯科学院普罗霍罗夫普通物理研究所,莫斯科,119991;俄罗斯科学院普罗霍罗夫普通物理研究所,莫斯科,119991;俄罗斯科学院普罗霍罗夫普通物理研究所,莫斯科,119991;国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区;国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区;国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区【正文语种】中文【中图分类】TN248.5(1.Federal State Unitary Enterprise Kosminov State Scientific Research Test Laser Center(Range)of the Russian Federation《RADUGA》,Raduzhnyi,Vladimir Region,Russia 2.Prokhorov General Physics Institute,Russian Academy of Science,Moscow 119991,Russia)Now nonchain electric discharge HF(DF)lasers are unique ecologically safe sources with high peaks and average generation powers at close tothe diffraction limit of laser beam divergence in a practically important area of spectrum λ =2.6/4.2 μm.Such sources represent doubtless interest not only for monitoring an atmosphere[1,2],but also for carrying out some physical experiments on interaction IR radiation with liquids[3,4]and for optical pumping other gas lasers of IR range[5-7],including obtaining short pulse[8]and powerful generation in the terahertz regionof the spectrum[9].The purpose of the present work is to research an opportunity of achievement of the big radiation energy in a pulse-periodic mode of functioning the nonchain electric discharge HF laser with continuous metal electrodes in absence of additional measures on stabilization of Self-sustained Volume Discharge(SVD).Experimental installation looked as follows.The discharge gap of the laser has been formed by two identical flat electrodes from the duralumin,rounded on perimeter in radius r=2 cm.The size of a flat part of a surfaceof elect rodes made 15 cm×100 cm. The interelectrode distance could vary in limits d= 10/20 cm,experiments were carried out at d=15 cm.Theelectrode which was used as the cathode has been subjected to sandblasting with the purpose of formation on its surface small-scale nonuniformity(~50 μm),that,as shown in Ref.[10],facilitates development the self initiating volume discharge.Electrodes were placed in to a glass-epoxide tube with internal diameter 80 cm and length 250 cm symmetrically and were relative its axes.Photograph of the electrode system,available through the output window of the discharge chamber is shown in Fig.1.The working mixtures of the laser SF6∶C2H6= 20∶1,SF6∶C3H8C4H10=30∶1 and SF6∶H2=9∶1 with the full pressure about6/10 kPa were used. Change of working mixtures in volume discharge was provided due to circulation of gas in the closed contour.For this purpose it was applied the special fan block similar described in Ref.[11].The gas mixtures were blown along an axis of the discharge chamber,speed of a stream in the discharge zone made 40 m/s.The resonator of the laser has been formed by a copper mirror with the radius of curvature R=20 m and a plane-parallel plate from KCl.The mirror was installed in the adjusting unit connected to the flash chamber by sylphon.The plane-parallel plate fastened directly at an end face of the discharge chamber.The radiation energy of the laser was measured in a single pulse mode with the help of a matrix of calorimeters such as E-60 with the size of 18 cm× 18 cm,installed in a direct laser beam on distance of 1 m from a window of the discharge chamber.The pulse high-voltage generator using for formation SVD consist of 4identical sections,connected in parallel to electrodes of a discharge gap copper trunks.Sections are placed in the uniform metal case filled SF6at atmospheric pressure.Sections of the generator are collected under two-level Fitch circuit on low inductive condensers C=50 nF with rated voltage 100 kV marking KMKI-100-50.Electric circuit used in high-voltage generator is shown in Fig.2.Controlled spark-gaps[12]are filled with mixtures SF6∶N2=1∶10 with overpressure up to 6 bars. The construction of spark-gaps allows to operate the laser by duration up to 60 s with frequency of following of discharge pulses in 20 Hz without replacement in them of gas.Charging voltage Uchin experiments varied in limitsUch=50/75 kV.In a circuit of spark-gaps,the inductance using for the coordination of a contour of polarity inversion of a voltage on the condenser with a discharge contour was fitted experimentally.The pulse voltage of the discharge was measured by a resistive divider,and a pulse current was measured by a Rogowski coil covering a part of the current carrying trunk.Such quality monitoring at the big trunks width(~1 m in examined installation)does not give an opportunity of exact measurements of a discharge current,but allows to determine its maximum time position.The system of synchronization provides simultaneous start 8 spark-gaps of the high-voltage generator with accuracy±10 ns.After the coordination of a contour of polarity inversion of the condenser in Fitch generator with a discharge contour steady SVD in mixtures SF6with hydrocarbons has been received in all range of voltage change Uch=50/75kV at frequency of following of discharge pulses up to 20 Hz.Opportunities of the further increase in frequency of following were limited to speed the change of a working gas mix in a discharge chamber.Fig.3 shows a photograph of SVD in a mixture SF6∶C2H6at the maximum char ging voltage in Uch=75 kV,illustrating the uniformity of SVD in high edge to strengthen the electric field,which is characteristic for the intervals used here type.Fig.4 shows the distribution of the intensity of the glow discharge plasma to coordinate a plane parallel to the surface of the electrodes. The distribu-tion reflects the distribution of input power for the interval[14].Fig.4 shows that,despite the marginal gain of the electric field,the maximum energy deposition is achieved in the central zone of the gap. Fig.5 shows typical oscillograms of the voltage across the discharge gap and discharge current when the ignition SVD in a mixture of SF6∶C2H6.These oscillograms allow with sufficient accuracy to estimate the duration of the discharge current tdi s≈320 ns.With such a relatively large,the duration of the input electrical energy into the discharge plasma in mixtures of SF6with hydrogen SVD is stable only in the charging voltages Uch≤60 kV.In mixtures of SF6with the same hydrocarbons as follows from the above experimental data,SVD implemented in the whole range of Uchwithout whatever additional measures to stabilize it as a pulse and a pulse-periodic modes of the HF ser pulse was typical nonchain electric discharge HF laser form[13],its duration at half amplitude was about 150 ns,the generation began near the current maximum.Experimentally dependence of radiation energy Wgfrom charging voltage is submitted on Fig.6. Apparently from Fig.6, the maximal energy of generation Wg=67 J is reached on m ixtures SF6∶C2H6,at Uch=75 kV,that corresponds to electric efficiency~3%on energy,reserved in condensers. Low efficiency of the laser on mixtureses SF6with hydrogen is caused,apparently,by pumping heterogeneity because of rather big duration of a discharge current.We shall also note,that in the present work the efficiency is lower than that in Ref.[14]at close characteristics of a discharge gap and identical structures of a mixtures.Probably,the given fact can be connected to the big losses of electric energy in circuits of the Fitch generator.Thus,by us it is developed and investigated powerfulthe nonchain electric discharge repetitively pulsed HF laser.The opportunity of realization SVD on mixtures SF6with hydrocarbons in a discharge gap with high edge electric field gain without additional measures of stabilization of the discharge both in pulse, and in a repetitively pulsed mode is ser generation energy Wg=67 J is received at frequency of pulses following of 20 Hz.In summary,we shall notice that,for reception of generation on DF as the donor of deuterium can be used C6D12.Stability SVD in mixturesSF6with deuterocarbons,as is known,not worse,than in mixes with hydrocarbons,and energy of generation on DF in identical conditions on pumping in plasma of the discharge makes~0.8 from energy ofgeneration on HF[15].【相关文献】[1]VELIKANOV S D,ELUTIN A S,KUDRYASHOV E A,et e of a DF laser in the analysis of atmospheric hydrocarbons [J].Quantum Electron,1997,27(3),273-276. [2]AGROSKIN V Y,BRAVY B G,CHERNYSHEV Y A,et al..Aerosol sounding with a lidar system based on a DF laser [J].Appl.Phys.B,2005,81:1149.[3]ANDREEV S N,FIRSOV K N,KAZANTSEV S Y,et al..Explosive boiling of water induced by the pulsed HF-laser radia-tion[J].Laser Phys.,2007,17(6):834.[4]ANDREEV S N,KAZANTSEV S Y,KONONOV I G,et al..Temporal structure of an electric signal produced upon interaction of radiation from a HF laser with the bottom surface of a water column[J].Quantum Electron,2009,39(2):179-184.[5]BURTSEV A P,BURTSEVA I G,MASHENDZHINOV V I,et al..New HBr-laser with resonant optical pumping by DF-laser radiation[J].SPIE,2004,5479:174-176.[6]ALEXANDROV B S,ARSENJEV A V,AZAROV M A,et al..Increase of efficiency of optical pumping of a broadband CO2laser amplifier as a result of the use of a multicomponent active medium[J].SPIE,2003,5120:551-556.[7]AZAROV M A,ALEXANDROV B S,ARSENJEV A V,et al..High pressure with optical pumping by HF laser radiation [J].SPIE,2007,6346:63462B.[8]VASILIEV G K,MAKAROV E F,CHERNYSHEV Y A.Optical pumping of the N2O-He and N2O-CO2—He mixtures by a pulsed multifrequency HF laser for producing active media to amplify 10-μm high-power ultrashort pulses[J].Quantum E-lectron,2005,35(11):987-992.[9]SKRIBANOWITZ N,HERMANN I P,MACGILLIVRAY M S,et al..Observation of dicke superadiance in optically pumped HF gas[J].Phys.Rev.Lett.,1973,30:309-312. [10]APOLLONOV V V,BELEVTSEV A A,KAZANTSEV S Y,et.al..Self-initiated volume discharge in nonchain HF lasers based on SF6-hydrocarbon mixtures[J].Quantum Electron,2000,30(3):207-214.[11]BULAEV V D,KULIKOV V V,PETIN V N,et al..Experimental study of a nonchain HF laser on heavy hydrocarbons [J].Quantum Electron,2001,31(3):218-220.[12]GORNOSTAY-POLSKY S A,GRISHIN A V,BALYABIN M G,et al..High-current gas-filled spark-gap:RU,2241288 [P].2004-11-27.[13]APOLLONOV V V,KAZANTSEV S Yu,ORESHKIN V F,et al..Feasibility of increasing the output energy of a nonchain HF(DF)laser[J].Quantum Electron,1997,27(3):207-209.[14]ANDRAMANOV A V,KABAEV S A,LAZHINTSEV B V,et al..Formation of the beam profile in a plate electrode HF laser[J].Quantum Electron,2005,35(4):359-364. [15]BELEVTSEV A A,FIRSOV K N.The encyclopedia of law-temperatureplasma[M].Moscow:Physmatlit,2005,XI-4:761.Author′s biography:Sergey Kazantsev(1971—),Moscow,Russia,graduated from Moscow Engineering Physics Institute(State University)in 1998,His research interests are concerned with experimental investigation of volume self-sustained gas discharge phenomena,development of chemical and high-power electric discharge lasers,and investigation of high power laser beam interaction with matter,laser induced gas breakdown,laser lightning protection.E-mail:*****************.ru。
第8卷 第3期2015年6月 中国光学 Chinese Optics Vol.8 No.3 Jun.2015 收稿日期:2014⁃12⁃16;修订日期:2015⁃02⁃11 基金项目:科技部国际合作专项基金资助项目(No.2011DFR10320);国家重点实验室自主基础研究课题(No.SKLLIM1310⁃01)文章编号 2095⁃1531(2015)03⁃0340⁃10非链式HF /DF 激光器的研究进展王 旭1,2,谢冀江1∗,潘其坤1,王春锐1,邵春雷1,邵明振1(1.中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室,吉林长春130033;2.中国科学院大学,北京100049)摘要:HF /DF 激光器是中红外波段能提供最高能量输出的激光光源,也是中红外波段应用非常广泛的相干光源。
本文介绍了近几年国内外关于非链式HF /DF 激光器的研究进展及其成果应用,分析了非链式HF /DF 激光器在应用方面的优缺点,总结了实现非链式HF /DF 激光输出的关键技术和存在的问题,指出了该技术的未来发展方向。
关 键 词:HF /DF 激光器;非链式;放电引发方式;激光应用中图分类号:TN248.2 文献标识码:A doi:10.3788/CO.20150803.0340Research progress of non⁃chain HF /DF laserWANG Xu 1,2,XIE Ji⁃jiang 1∗,PAN Qi⁃kun 1,WANG Chun⁃rui 1,SHAO Chun⁃lei 1,SHAO Ming⁃zhen 1(1.State Key Laboratory of Laser Interaction with Matter ,Changchun Institute of Optics ,Fine Mechanics and Physics ,Chinese Academy of Sciences ,Changchun 130033,China ;2.University of Chinese Academy of Sciences ,Beijing 100049,China )∗Corresponding author ,E⁃mail :laserxjj@Abstract :HF /DF laser is a laser light source offering the highest output energy in the mid⁃infrared wave band.It is also a coherent source with wide application prospect.The research production and application of the non⁃chain HF /DF laser are reviewed in this paper.The advantages and disadvantages of the non⁃chain HF /DF laser are analyzed in the application field.The key techniques and problems generating the non⁃chain HF /DF laser are concluded and analyzed.The future development directions of the non⁃chain HF /DF laser are pointed out.Key words :HF /DF laser;non⁃chain;discharge initiate;laser application1 引 言 辐射波段2.7~3.1μm(HF),3.5~4.2μm (DF)的HF/DF化学激光器[1⁃3],由于其易于实现高功率输出、光束质量好、辐射光谱丰富等特点被广泛地应用于光电对抗、环境检测、激光雷达、激光化学、激光光谱学等领域[4⁃11]。
第36卷,增刊红外与激光工程2007年6月V bl.36Sup pl em ent IIlf删aIld k峙e r Engi n∞血g J un.20(}7重复频率放电引发的脉冲H F(D F)激光器柯常军,张阔海,孙科,谭荣清,吴谨,王东蕾(中国科学院电子学研究所,北京100080)摘要:研制了一台重复频率放电引发的脉冲耶(D F)激光器,采用了横向放电、横向流动和侧面滑闪预电离结构,该激光器的有效增益体积为80cm也.5cm×2cm,最大输出激光脉冲能量1.6(1.2)J,重复频率1~3H z,采用特种碱性分子筛吸附剂对化学反应生成物进行吸收,激光器在准封离状态下以重复频率2H z运转,103个脉冲后激光脉冲能量仅有20%的下降。
关键词:激光器;脉冲H F/D F激光器;重复频率放电;碱性分子筛吸附剂中图分类号:TN248.5文献标识码:A文章编号:1007—2276(2007)增(激光).0036.03A pe r i odi caU y pul sed H F/D F gas di schar ge l as erK E C h锄g-j un,Z H A N G K|uo—hai,S U N K e,T A N R ong—qi ng,W U—Ji n,W A N G D0ng—l ei(h l sdnIt c of El∞仃oIl i cs。
C hi l Ie∞A cadem y0f Sciences,B喇i ng l O0080,chi m)A bs t r act:A per i O di c al l y pul s ed H F/D F gas di sc t Ia曙e l a se r w i m an a ct i V e m edi umV ol um e of80cm×2.5cI n×2c m i s descr i bed.A pul s e r epe t i t i on r at e of1~3H z al l d out put ene唱y of1.6(1.2)J pef pul s e haV e be en obt ai ned.A出al escent Zeol i t e-bas ed abs or ber is us ed t o st a bi l i ze tl l e l a se r pul s e ener g)r w i t h吐l ef or ced c i r cul a t i on of m e1a se r r Il i xt ure。
(19)中华人民共和国国家知识产权局(12)发明专利(10)授权公告号 (45)授权公告日 (21)申请号 201910351185.3(22)申请日 2019.04.28(65)同一申请的已公布的文献号申请公布号 CN 110057447 A(43)申请公布日 2019.07.26(73)专利权人 西北核技术研究所地址 710024 陕西省西安市灞桥区平峪路28号(72)发明人 黄珂 黄超 朱峰 陶蒙蒙 沈炎龙 陶波 (74)专利代理机构 西安智邦专利商标代理有限公司 61211代理人 汪海艳(51)Int.Cl.G01J 1/42(2006.01)G01J 1/04(2006.01)G01M 11/00(2006.01)审查员 赵子甲 (54)发明名称一种实时监测非链式脉冲化学激光器能量方法及装置(57)摘要本发明涉及一种实时监测非链式脉冲化学激光器能量方法及装置,实现了高功率高重频非链式化学激光器无插入能量监测,方法主要包括首先根据被测激光器中气体分子的特征谱线调节可调谐窄线宽激光参数;其次,将可调谐窄线宽激光分束后分别同时照射被测激光器的增益区及非增益区;最后,分别采集经过被测激光器增益区及非增益区的激光强度,获得激光器增益区及非增益区的吸收光谱曲线,并计算得到激光器重频运行过程中各个脉冲的能量。
利用光学非接触方法测量激光器单个脉冲形成的激活物质(HF分子)的浓度,计算得到非链式脉冲化学激光器的脉冲能量,避免了在激光器输出光路中引入其它分光元件,简化激光输出光路的同时实现激光能量的实时监测。
权利要求书3页 说明书6页 附图1页CN 110057447 B 2019.12.13C N 110057447B1.一种实时监测非链式脉冲化学激光器能量的装置,其特征在于:包括信号光源(9)、分光单元(10)、本底信号探测单元(6)、浓度信号探测单元(5)、数据采集处理单元(7)和同步控制器(8);所述信号光源(9)为可调谐窄线宽激光源;所述同步控制器(8)用于控制被测激光器和信号光源(9)同步运行;所述分光单元(10)用于将信号光源(9)输出的信号光分为两路,其中一路经过被测激光器非增益区后进入本底信号探测单元(6),另一路经过被测激光器增益区后进入浓度信号探测单元(5);所述本底信号探测单元(6)用于测量经过被测激光器非增益区的信号光强度;所述浓度信号探测单元(5)用于测量经过被测激光器增益区后信号光强度;所述数据采集处理单元储存计算机程序,计算机程序在处理器中运行时,执行以下过程:S1、采集浓度信号探测单元及本底信号探测单元输出的电信号;处理得到激光器增益区及非增益区的吸收光谱曲线;S2、利用激光器增益区的吸收光谱曲线,采用公式得出激光器增益区内的待测分子浓度N0 ,其中,I0为未经增益区混合气体吸收的激光光强,I为经过增益区混合气体吸收后的激光光强,S(T)为吸收线的强度cm/molecule,L0为激光在增益区内吸收介质中的传播距离cm,ν为激光波长(cm-1);S3、利用非激活区的吸收光谱曲线,采用公式计算出激光器内待测分子本底浓度N1;I1为未经非增益区气体吸收的激光光强,I为经过非增益区混合气体吸收后的激光光强,S(T)为吸收线的强度cm/molecule,L1为激光在非增益区内吸收介质中的传播距离cm,ν为激光波长cm-1;S4、求得单次激励过程产生的N s,N s=N0-N1;S5、利用公式E=N s×η×α计算得出此次激光脉冲能量;其中η为待测分子产生光子效率;式中α为常数;α由输出激光中心波长和激光器参数决定,α=0.5Vln(1/R1R2)*hν,V增益区体积,R1、R2为谐振腔的的反射率,ν为中心波长频率,h为普朗克常数;S6、针对每个脉冲,重复S2~S5,可获得激光器重频运行过程中各个脉冲的能量,实时监测激光器重频输出性能。
电激励重复频率非链式HF激光器易爱平;刘晶儒;唐影;黄珂;黄欣;于力;马连英【摘要】采用电子束和气体放电两种激励方式开展重复频率非链式HF激光研究.基于全固态脉冲功率源SPG200建立了重复频率HF实验装置,探索了产生重频大面积均匀电子束的技术途径,利用法拉第筒对进入激光气室的电子束的轴向均匀性进行了诊断,开展了激光器输出特性研究和重频实验调试,在C2 H6:SF6=0.035,总气压为35 kPa时,激光器输出能量最大约为4.8 mJ,并实现了最高30 Hz的HF激光稳定输出.采用峰化电容及紫外自动预电离技术设计研制了放电激励重频HF激光器,研究了SF6气体放电特性和重频运行稳定性.研究发现SF6气体放电具有典型的辉光放电、电压维持和电弧放电三阶段特征.在充电电压为28 kV,总气压为12 kPa,C2H6含量为8%时,放电激励HF激光器最大脉冲能量约 600 mJ,比能量输出达到8.5J/1,激光器的电光转换效率约为2.5%.该激光器在1-50 Hz实现了重频输出,首脉冲能量>500 mJ,在10 Hz时稳定输出能量约为200 mJ,%The repetitive-pulsed non-chain HF lasers initiated by e-beams and fast discharges were studied respectively. The e-beam initiated HF laser characterized by an all-solid-state generator was developed. A large area repetitive uniform e-beam was obtained and the Faraday cup was used to diagnose the uniformity of e-beam into the laser gas cell. The output characteristics of the laser were studied and the maximal energy of 4.8 mJ was obtained with gas mixture C2 H6: SF6 =0.035. The e-beam initiated HF laser could operate at the repetition rate of 30 Hz. The discharge initiated non-chain HF laser was designed by using the technologies of peaking capacitor and UV pre-ionizing. The discharge characteristics and stability of SF6 gas inrepetition mode were studied. The results show that the discharge includes main discharge (volume discharge) and arc discharge, between which the voltage maintains and no evident discharge is visible. The maximal output energy of 600 mJ is achieved under the condition of 28 kV charging voltage and 12 kPa gas pressure with 8 % C2 H6. Specific output energy of 8.5 J/l and laser electrical efficiency of 2.5% are obtained. In repetition mode, the laser can operate in the repetition rate from 1 Hz to 50 Hz. The first pulse energy is above 500 mJ, and the stable output energy of the laser at the repetition rate of 10 Hz is about 200 mJ.【期刊名称】《光学精密工程》【年(卷),期】2011(019)002【总页数】7页(P360-366)【关键词】非链式HF激光;重复频率;电激励;气体放电【作者】易爱平;刘晶儒;唐影;黄珂;黄欣;于力;马连英【作者单位】西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024;西北核技术研究所激光与物质相互作用国家重点实验室,陕西,西安,710024【正文语种】中文【中图分类】TN248.5脉冲HF激光波长为2.5~3.1μm,广泛地应用在激光雷达、激光光谱学、激光化学、生物化学和大气探测等领域。
HF激光依F原子的产生方式可分为链式和非链式两种。
与链式HF激光器相比,非链式化学反应所需的F原子来源于高能电子对含氟化合物价健的断裂,激光能量通过电能转换而来,因而电效率较低,最大约为10%左右。
非链式HF激光器发射脉冲峰值功率大,光束质量好,结构紧凑,便于小型化,无腐蚀和爆炸的危险,重复频率高,并且能长时间持续运转,因而在国际上受到了广泛的关注。
非链式HF激光可通过电子束激励和放电激励两种技术途径实现。
电子束激励重频非链式HF激光可实现大能量、高平均功率输出,但技术复杂,涉及重频开关、重频高压脉冲功率源、重频电子束产生及高效传输、气体循环及补给等技术,由于电子束产生及传输技术环节中阴极材料及压力膜寿命的限制,激光器重复频率不能太高,在功率较低时一般为百赫兹[1-2]。
研制放电激励重频非链式HF激光器相对来说技术要较为简单一些,由于可以省去电子束产生及传输环节,且所需脉冲电源输出的电压幅值也大大降低,激光器重复频率可达千赫兹[3]。
放电激励高重频HF激光器的关键在如何在强电负性气体(NF3、SF6等)中获得均匀稳定的体放电,以提高能量沉积效率和激光提取效率,此时通常需要采用紫外或X射线预电离技术。
另外,激光介质消耗及补给、基态 HF分子的排除、长寿命高压开关及放电电极研制等也是需要解决的关键技术。
近年来,国际上对非链式HF脉冲激光器开展了大量的理论和实验研究[3-9]。
由于高功率重频脉冲功率源的限制,很少见到有关电子束激励非链式HF激光器重频运行的报道,而采用放电激励方式开展非链式HF激光研究则取得了良好的进展。
目前,法国巴黎大学等离子体物理实验室cour等研制的重频HF激光器,运行频率超过10 H z,单脉冲能量大于20 J[6]。
美国HenriBrunet等人研制的放电激励HF 脉冲激光器,其重复频率已大于100 Hz,单次脉冲能量在10 J以上,平均功率为千瓦量级[7]。
英国国防研究与评估机构M.R Harris等人研制的闭环重频HF激光器运行频率超过1 kH z,但平均输出功率还较低,约10W左右[3]。
国内开展非链式HF激光研究较晚,中科院电子所2003年利用放电激励已获得了 HF激光输出,最大能量约3 J[10]。
西北核技术研究所2005年开始进行重频非链式HF激光的研究工作,2006年实现了电子束激励30 H z HF激光的重频输出。
2009年采用放电激励方式实现了50 H z HF激光输出,脉冲能量最高约0.6 J,目前正在进行提高重频和运行稳定性的研究。
本文主要介绍利用电子束和放电两种激励方式开展重复频率非链式HF激光的研究情况。
图1为利用SPG-200脉冲功率源激励HF激光的实验装置结构示意图,主要由SPG-200、二极管和激光气室3部分组成。
SPG-200是基于二极管断路开关(SOS)的全固态重复频率脉冲功率源,由晶闸管充电单元、磁脉冲压缩器及SOS等几部分组成。
其输出参数受负载影响较大,输出电压随负载增加而增加,输出电流随负载增加而减少,开路电压大于350 kV。
负载为50~400Ω时,输出电压为80~280 kV,输出电流为0.7~1.7 kA,输出脉宽(FWHM)为30~50 ns。
SPG-200脉冲功率源的具体参数及性能描述详见参考文献[11]。
真空二极管以天鹅绒作为阴极发射材料,阴极发射面积为290 mm ×20 mm,采用无阳极箔结构,栅网平面作为阳极面,阴阳极之间的距离(即A-C间隙)在0~49 mm 可调。
栅网平面上每隔1.5 mm开有一长30mm、宽20mm的矩形栅孔共14个。
采用Ti箔或Kapton膜作为压力膜用于隔离激光气室与二极管真空室,阴极发射的电子束通过压力膜进入激光气室,对激光介质进行均匀激励。
天鹅绒阴极的基座采用黄铜材料,基座长294 mm,宽24 mm,两头均为半径为12 mm的半圆,阴极和基座通过螺钉固定。
在制作天鹅绒阴极时,将天鹅绒平铺在阴极托上,用一铝制压框将绒布压紧,四周用螺钉固定,以保证绒布平整及其与阴极托的电接触,并防止天鹅绒向真空室四周放电。
激光气室采用箱体结构,箱体材料为硬铝,气室内部长352mm 、宽 70 mm、高82mm,电子束输出窗口为290mm×20m m,气室窗口的有效尺寸为36mm×50mm。
激光器谐振腔为98%的凹面反射镜和透过率为30%的输出镜组成的平凹腔,研究了在不同气压和不同气体混合比例条件下激光的输出特性。
图2为相应的激光输出能量随气压变化的规律曲线。
从中可以看出,在C2 H 6∶SF6=0.035,总气压为35 kPa时激光器输出能量最大约4.8 m J,所采用的几种比例的激光介质,随着总气压的升高,激光器输出能量先上升后下降,存在最佳工作气压(约为30~40 kPa)。
这是因为气压较低时,电子大部分穿过激光介质而被气室后壁吸收,沉积在激光介质中的电子束能量较少,电子束沉积效率低,导致激光输出能量较少。
随着气压的增加,电子束沉积效率升高,激光增益不断增强,激光输出能量增大。
当气压超过最佳值后,随着气压增加,尽管电子束能量大部分都沉积在激光介质中,但是由于电子在SF6气体中射程小,到达气室窗口远端的电子数目减少,致使激光介质增益极不均匀,激光提取效率降低,激光输出能量减少。