《三角函数的图象与性质》拔高练习
- 格式:pdf
- 大小:108.41 KB
- 文档页数:4
1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。
5.4 三角函数的图象和性质1. 用“五点法”作三角函数的图象;2. 利用图象变换作三角函数的图象;3. 利用正、余弦函数的图象解三角不等式;4. 利用正弦函数、余弦函数图象判断方程根的个数;5. 求三角函数的周期;6. 三角函数奇偶性的判断;7. 三角函数奇偶性与周期性的综合运用;8. 求三角函数的单调区间;9. 三角函数对称轴、对称中心;10. 与三角函数有关的函数的值域( 或最值)的求解问题;11. 求定义域;12.三角函数的图像和性质的综合应用.一、单选题1.(浙北四校2019届高三12月模拟)若函数f (x )=cos (π2+2x),x ∈R ,则f (x )是( ) A . 最小正周期为π为奇函数 B . 最小正周期为π为偶函数 C . 最小正周期为π2为奇函数 D . 最小正周期为π2为偶函数 【正确答案】A 【详细解析】∵cos (π2+2x)=-sin2x, ∴f(x )=-sin2x,可得f (x )是奇函数,最小正周期T=2π2=π故选:A .2.(2020·永州市第四中学高一月考)函数1sin y x =-,[]0,2x π∈的大致图像是( )A .B .C .D .【正确答案】B 【详细解析】当0x =时,1y =;当2x π=时,0y =;当πx =时,1y =;当3π2x =时,2y =;当2x π=时,1y =.结合正弦函数的图像可知B 正确. 故选B.3.(2020·全国高三课时练习(理))已知函数()1cos 2xf x x ⎛⎫=- ⎪⎝⎭,则()f x 在[]0,2π上的零点的个数为( ) A .1B .2C .3D .4【正确答案】C 【详细解析】由下图可得()f x 在[]0,2π上的零点的个数为3,故选C.4.(2020·河南濮阳�高一期末(文))下列函数中,为偶函数的是( ) A .()21y x =+ B .2x y -=C .sin y x =D .()()lg 1lg 1y x x =++-【正确答案】C 【详细解析】对于A,函数关于1x =-对称,函数为非奇非偶函数,故A 错误; 对于B,函数为减函数,不具备对称性,不是偶函数,故B 错误;对于C,()()()sin sin sin f x x x x f x -=-==-=,则函数()f x 是偶函数,满足条件,故C 正确;对于D,由1010x x +>⎧⎨->⎩得11x x >-⎧⎨>⎩得1x >,函数的定义为()1,+∞,定义域关于原点不对称,为非奇非偶函数,故D 错误. 故选:C.5.(2020·河南信阳�高一期末)估计cos2020︒的大小属于区间( )A .1,02⎛⎫- ⎪⎝⎭B .22⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .22⎛ ⎝⎭【正确答案】B 【详细解析】cos 2020cos(5360220)cos 220cos(18040)cos 40︒=⨯︒+︒=︒=︒+︒=-︒,因为cos y x =在(0,90)︒上递减,且304045︒<︒<︒, 所以cos30cos40cos45︒>︒>︒,cos 402>︒>,所以cos 4022-<-︒<-所以cos 20202<︒<-, 故选:B6.(2020·辽宁大连�高一期末)函数()cos 26f x x π⎛⎫=+ ⎪⎝⎭的图像的一条对称轴方程为() A .6x π=B .512x π=C .23x π=D .23x π=-【正确答案】B 【详细解析】 函数()cos 26f x x π⎛⎫=+ ⎪⎝⎭令()26x k k ππ+=∈Z ,则,212k x k ππ=-∈Z , 当1k =时,512x π=,故选B .7.(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【正确答案】D 【详细解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.8.(2020·河南林州一中高一月考)函数()21sin 1xf x x e⎛⎫=- ⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【正确答案】A 【详细解析】()211sin sin 11x x x e f x x x e e ⎛⎫-⎛⎫=-= ⎪ ⎪++⎝⎭⎝⎭故()()f x f x -=则()f x 是偶函数,排除C 、D ,又当()0,0x f x →>故选:A.9.(2020·山东聊城�高一期末)用五点法作函数()sin 0,0,2y A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象时,得到如下表格:则A ,ω,ϕ的值分别为( ) A .4,2,3π-B .4,12,3π C .4,2,6π D .4,12,6π- 【正确答案】A 【详细解析】由表中的最大值为4,最小值为4-,可得4A =, 由21362T ππ-=,则T π=,22πωπ∴==, 4sin(2)y x ϕ=+,图象过(6π,0),04sin(2)6πϕ∴=⨯+,∴226k πϕπ⨯+=,()k ∈Z ,解得23k πϕπ=-,||2πϕ<,∴当0k =时,3πϕ=-.故选:A .10.(2020·镇原中学高一期末)若点,26P π⎛⎫-⎪⎝⎭是函数()()sin 0,2f x x m πωϕωϕ⎛⎫=++>< ⎪⎝⎭的图象的一个对称中心,且点P 到该图象的对称轴的距离的最小值为2π,则( ) A .()f x 的最小正周期是π B .()f x 的值域为[]0,4C .()f x 的初相3πϕ=D .()f x 在4,23ππ⎡⎤⎢⎥⎣⎦上单调递增 【正确答案】D 【详细解析】由题意得()62k k Z m πωϕπ⎧-+=∈⎪⎨⎪=⎩,且函数的最小正周期为422T ππ=⨯=, 故21T πω==.代入()6k k Z πωϕπ-+=∈,得()6k k Z πϕπ=+∈, 又2πϕ<,所以6π=ϕ.所以()sin 26f x x π⎛⎫=++ ⎪⎝⎭. 故函数()f x 的值域为[]1,3,初相为6π.故A ,B ,C 不正确, 当4[,2]3x ππ∈时,313[,]626x πππ+∈,而sin y x =在313[,]26ππ上单调递增,所以()f x 在4,23ππ⎡⎤⎢⎥⎣⎦上单调递增,故D 正确. 故选:D. 二、多选题11.(2020·陕西渭滨�高一期末)函数tan(2)6y x π=-的一个对称中心是( )A .(,0)12πB .2(,0)3πC .(,0)6πD .(,0)3π【正确答案】AD 【详细解析】 因为tan()01266f πππ⎛⎫=-=⎪⎝⎭;24tan()tan 3366f ππππ⎛⎫=-== ⎪⎝⎭; tan 663f ππ⎛⎫==⎪⎝⎭;当3x π=时, 2362πππ⨯-=. 所以(,0)12π、(,0)3π是函数tan(2)6y x π=-的对称中心.故选:AD12.(2020·浙江高三专题练习)下列函数中,是奇函数的是( ). A .2sin y x x =B .sin y x =,[0,2]x πC .sin y x =,[,]x ππ∈-D .cos y x x =【正确答案】ACD【详细解析】对A ,由()2sin ==y f x x x ,定义域为R ,且()()()()22sin sin f x x x x x f x -=--=-=-, 故函数2sin y x x =为奇函数,故A 正确对B ,由函数的定义域为[0,2]x π,故该函数为非奇非偶函数,故B 错 对C ,()sin y gx x ==,定义域关于原点对称,且()()()sin sin -=-=-=-g x x x g x ,故C 正确 对D ,()cos ==y m x x x 的定义域为R , 且()()()()cos cos -=--=-=-m x x x x x m x , 故该函数为奇函数,故D 正确 故选:ACD13.(2020·湖南天心�长郡中学高三月考)下图是函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0||x ϕ<<)的部分图象,下列结论正确的是( )A .函数12y f x π⎛⎫=-⎪⎝⎭的图象关于顶点对称 B .函数()f x 的图象关于点,012π⎛⎫-⎪⎝⎭对称 C .函数()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上单调递增D .方程()1f x =在区间23,1212ππ⎡⎤-⎢⎥⎣⎦上的所有实根之和为83π 【正确答案】ABD 【详细解析】 由已知,2A =,2543124T πππ=-=,因此T π=, ∴22πωπ==,所以()2sin(2)f x x ϕ=+,过点2,23π⎛⎫- ⎪⎝⎭, 因此43232k ππϕπ+=+,k ∈Z ,又0||ϕπ<<, 所以6π=ϕ,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,对A ,2sin 212y f x x π⎛⎫=-= ⎪⎝⎭图象关于原点对称,故A 正确; 对B ,当12x π=-时,012f π⎛⎫-= ⎪⎝⎭,故B 正确;对C ,由222262k x k πππππ-≤+≤+,有36k x k ππππ-≤≤+,k ∈Z 故C 不正确;对D ,当231212x ππ-≤≤时,2[0,4]6x ππ+∈,所以1y =与函数()y f x =有4个交点令横坐标为1x ,2x ,3x ,4x ,12317822663x x x x πππ+++=⨯+⨯=,故D 正确.故选:ABD.14.(2020·江苏海安高级中学高二期末)关于函数()sin cos f x x x =+()x R ∈,如下结论中正确的是( ).A .函数()f x 的周期是2πB .函数()f x 的值域是⎡⎣C .函数()f x 的图象关于直线x π=对称D .函数()f x 在3,24ππ⎛⎫⎪⎝⎭上递增【正确答案】ACD 【详细解析】A .∵()sin cos f x x x =+, ∴sin cos cos sin cos sin ()222f x x x x x x x f x πππ⎛⎫⎛⎫⎛⎫+=+++=+-=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴()f x 是周期为2π的周期函数,A 正确,B .当[0,]2x π∈时,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,此时3,444x πππ⎡⎤+∈⎢⎥⎣⎦,sin 42x π⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,∴()f x ∈,又()f x 的周期是2π,∴x ∈R 时,()f x 值域是,B 错;C .∵()()(2)sin 2cos 2sin cos sin cos ()f x x x x x x x f x πππ-=-+-=-+=+=, ∴函数()f x 的图象关于直线x π=对称,C 正确;D .由B 知[0,]2x π∈时,()4f x x π⎛⎫=+ ⎪⎝⎭,当[0,]4x π∈时,[,]442x πππ+∈,()f x 单调递增,而()f x 是周期为2π的周期函数,因此()f x 在3,24ππ⎛⎫⎪⎝⎭上的图象可以看作是在0,4π⎛⎫ ⎪⎝⎭上的图象向右平移2π单位得到的,因此仍然递增.D 正确. 故选:ACD . 三、填空题15.(2020·山东高一期末)函数tan 2xy =的定义域为_____. 【正确答案】{}2,x x k k Z ππ≠+∈ 【详细解析】解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan 2xy =的定义域为{}2,x x k k Z ππ≠+∈.故正确答案为:{}2,x x k k Z ππ≠+∈.16.(2020·河南林州一中高一月考)函数224sin 6cos 633y x x x ππ⎛⎫=+--≤≤ ⎪⎝⎭的值域________.【正确答案】16,4⎡⎤-⎢⎥⎣⎦【详细解析】224sin 6cos 64(1cos )6cos 6y x x x x =+-=-+-22314cos 6cos 24(cos )44x x x =-+-=--+,233x ππ-≤≤,1cos 12x ∴-≤≤ ,故231164(cos )444x -≤--+≤,故正确答案为:16,4⎡⎤-⎢⎥⎣⎦17.(2020·全国高考题)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【正确答案】②③ 【详细解析】 对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故正确答案为:②③.18.(2020·上海高一课时练习)函数42cos 133⎛⎫=+- ⎪⎝⎭x y π,当x =_________时有最小值,最小值是___________. 【正确答案】3,22k k Z ππ+∈ 3- 【详细解析】当4cos 133x π⎛⎫+=-⎪⎝⎭时,即4233x k πππ+=+, 可得3,22x k k Z ππ=+∈,此时y 取得最小值; 此时,最小值为3-; 故正确答案为:3,22k k Z ππ+∈; 3-. 19.(2020·浙江高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【正确答案】121- 【详细解析】根据题意,得3212A BA B⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B==-.故正确答案为:1,1 2-20.(2020·上海高一课时练习)函数sin2sin=+xyx的最大值是________,最小值是________.【正确答案】131-【详细解析】21si2sin2sin nxyx x-==++,221sin11sin232sin23x xx-≤≤⇒≤+≤⇒-≤-≤-+,∴2111sin23x-≤-≤+,∴函数sin2sin=+xyx的最大值是13;最小值是1-.故正确答案为:13;1-.21.(2020·上海高一课时练习)若函数2()cos sin(0)=-+>f x x a x b a的最大值为0,最小值为4-,则实数a=_________,b=________.【正确答案】22-【详细解析】2sin si)n(1xf a x bx=--++,令sin(11)t x t=-≤≤,则21(11)y t at b t--++≤≤=-,函数的对称轴为2at=-,当12a-≤-,即2a≥时,110,2,114,2,a b aa b b-+++==⎧⎧⇒⎨⎨--++=-=-⎩⎩当102a-<-<,即02a<<时,2()()1022a aa b---⋅-++=且114a b--++=-,此时方程组无解;∴2,2,a b =⎧⎨=-⎩故正确答案为:2,2-. 五、参考解答题22.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【正确答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【详细解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.23.(2020·涡阳县第九中学高一月考)已知函数()()2sin (0,0)f x x ωϕωϕπ=+><<最小正周期为π,图象过点4π⎛⎝. (1)求函数()f x 详细解析式 (2)求函数()f x 的单调递增区间.【正确答案】(1)()2sin(2)4f x x π=+;(2)()3,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【详细解析】 (1)由已知得2ππ=ω,解得2ω=.将点4π⎛⎝代入详细解析式2sin 24πϕ⎛⎫=⨯+ ⎪⎝⎭,可知cos ϕ=,由0ϕπ<<可知4πϕ=,于是()2sin 24f x x π⎛⎫=+⎪⎝⎭. (2)令()222242k x k k Z πππππ-+≤+≤+∈解得()388k x k k Z ππππ-+≤≤+∈, 于是函数()f x 的单调递增区间为()3,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.24.(2020·全国高三(文))( 1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:作图:( 2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的. ( 3)求函数()f x 图象的对称轴方程.【正确答案】( 1)见详细解析( 2) 见详细解析( 3) 22,3x k k Z ππ=+∈.【详细解析】(1)先列表,后描点并画图;(2)把sin y x =的图象上所有的点向左平移6π个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到1sin()26y x π=+的图象,即1sin()26y x π=+的图象; (3)由12,2,2623x kx x k k Z ππππ+=+=+∈, 所以函数的对称轴方程是22,3x k k Z ππ=+∈. 25.(2020·全国高一课时练习)求函数πtan(3)3y x =-的定义域、值域,并判断它的奇偶性和单调性.【正确答案】定义域为5|,,318k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭R Z 且,值域为R,非奇非偶函数,递增区间为5,()183183k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z 【详细解析】tan y t =的定义域为|,2t t k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,单调增区间为,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.又tan 33y x π⎛⎫=-⎪⎝⎭看成tan ,33y t t x π==-的复合函数,由2t k ππ≠+得5,318k x k Z ππ≠+∈, 所以所求函数的定义域为5|,318k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,值域为R ; 函数tan 33y x π⎛⎫=- ⎪⎝⎭的定义域不关于原点对称,因此该函数是非奇非偶函数; 令3232k x k πππππ-<-<+,解得5,318318k k x k Z ππππ-<<+∈, 即函数tan 33y x π⎛⎫=-⎪⎝⎭的单调递增区间为5,,318318k k k Z ππππ⎛⎫-+∈⎪⎝⎭. 26.(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【正确答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【详细解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤, ∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭,∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭, ∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 27.(2020·镇原中学高一期末)已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><,在一周期内,当12x π=时,y 取得最大值3,当712x π=时,y 取得最小值3-,求(1)函数的详细解析式;(2)求出函数()f x 的单调递增区间、对称轴方程、对称中心坐标; (3)当,1212x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 【正确答案】(1)()3sin 23f x x π⎛⎫=+⎪⎝⎭;(2)增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,对称轴方程为212k x ππ=+,k Z ∈,对称中心为,062k ππ⎛⎫-+⎪⎝⎭(k Z ∈);(3)3,32⎡⎤⎢⎥⎣⎦. 【详细解析】 ( 1)由题设知,3A =, 周期7212122T πππ=-=,T π=,由2T πω=得2ω=.所以()()3sin 2f x x ϕ=+. 又因为12x π=时,y 取得最大值3, 即3sin 36ϕπ⎛⎫+=⎪⎝⎭,262k ππϕπ∴+=+,解得23k πϕπ=+,又ϕπ<,所以3πϕ=,所以()3sin 23f x x π⎛⎫=+⎪⎝⎭. ( 2)由222232k x k πππππ-≤+≤+,得51212k x k ππππ-≤≤+.所以函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 由232x k πππ+=+,k Z ∈,得212k x ππ=+,k Z ∈. 对称轴方程为212k x ππ=+,k Z ∈.. 由23x k ππ+=,得62πk πx =-+(k Z ∈). 所以,该函数的对称中心为,062k ππ⎛⎫-+ ⎪⎝⎭(k Z ∈). ( 3)因为,1212x ππ⎡⎤∈-⎢⎥⎣⎦,所以2,362x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以33sin 2323x π⎛⎫≤+≤ ⎪⎝⎭.所以值域为:3,32⎡⎤⎢⎥⎣⎦. 所以函数()f x 的值域为3,32⎡⎤⎢⎥⎣⎦.。
三角函数图像与性质练习题及答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--三角函数的图像与性质练习题一 选择题1.把函数=sin y x 的图像上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图像向左平移4π个单位,这时对应于这个图像的解析式是( )A .cos 2y x =B .sin 2y x =-C .sin(2)4y x π=-D .sin(2)4y x π=+2.函数cos(4)3y x π=+图象的两条相邻对称轴间的距离为( )A .π8B .π4C .π2D .π3.函数21cos ()xf x -=( )A .在ππ(,)22-上递增B .在π(,0]2-上递增,在π(0,)2上递减C .在ππ(,)22-上递减D .在π(,0]2-上递减,在π(0,)2上递增4.下列四个函数中,最小正周期为π,且图象关于直线12x π=对称的是( )A .sin()23xy π=+B .sin()23x y π=- C .sin(2)3y x π=+D .sin(2)3y x π=-5.函数231sin 232y x x =+的最小正周期等于( )A .πB .2πC .4πD .4π6.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件xy O π2π 1-1 7.函数2sin()y x ωϕ=+在一个周期内的图象如图所示,则此函数的解析式可能是( )A .2sin(2)4y x π=-B .2sin(2)4y x π=+C .32sin()8y x π=+D .72sin()216x y π=+ 8.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知函数sin()y A x ωϕ=+的图象如图所示,则该函数的解析式可能..是 ( ) 第6题图( )A .41sin(2)55y x =+B .31sin(2)25y x =+C .441sin()555y x =-D .441sin()555y x =+9.(2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )10.函数y =sin 2x +sin x -1的值域为 ( ) A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54]11.已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( ) A .-1B .3C .-1或3D .-3二 填空题12.函数y =lg sin 2x +9-x 2的定义域为________________.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.定义一种运算,令,且,则函数的最大值是______15.(北京北师特学校203届高三第二次月考理科数学)把函数x y 2sin =的图象沿 x 轴向左平移6π个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数)(x f y =图象,对于函数)(x f y =有以下四个判断: ①该函数的解析式为)6sin(2x 2y π+=; ②该函数图象关于点)0,3(π对称; ③该函数在]6,0[π上是增函数;④函数a x f y +=)(在]2,0[π上的最小值为3,则32=a .其中,正确判断的序号是________________________16.设函数f (x )=3sin(π2x +π4),若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________. 三 解答题17. 已知函数2()cos cos f x x x x a =++.(Ⅰ)求()f x 的最小正周期及单调递减区间;(Ⅱ)若()f x 在区间[,]63ππ-上的最大值与最小值的和为32,求a 的值.18. 已知函数()()0,,sin 2162cos 62cos 2>∈-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=ωωπωπωR x x x x x f 的最小正周期为π. (I)求ω的值;(II)求函数()x f 在区间⎥⎦⎤⎢⎣⎡-3,4ππ上的最大值和最小值.19. 已知函数,2cos 26sin 6sin )(2x x x x f ωπωπω-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+= 其中 R x ∈,0>ω.(1)求函数)(x f 的值域;(2)若函数)(x f 的图象与直线1-=y 的两个相邻交点间的距离为2π,求函数)(x f 的单调增区间. 20. 已知函数()()21cos 22sin sin cos 3+-=x x x x x f .(I)求⎪⎭⎫⎝⎛3πf 的值; (II)求函数()x f 的最小正周期及单调递减区间. 21. 已知向量()()3cos ,0,0,sin a x b x ==,记函数()()23sin 2f x a b x =++.求:(I)函数()f x 的最小值及取得小值时x 的集合; (II)函数()f x 的单调递增区间.22. 函数()sin()(0,0,||)2f x A x A ωϕωϕπ=+>><部分图象如图所示.(Ⅰ)求函数()f x 的解析式,并写出其单调递增区间;(Ⅱ)设函数()()2cos 2g x f x x =+,求函数()g x 在区间[,]64ππ-上的最大值和最小值. 答案1. A 【解析】把函数=sin y x 的图像上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,得到=sin 2y x 的图象,再把图像向左平移4π个单位,得到=sin 2()sin(2)cos 242y x x x ππ+=+=,所以选A.4 C32π6πo2x2-y5. A【解析】11cos 2=sin 2222x y x +-1=sin 2cos 2sin(2)223x x x π+=+,所以函数的周期222T πππω===,选A. 6. A ϕπ=时,sin(2)sin 2y x x π=+=-,过原点,便是函数过原点的时候ϕ可以取其他值,故选A 答案.7. 【答案】B解:由图象可知52882T πππ=-=,所以函数的周期T π=,又2T ππω==,所以2ω=。
专题4.2 三角函数的图像与性质【647】.(2022·全国·高考真题·★★★)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【648】.(2020·全国·高考真题·★★★)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【649】.(2019·全国·高考真题·★★★)函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【650】.(2019·全国·高考真题·★★★★) 关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【651】.(2007·海南·高考真题·★★)函数sin(2)3y x π=-在区间[,]2ππ-的简图是A .B .C .D .【652】.(2015·全国·高考真题·★★)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【653】.(2012·浙江·高考真题·★★★)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )A .B .C .D .【654】.(2011·全国·高考真题·★★) 设函数,则()A .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; B .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; C .函数()f x 在(0,)2π上单调递减,其图象关于直线对称; D .函数()f x 在(0,)2π上单调递减,其图象关于直线对称;【655】.(2018·全国·高考真题·★★★)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π【656】.(2018·天津·高考真题·★★★)将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减【657】.(2016·全国·高考真题·★★★) 函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π=【658】.(2013·全国·高考真题·★★)若函数()()sin 0y x ωϕω=+>的部分图象如图,则=ω( )A .5B .4C .3D .2【659】.(2020·海南·高考真题·★★)(多选题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【660】.(2022·全国·高考真题·★★★★)(多选题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 【661】.(2021·全国·高考真题·★★)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【662】.(2021·全国·高考真题·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【663】.(2020·全国·高考真题·★★★★)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【664】.(2011·江苏·高考真题·★★★)函数()sin()(,,f x A x A ωϕωϕ=+是常数,0,0A ω>>)的部分图象如图所示,则_____________【665】.(2022·全国·模拟预测·★★★★)(多选题)已知函数()()sin cos sin f x x x x =-,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .()f xC .()f x 的图像关于直线8x π=-对称D .将()f x 的图像向右平移8π个单位长度,再向上平移12个单位长度后所得图像对应的函数为奇函数 【666】.(2022·全国·模拟预测·★★★)(多选题)已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()3cos 26f x x π⎛⎫=- ⎪⎝⎭B .()f x 在()3,4ππ上单调递增C .()32f x >的解集为()4,43k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z .D .()f x 的图象的对称轴方程为()3x k k ππ=-∈Z【667】.(2022·全国·模拟预测·★★★)(多选题)函数()()()cos 02f x x ωϕϕπ=+≤<的部分图像如图所示,则( )A .3ω=B .65ϕπ=C .函数()f x 在314,55ππ⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 图像的对称轴方程为()315k x k ππ=-∈Z 【668】.(2022·山东师范大学附中模拟预测·★★★★)(多选题)已知函数()()sin 0,R f x x x x ωωω=>∈的图象与x 轴交点的横坐标构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π3个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论正确的是( ) A .函数()g x 是偶函数 B .()g x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C .()g x 在ππ,33⎡⎤-⎢⎥⎣⎦上是增函数D .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[1,2]【669】.(2022·湖南·长沙县第一中学模拟预测·★★★)(多选题) 已知函数()cos 2sin f x x x =+,则下列说法正确的是( ) A .直线2x π=为函数f (x )图像的一条对称轴B .函数f (x )图像横坐标缩短为原来的一半,再向左平移2π后得到()cos22sin 2g x x x =+ C .函数f (x )在[-2π,2π]上单调递增D .函数()f x 的值域为[-2 【670】.(2022·内蒙古包头·二模·★★★)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足条件()54f x f π⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()703f x f π⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎭<⎝的最小正偶数x 为___________.【671】.(2022·天津河西·一模·★★★)函数()()sin f x A x ωϕ=+(其中0>ω,0A >,π2ϕ<)的图象如图所示,则()f x 在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为______. 【672】.(2022·四川·成都七中三模·★★★★)已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.【673】.(2022·甘肃·武威第六中学模拟预测·★★★★)已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【674】.(2022·上海青浦·二模·★★★)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为⎡-⎣,则b a -的取值范围是( ) A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦【675】.(2022·青海·海东市第一中学模拟预测·★★★)将函数()πsin(2)6f x x =+的图象向右平移6π个单位长度,然后将所得图象上所有点的横坐标缩小到原来的12(纵坐标不变),得到函数()y g x =的图象,则下列说法正确的是( ) A .π()sin 46g x x ⎛⎫=+ ⎪⎝⎭B .()g x 在ππ,123⎡⎤⎢⎥⎣⎦上单调C .()g x 的图象关于直线π2x =对称D .当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域为1,12⎡⎤-⎢⎥⎣⎦【676】.(2022·青海·海东市第一中学模拟预测·★★★) 函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【677】.(2022·广东茂名·二模·★★★)已知函数π())(||)2f x x ϕϕ+< 的部分图象如图所示.将函数()f x 的图象向左平移 π12个单位得到()g x 的图象,则( )A . ()3sin(2)6g x x π=+) B .()3sin(2)12g x x 5π=+C .()2g x x =D .()2g x x =【678】.(2022·河南·开封市东信学校模拟预测·★★★)若函数()f x 过点,其导函数()cos(2)0,02f x A x A πϕϕ⎛⎫'=+><< ⎪⎝⎭的部分图象如图所示,则()f π=( )A .0B .12C .22D .2 【679】.(2022·黑龙江·哈九中三模·★★★★)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【680】.(2022·河南·平顶山市第一高级中学模拟预测·★★)函数sin 22cos x x y x=-的部分图像大致为( ) A . B .C .D .【681】.(2022·贵州·贵阳一中模拟预测·★★)如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x =-的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 【682】.(2022·浙江·湖州市菱湖中学模拟预测·★★★)函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭的大致图象为( ) A . B . C . D .【683】.(2022·山东潍坊·模拟预测·★★★)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,现将()f x 的图像向左平移6π个单位长度,得到函数()g x 的图像,则()g x 的表达式可以为( )A .2sin 2g x xB .()2cos 23g x x π=-⎛⎫ ⎪⎝⎭ C .()2sin 6g x x π⎛⎫=- ⎪⎝⎭ D .()2cos 3g x x π⎛⎫=+ ⎪⎝⎭ 【684】.(2022·全国·模拟预测·★★★)已知函数()|sin()|0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像如图,则()f x 的解析式为( )A .()2sin 213f x x π⎛⎫=++ ⎪⎝⎭ B .()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭ C .()3sin 213f x x π⎛⎫=++ ⎪⎝⎭ D .()3sin 213f x x π⎛⎫=-+ ⎪⎝⎭ 【685】.(2022·上海金山·二模·★★)已知向量()()sin2,2cos ,3,cos a x x b x ==,则函数()1,,22f x a b x ππ⎡⎤=⋅-∈-⎢⎥⎣⎦的单调递增区间为__________. 【686】.(2022·上海闵行·二模·★★)若函数cos y x x +的图像向右平移ϕ个单位后是一个奇函数的图像,则正数ϕ的最小值为___________;【687】.(2022·山东日照·三模·★★)已知函数()()(2sin 0,||)f x x ωϕωϕπ=+><的部分图像如图所示,则ϕ=________.【688】.(2022·上海·模拟预测·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条7π4π()()043f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫---< ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最大负整数x 为_________.【689】.(2022·北京工业大学附属中学三模·★★★) 已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-;②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________.【690】.(2022·四川·模拟预测·★★★★)已知函数()cos 22cos 2f x x x π=+-⎛⎫ ⎪⎝⎭,则下列结论正确的是________.(写出所有正确结论的序号) ①()f x 的最小正周期为2π;②()f x 是奇函数;③()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦;④()f x 在,26ππ⎡⎤-⎢⎥⎣⎦上单调递增. 【691】.(2022·江西·新余市第一中学三模·★★★★)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><<,若函数()y f x =的部分图象如图,函数()g x =()sin A Ax ϕ-,则下列结论正确的是___________.(填序号) ①函数()g x 的图象关于直线π12x =-对称; ②函数()g x 的图象关于点π,02⎛⎫ ⎪⎝⎭对称; ③将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象;④函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦. 【692】.(2022·天津红桥·二模·★★★)已知函数()sin()f x A x ωϕ=+,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则ϕ=__________. 【693】.(2022·黑龙江·哈尔滨三中三模·★★★)函数()()()sin 0,0,0f x A x A ωφωφπ=+>><<的部分图象如图所示,则φ=___________.【694】.(2022·江西·模拟预测·★★★★) 如图是函数()sin(2)||,02f x A x A πθθ⎛⎫=+≤> ⎪⎝⎭的部分图像,()()0f a f b ==,且对不同的12,[,]x x a b ∈,若12()()f x f x =,有12()f x x +=θ=____________.【695】.(2022·河南·灵宝市第一高级中学模拟预测·★★★)已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π60,2f x g x x ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭,k ∈Z ③函数()y f x =与函数()y g x =图象关于7π24x =对称.。
三角函数的图像与性质一、选择题(共12小题;共60分)1. 有下列说法:①作正弦函数的图象时,单位圆的半径长与 []_________________的图象关于点对称;③的图象关于直线成轴对称;④正弦函数()__________________ᗒ_ᗔ_ᗘ_ᡄ_ᡄ_ᡄ_ᡄ_ᡄA. B. C. D.2. 已知函数,则下列结论正确的是A. 的最小正周期是B. 在上单调递增C. 的图象关于对称D. 的图象关于点对称3. 已知函数,则下列结论中,正确的是A. 是奇函数B. 不是周期函数C. 定义域是D. 值域是4. 若函数在区间上单调递增,在区间上单调递减,则A. B. C. D.5. 已知函数,下面结论错误的是A. 函数的最小正周期为B. 函数在区间上是增函数C. 函数的图象关于直线对称D. 函数是奇函数6. 如图所示,对单摆施加一个作用力后单摆从某点开始来回摆动,离开平衡位置(/)_D_Dd__________-ðϨϨ____,单摆摆动时从最右边到最左边的距离为A. 厘米B. 厘米C. 厘米D. 厘米7. 函数)的图象是A. B.C. D.8. 已知和是函数的图象的两条相邻的对称轴,则A. B. C. D.9. 函数 (/内的图象是A. B.C. D.10. 已知函数,其部分图象如图所示,点(/)√D_,, ()的解析式可以是A. B.C. D.11. 函数在一个周期内的图象是A. B.C. D.12. 设,且,下列不等式中成立的是①;②;③;④.A. ①②B. ③④C. ①④D. ②③二、填空题(共5小题;共25分)13. 如果函数是定义在上的偶函数,其在上的图象如图所示,那么不等式D_Dd__________ĬĝϨϨ_14. 锐角三角形的内角分别是 D_Dd___①②③15. 已知,,的值为.16. 已知函数,则下面结论错误的是.(填序号)①函数的最小正周期为②函数在区间上是增函数;③函数的图象关于直线 (④函数是奇函数.17. 函数的最大值为,最小值为.三、解答题(共5小题;共65分)18. 求下列函数的最小正周期:(1);(2).19. 已知函数(1)当 ()D_的单调递减区间;(2)当时,在上的值域为,求20. 若的图象的一个对称中心为且,求 D21. 在锐角三角形 (){22. 已知函数(1)画出的图象,并写出其单调区间、最大值、最小值.(2)判断是否为周期函数,如果是,求出最小正周期.答案第一部分1. D 【解析】由正弦函数图象可明确判断出①②③④均正确.2. D3. D 【解析】因为,且在上是减函数,在上是增函数,所以函数的值域为.4. C 【解析】因为当时,函数是增函数,当时,函数为减函数,即当时,函数为增函数,当时,函数为减函数,所以,所以.5. D6. A 【解析】因为,所以,从最左边到平衡位置需要的时间为秒.由得从最右边到最左边的距离为厘米.7. D 【解析】利用排除法.由于时,无意义,故排除A,B,又因为时,有,,所以排除C.8. A 【解析】因为直线和是函数的图象的相邻的两条对称轴,所以,即,,又,所以,所以,因为直线是函数图象的对称轴,所以,所以,因为,所以,检验知此时直线也为函数图象的对称轴.9. D10. A【解析】由已知可得,设其周期为,则:,,,由于,可得:,可得:,整理可得:,解得:,,由于,可得:,所以,,,解得:,,所以,当时,,函数的解析式是.11. A 【解析】由,知,所以的周期为,排除B,D.令,得,所以,若,则,即图象过点.12. B 【解析】设点,点,由于函数的图象在上是上凸型的,而表示线段中点的纵坐标,故有,故①不正确;由于函数的图象在上是上凸型的,表示线段中点的纵坐标,故有,故②不正确;由于函数的图象在上是上凹型的,表示线段中点的纵坐标,故有,故③正确;由于函数的图象在上是上凹型的,故有,故④正确.第二部分13.【解析】当时,当时.由的图象知在上.因为为偶函数,也是偶函数,所以为偶函数,所以的解集为.14. ①②③【解析】故①成立.函数在区间上是减函数.因为所以,故②成立.在锐角三角形中,因为,所以,则有,即,同理,故③成立.15.【解析】构造函数,则在上是奇函数,由已知,,得,即.因为在上单调递增,且,所以,所以.16. ④【解析】因为,所以,故①正确;因为在上是减函数,则在上是增函数,故②正确;由图象知的图象关于直线对称,故③正确;为偶函数,故④不正确.17. ,【解析】由题知,而,所以函数的最大值为,最小值为.素材来源于网络,林老师编辑整理第三部分18. (1)因为,即,所以所求函数的最小正周期是.另解:.(2)因为,所以所求函数的最小正周期是.另解.19. (1)当时,.因为的单调递减区间为,所以当.即时,是减函数,所以的单调递减区间是.(2),因为,所以,所以.又因为,所以,所以.因为的值域是,所以,且,解得,.20. 因为的对称中心为,所以,把代入,得,又因为,所以当时,;当时,,所以或.21. 因为为锐角三角形,所以,所以,因为在上是增函数,所以,同理可得,,所以.22. (1)图中实线为的图象.由图可知,函数的单调递增区间为,,单调递减区间为,,,.(2)由(1)知为周期函数,最小正周期.。
三角函数的图象与性质高考复习题1.函数y =2sin )36(ππ-x (0≤x ≤9)的最大值与最小值之和为( ) A .2-3 B .0 C .-1 D .-1- 32.若函数y =cos )6(πω+x (ω∈N *)图象的一个对称中心是)06(,π,则ω的最小值为( ) A .1 B .2 C .4 D .8 3.为了得到函数y =cos )32(π+x 的图象,可将函数y =sin 2x 的图象( ) A .向左平移5π6单位长度B .向右平移5π6单位长度C .向左平移5π12单位长度D .向右平移5π12单位长度4.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13 B .3 C .6 D .9 5.已知函数f (x )=2cos 2x -sin 2x -1,则以下判断中正确的是( )A .函数f (x )的图象可由函数y =2cos 2x 的图象向左平移π8而得到B .函数f (x )的图象可由函数y =2cos 2x 的图象向左平移π4而得到C .函数f (x )的图象可由函数y =2sin 2x 的图象向右平移3π8而得到D .函数f (x )的图象可由函数y =2sin 2x 的图象向左平移3π4而得到6.已知函数f (x )=sin )6(πω+x -1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π27.已知函数f (x )=sin(ωx +φ))2,0(πϕω<>的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点)0,12(π对称D .关于点)0,125(π对称 8.已知f (x )=2sin )4(π+x ,x ∈[0,π],则f (x )的单调递增区间为________. 9.若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=________.10.已知函数f (x )=2sin ωx (ω>0)在]4,3[ππ-上的最小值是-2,则ω的最小值为________. 11.函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点)0,83(π-对称,则函数的解析式为________.12.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.。
5.4三角函数的图象与性质(精练)1.(2023春·北京昌平·高一统考期末)下列函数中,是偶函数且其图象关于点π(,0)4对称的是()A .()sin f x x =B .()cos f x x =C .()sin4f x x =D .()cos2f x x=【答案】D【解析】对于A ,函数()sin f x x =是奇函数,A 不是;对于C ,函数()sin4f x x =是奇函数,C 不是;对于B ,函数()cos f x x =是偶函数,而ππ(cos 0442f ==≠,即()cos f x x =的图象不关于点π(,0)4对称,B 不是;对于D ,函数()cos2f x x =是偶函数,ππ(cos 042f ==,即()cos2f x x =的图象关于点π(,0)4对称,D 是.故选:D2.(2023·全国·高一假期作业)设函数()πcos ,(0)4f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π5,则它的一条对称轴方程为()A .π8x =B .π8x =-C .π12x =D .π12x =-【答案】A【解析】因为的()f x 最小正周期为π5,所以2π10T ω==,所以()πcos 104f x x ⎛⎫=- ⎪⎝⎭,令104πx kπ-=,Z k ∈,解得()1040kππx k Z =+∈,所以()f x 的对称轴为直线()1040kππx k Z =+∈,当1k =时,π8x =,其它各项均不符合,所以π8x =是函数()f x 的对称轴,故选:A .3.(2022·高一课时练习)已知函数()()2cos 3f x x ϕ=+,则“2πϕ=+2kπ,k ∈Z ”是“()f x 为奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当22k πϕπ=+,k ∈Z 时,()2cos(3)2sin 3f x x x ϕ=+=-,所以()f x 为奇函数.当()f x 为奇函数时,2k πϕπ=+,k ∈Z .综上,“22k πϕπ=+,k ∈Z ”是“()f x 为奇函数”的充分不必要条件.故选:A.4.(2023春·江苏盐城·高一校联考期中)设函数π()sin()3f x x ω=+在区间(0,π)恰有三条对称轴、两个零点,则ω的取值范围是()A .513,36⎡⎤⎢⎣⎦B .519,36⎡⎫⎪⎢⎣⎭C .138(,63D .1319(,66【答案】C【解析】由函数π()sin()3f x x ω=+,其中π()0,x ∈,可得πππ(,)333x ωωπ+∈+,因为函数()f x 在区间(0,π)恰有三条对称轴、两个零点,则满足5ππ3π23ωπ<+≤,解得13863ω<≤,所以ω的取值范围为138(,]63.故选:C.5.(2023春·辽宁抚顺·高一校联考期中)已知函数()πcos 26f x x ⎛⎫=- ⎪⎝⎭在[],m n 上单调递减,且()()2f m f n -=,则tan2m n+=()A.BC.D【答案】D【解析】由函数()πcos 26f x x ⎛⎫=- ⎪⎝⎭在[],m n 上单调递减,且()()2f m f n -=,可得()π22π6Z π2π2π6m k k n k ⎧-=⎪⎪∈⎨⎪-=+⎪⎩,两式相加得π2()π4π,Z 3m n k k +-=+∈,即ππ,Z 23m n k k +=+∈,所以πtan tan 23m n +==故选:D.6.(2023春·四川绵阳·高一绵阳南山中学实验学校校考阶段练习)已知6πsin 7a =,4πsin 7b =,2πsin 7c =,则()A .a b c>>B .c b a>>C .c a b>>D .b c a>>【答案】D【解析】由诱导公式知:ππsin πsin 77a ⎛⎫=-= ⎪⎝⎭,3π3πsin πsin 77b ⎛⎫=-= ⎪⎝⎭,sin y x = 在π0,2⎛⎫⎪⎝⎭上单调递增,3π2ππsin sin sin 777∴>>,即b c a >>.故选:D.7.(2023秋·高一单元测试)函数y =的定义域是()A .}{π|2π2π2,Z x k x k k ≤≤+∈B .π|ππZ}{2,x k x k k ≤≤+∈C .}{π|2ππZ 2,x k x k k ≤≤+∈D .}{ππ|ππ,Z 33x k x k k -≤≤+∈【答案】D【解析】函数y 有意义,则2cos 210x +≥,即1cos 22x ≥-,因此2π2π2π22π,Z 33k x k k -≤≤+∈,解得ππππ,Z 33k x k k -≤≤+∈,所以函数y =的定义域是}{ππ|ππ,Z 33x k x k k -≤≤+∈.故选:D8.(2023春·河北衡水·高一校考阶段练习)不等式cos 20x ≥在[]π,π-上的解集为()A .2π2ππ,,π33⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦U B .2π2π,33⎡⎤-⎢⎥⎣⎦C .5π5ππ,,π66⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦U D .5π5π,66⎡⎤-⎢⎥⎣⎦【答案】D【解析】∵cos 20x ≥,则cos 2x ≥-,注意到[]π,πx ∈-,结合余弦函数图象解得5π5π,66x ⎡⎤∈-⎢⎥⎣⎦.故选:D.9.(2023春·江西抚州·高一江西省抚州市第一中学校考阶段练习)已知函数()()lg 2cos 1f x x =-,则函数()f x的定义域为()A .ππ2π,2π,Z33k k k ⎛⎫-+∈ ⎪⎝⎭B .ππ2π,2π,Z33k k k ⎡⎤-+∈⎢⎥⎣⎦C .Zππ,ππ2,266k k k ⎛⎫-+∈ ⎪⎝⎭D .Z ππ,ππ2,266k k k ⎡⎤-+∈⎢⎥⎣⎦【答案】A【解析】由题意得:2cos 10x ->,即1cos 2x >,则ππ2π,2π,Z 33x k k k ⎛⎫∈-+∈ ⎪⎝⎭.故选:A10.(2023春·四川眉山·高一校考阶段练习)已知()3sin2x f x =在区间π0,3⎡⎤⎢⎥⎣⎦上的最大值为()A .1B .13C .12D .43【答案】A【解析】因为π0,,3x ⎡⎤∈⎢⎥⎣⎦所以,23π0,2x ⎡⎤∈⎢⎥⎣⎦结合三角函数的图像性质,函数()f x 在π0,3⎡⎤⎢⎥⎣⎦单调递增,所以()max π1,3f x f ⎛⎫== ⎪⎝⎭故选:A.11.(2023春·四川眉山·高一校考期中)函数23cos 4cos 1y x x =-+的最小值是()A .13-B .154C .0D .14-【答案】A【解析】函数22213cos 4cos 13cos 33y x x x ⎛⎫=-+=--⎪⎝⎭又函数[]cos 1,1x ∈-,所以当2cos 3x =时,函数2213cos 33y x ⎛⎫=-- ⎪⎝⎭的最小值为13-.故选:A.12.(2023春·福建泉州·高一校考期中)(多选)若函数()π3sin 26f x x ϕ⎛⎫=-+ ⎪⎝⎭是偶函数,则ϕ的值不可能为()A .π6B .π2C .2π3D .5π6【答案】ABD【分析】根据二次函数与余弦函数的性质求解最值即可.【详解】由函数()3sin 26f x x πϕ⎛⎫=-+ ⎪⎝⎭是偶函数,可得()03f =±,即πsin 16ϕ⎛⎫-+=± ⎪⎝⎭,则ππ,Z 62k k ϕπ-+=+∈,解得2ππ,Z 3k k ϕ=+∈,当0k =时,可得2π3ϕ=,无论k 取何值,ϕ都不可能等于π6或π2或5π6.故选:ABD .13.(2023春·河南驻马店·高一校考阶段练习)(多选)下列大小关系中正确的是()A .cos11sin10cos168︒<︒<︒B .cos168sin10cos11︒<︒<︒C .sin11sin168cos10︒<︒<︒D .sin168cos10sin11︒<︒<︒【答案】BC【分析】根据二次函数与余弦函数的性质求解最值即可.【详解】 cos11sin 79sin100︒=︒>︒>,又cos1680︒<,cos168sin10cos11∴︒<︒<︒;且sin11sin168sin12cos10cos80︒<︒=︒<︒=︒.故选:BC.14.(2023春·甘肃兰州·高一校考开学考试)(多选)下列不等式中成立的是()A .sin sin 810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B .()cos400cos 50︒>-︒C .sin 3sin 2>D .87sincos 78ππ>【答案】BD【分析】根据二次函数与余弦函数的性质求解最值即可.【详解】对于A ,因为02810πππ-<-<-<,且函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,则sin sin 810ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,因为()cos 400cos 36040cos 40︒=︒+︒=︒,()cos 50cos50-︒=︒,且函数cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,则cos 40cos50︒>︒,即()cos400cos 50︒>-︒,故B 正确;对于C ,因为32322ππ<<<,且函数sin y x =在3,22ππ⎛⎫⎪⎝⎭上单调递减,则sin3sin 2<,故C 错误;对于D ,因为7733cossin sin sin 82888πππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,8sin sin 77ππ⎛⎫=- ⎪⎝⎭,且30782πππ<<<,函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增,则3sin sin 78ππ<,即87sin cos 78ππ>,故D 正确;故选:BD15.(2022春·辽宁大连·高一大连八中校考期中)(多选)下列坐标所表示的点中,是函数πtan(26x y =-图像的对称中心的是()A .5π(,0)3-B .π(,0)3C .2π(,0)3D .4π(,0)3【答案】ABD【分析】根据二次函数与余弦函数的性质求解最值即可.【详解】令ππ,Z 262x k k -=∈,解得ππ,Z 3x k k =+∈,A 选项,当2k =-时,π5π2π33x =-+=-,故对称中心为5π(,0)3-,A 正确;B 选项,当0k =时,π3x =,故对称中心为π(,0)3,B 正确;C 选项,令π2ππ33k +=,解得13k =,不合要求,舍去,C 错误;D 选项,当1k =时,4π3x =,故对称中心为4π,03⎛⎫⎪⎝⎭,D 正确;故选:ABD16.(2023·上海)(多选)已知函数()πtan 2(0)6f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期是π2,则()A .2ω=B .()()π2π125f f ->C .()f x 的对称中心为()ππ,0412k k ⎛⎫+∈ ⎪⎝⎭Z D .()f x 在区间ππ,123⎛⎫⎪⎝⎭上单调递增【答案】BCD【解析】因为函数()πtan 2(0)6f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期是π2,所以ππ22T ω==,又0ω>,得到1ω=,所以π()tan(26f x x =-,选项A ,因为1ω=,故选项A 错误;选项B ,因为()()πππ2π19π11πtan()tan ,tan()tan()123353030f f -=-=-==-,又π11ππ03302<<<,由tan y x =的性质知,π11πtan tan 330<,所以()()π2π125f f ->,故选项B 正确;选项C ,由ππ2(Z)62k x k -=∈,得到()ππ412k x k =+∈Z ,所以π()tan(2)6f x x =-的对称中心为()ππ,0412k k ⎛⎫+∈ ⎪⎝⎭Z ,故选项C 正确;选项D ,当ππ,123x ⎛⎫∈ ⎪⎝⎭时,ππ2(0,62x -∈,由tan y x =的性质知,()f x 在区间ππ,123⎛⎫⎪⎝⎭上单调递增,故选项D 正确.故选:BCD.17.(2023·全国·高一专题练习)(多选)下列关于函数πtan 23y x ⎛⎫=-+ ⎪⎝⎭的说法正确的是()A .在区间ππ,312⎛⎫-- ⎪⎝⎭上单调递减B .最小正周期是πC .图象关于点5π,012⎛⎫⎪⎝⎭成中心对称D .图象关于直线π12x =-成轴对称【答案】AC【解析】对于A ,令ππππ2π232k x k -+<-<+,k ∈Z ,解得ππ5ππ122122k k x -+<<+,当1k =-时,7ππ1212x -<<-,所以πtan 23y x ⎛⎫=-+ ⎪⎝⎭在7ππ,1212⎛⎫-- ⎪⎝⎭上单调递减,又ππ7ππ,,3121212⎛⎫⎛⎫--⊆-- ⎪ ⎪⎝⎭⎝⎭,故函数πtan 23y x ⎛⎫=-+ ⎪⎝⎭在区间ππ,312⎛⎫-- ⎪⎝⎭上单调递减,正确;对于B ,πtan 23y x ⎛⎫=-+ ⎪⎝⎭最小正周期为ππ22T ==-,错误;对于C ,令ππ232k x -+=得,ππ,Z 64k x k =-∈,所以πtan 23y x ⎛⎫=-+ ⎪⎝⎭对称中心为ππ,0,Z 64k k ⎛⎫-∈ ⎪⎝⎭,当1k =-时,5π,012⎛⎫⎪⎝⎭是对称中心,正确;对于D ,函数πtan 23y x ⎛⎫=-+ ⎪⎝⎭不成轴对称,没有对称轴,错误.故选:AC.18.(2023·全国·高三专题练习)函数πtan 34y x ⎛⎫=-+ ⎪⎝⎭的单调递减区间为.【答案】ππππ,()12343k k k ⎛⎫-++∈ ⎪⎝⎭Z 【解析】ππtan 3tan 344y x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭.由()()ππππ3πZ Z 242ππππ12343k k k k k x x k -+<-<+∈⇒+<<+∈-,故函数πtan 34y x ⎛⎫=-+ ⎪⎝⎭的单调递减区间为ππππ,()12343k k k ⎛⎫-++∈ ⎪⎝⎭Z 故答案为:ππππ,()12343k k k ⎛⎫-++∈ ⎪⎝⎭Z 19.(2023春·广东佛山·高一校考阶段练习)若()ππcos 232f x x ϕϕ⎛⎫⎛⎫=++< ⎪⎪⎝⎭⎝⎭是奇函数,则ϕ=.【答案】6π/16π【解析】由题设πππ32k ϕ+=+且Z k ∈,故ππ6k ϕ=+,Z k ∈,又π2ϕ<,故0k =有π6ϕ=.故答案为:π620.(2023春·高一课时练习)函数1πsin 226y x ⎛⎫=- ⎪⎝⎭与y 轴最近的对称轴方程是.【答案】π6x =-【解析】令ππ2π,62x k k -=+∈Z ,解得ππ,23k x k =+∈Z ,令1k =-,则π6x =-;令0k =,则π3x =;因为ππ63-<,所以与y 轴最近的对称轴方程是π6x =-.故答案为:π6x =-.21.(2023·全国·高一专题练习)已知函数()()()cos 2R ϕ=+∈f x x x 的图象关于点2π,03⎛⎫ ⎪⎝⎭中心对称,则ϕ的最小值为.【答案】π6【解析】因为函数()()()cos 2R ϕ=+∈f x x x 的图象关于点2π,03⎛⎫ ⎪⎝⎭中心对称,所以2ππ2π,Z 32k k ϕ⨯+=+∈,所以5ππ,Z 6k k ϕ=-+∈,则当1k =时,ϕ的最小值为π6.故答案为:π622.(2023春·高一单元测试)已知函数2π()log cos 26f x x ⎛⎫=- ⎪⎝⎭的单调增区间为.【答案】ππ(π,π+Z612k k k -∈【解析】令πcos 26t x ⎛⎫=- ⎪⎝⎭,由0t >,可得πcos 206x ⎛⎫-> ⎪⎝⎭,所以πππ2π22π+,Z 262k x k k -<-<∈,解得ππππ+,Z 63k x k k -<<∈,所以函数的定义域为ππ(π,π+Z 63k k k -∈,由余弦函数的性质可知:πcos 26t x ⎛⎫=- ⎪⎝⎭在ππ(π,π+Z 612k k k -∈上单调递增,在ππ(π+,π+),Z 123k k k ∈上单调递减,又因为2()log f x t =在定义域上为单调递增函数,由复合函数的单调性可知:函数2π()log cos 26f x x ⎛⎫=- ⎪⎝⎭的单调增区间为ππ(π,π+),Z 612k k k -∈.故答案为:ππ(π,π+),Z612k k k -∈23.(2023春·陕西渭南·高一白水县白水中学校考期中)若0πϕ<<,函数()cos(2)f x x ϕ=+在区间ππ,66⎡⎤-⎢⎥⎣⎦上单调递减,且在区间π0,6⎛⎫⎪⎝⎭上存在零点,则ϕ的取值范围是.【答案】ππ,32⎡⎫⎪⎢⎣⎭【解析】当ππ,66x ⎡⎤∈-⎢⎣⎦时,ππ2,33x ϕϕϕ⎡⎤+∈-++⎢⎥⎣⎦,因为0πϕ<<,函数()cos(2)f x x ϕ=+在区间ππ,66⎡⎤-⎢⎥⎣⎦上单调递减,所以[]ππ,0,π33ϕϕ⎡⎤-++⊆⎢⎥⎣⎦,所以π03ππ3ϕϕ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即π2π33ϕ≤≤,当π0,6x ⎛⎫∈ ⎪⎝⎭时,π2,3x ϕϕϕ⎛⎫+∈+ ⎪⎝⎭,因为0πϕ<<,()f x 在区间π0,6⎛⎫⎪⎝⎭上存在零点,所以ππ23ϕϕ<<+,解得ππ62ϕ<<,综上:ππ32ϕ≤<,故答案为:ππ,32⎡⎫⎪⎢⎣⎭24.(2023春·陕西西安·高一西北工业大学附属中学校考阶段练习)求函数()2ln cos 2f x x ⎛=- ⎝⎭的定义域为.【答案】ππ2π,2π,Z46k k k ⎛⎤-++∈ ⎥⎝⎦【解析】根据题意可得12sin 0x -≥,解得1sin 2x ≤,所以7ππ2π,2π,Z 66x k k k ⎡⎤∈-++∈⎢⎥⎣⎦;又2cos 02x -,即cos 22x >,解得ππ2π,2π,Z 44x k k k ⎛⎫∈-++∈ ⎪⎝⎭取交集部分可得,()f x 的定义域为ππ2π,2π,Z 46k k k ⎛⎤-++∈ ⎥⎝⎦.故答案为:ππ2π,2π,Z46k k k ⎛⎤-++∈ ⎥⎝⎦25.(2023·全国·高一专题练习)已知关于x 的不等式2cos 4cos 1x x a -+≥在π0,2⎡⎤⎢⎥⎣⎦内恒成立,则实数a 的取值范围是.【答案】[)4,∞+【解析】由2cos 4cos 1x x a -+≥得2cos 4cos 1a x x ≥-++,设cos t x =,因π0,2x ⎡⎤∈⎢⎥⎣⎦,所以[]cos 0,1t x =∈,则241a t t ≥-++在[]0,1t ∈上恒成立,设()241f t t t =-++,则二次函数()f t 的对称轴为2t =,因其开口向下,所以[]0,1t ∈时函数()f t 单调递增,所以()f t 的最大值()14f =,故4a ≥,故答案为:[)4,∞+26.(2023春·山东日照·高一统考期中)函数()π3cos 23f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在π5π,36⎡⎤-⎢⎥⎣⎦上是减函数,且在[]0,2π上恰好取得一次最小值3-,则ω的取值范围是.【答案】12,65⎡⎤⎢⎥⎣⎦【解析】因为02x π≤≤,所以πππ24π333x ωω≤+≤+.因为()f x 在[]0,2π上恰好取得一次最小值3-,所以ππ4π3π3ω≤+<,所以1263ω≤<.因为π5π36x -≤≤,所以ππππ5ππ1322π9333339x ωωω-<-+≤+≤+<.因为,()f x 在π5π,36⎡⎤-⎢⎥⎣⎦上是减函数,根据余弦函数的单调性可知ππ20335πππ33ωω⎧-+≥⎪⎪⎨⎪+≤⎪⎩,解得205ω<≤.所以,1265ω≤≤.故答案为:12,65⎡⎤⎢⎥⎣⎦.27.(2022秋·黑龙江齐齐哈尔·高一统考期末)函数()πsin 14f x x ⎛⎫=++ ⎪⎝⎭的图象的对称轴方程为,对称中心为.【答案】()ππ4x k k =+∈Z ()ππ,04k k ⎛⎫-∈ ⎪⎝⎭Z 【解析】由πππ,42x k k +=+∈Z ,解得ππ,4x k k =+∈Z ,所以函数()f x 的对称轴方程为()ππ4x k k =+∈Z .令ππ,4x k k +=∈Z ,得ππ,4x k k =-+∈Z ,所以函数()f x 的对称中心为()ππ,04k k ⎛⎫-∈ ⎪⎝⎭Z .故答案为:()ππ4x k k =+∈Z ,()ππ,04k k ⎛⎫-∈ ⎪⎝⎭Z 28.(2023·全国·高一课堂例题)求函数π2sin 36y x ⎛⎫=-++ ⎪⎝⎭,[0,π]x ∈的最大值为,最小值为.【答案】41【解析】因为[0,π]x ∈,所以ππ7π,666x ⎡⎤+∈⎢⎥⎣⎦,所以1πsin 126x ⎛⎫-≤+≤ ⎪⎝⎭,所以π22sin 16x ⎛⎫-≤-+≤ ⎪⎝⎭,所以π12sin 346x ⎛⎫≤-++≤ ⎪⎝⎭,故函数π2sin 36y x ⎛⎫=-++ ⎪⎝⎭,[0,π]x ∈的最大值为4,最小值为1.故答案为:4,129.(2023秋·高一课时练习)(1)函数()π24f x x ⎛⎫=+ ⎪⎝⎭,π,02x ⎡⎤∈-⎢⎥⎣⎦的值域为;(2)函数()23πsin 0,42f x x x x ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是.【答案】⎡-⎣1【解析】(1)当π,02x ⎡⎤∈-⎢⎥⎣⎦时,π3ππ2,444x ⎡⎤+∈-⎢⎣⎦,πcos 242x ⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,()f x -∴∈⎡⎣,即()f x 的值域为⎡-⎣;(2)()222331sin 1cos cos 444f x x x x x x x =+-=-+-=-++,π0,2x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭;令cos x t =,则[]0,1t ∈,()221142g t t t ⎛⎫=-++=--+ ⎪ ⎪⎝⎭,则当2t =时,()max 1g t =,即()f x 的最大值为1.故答案为:⎡-⎣;1.30.(2023秋·高一课时练习)求下列函数的值域.(1)212cos 2sin y x x =-+;(2)2sin 2sin x y x-=+;(3)ππ()2sin 2,0,62f x x x ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦.【答案】(1)332,⎡⎤-⎢⎥⎣⎦(2)13,3⎡⎤⎢⎥⎣⎦(3)[]1,2-【解析】(1)2221312cos 2sin 2sin 2sin 12sin .22y x x x x x ⎛⎫=-+=+-=+- ⎪⎝⎭当1sin 2x =-时,min 32y =-;当sin 1x =时,max 3y =.∴函数212cos 2sin y x x =-+的值域为3,32⎡⎤-⎢⎥⎣⎦.(2)()42sin 412sin 2sin x y x x-+==-++,∵1sin 1x -≤≤,∴12sin 3x ≤+≤,∴44432sin x≤≤+,141332sin x≤-≤+,即,133y ⎡⎤∈⎢⎥⎣⎦.∴函数2sin 2sin x y x -=+的值域为1,33⎡⎤⎢⎥⎣⎦.(3)πππ7π0,,2,2666x x ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦,根据正弦函数的性质,可知π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦故[]π2sin 21,26x ⎛⎫+∈- ⎪⎝⎭.即函数的值域为[]1,2-.2.(2023·全国·高一课堂例题)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭在区间ππ,43⎛⎫- ⎪⎝⎭上恰有一个最大值点和一个最小值点,则实数ω的取值范围为()A .8,73⎡⎫⎪⎢⎣⎭B .8,43⎛⎫ ⎪⎝⎭C .204,3⎡⎫⎪⎢⎣⎭D .20,73⎛⎫ ⎪⎝⎭【答案】B【解析】因为()f x 在区间ππ,43⎛⎫- ⎪⎝⎭上恰有一个最大值点和一个最小值点,所以ππ342T ⎛⎫--> ⎪⎝⎭,所以127ω>.令π6t x ω=+,当ππ,43x ⎛⎫∈- ⎪⎝⎭时,ππππ,4636t ωω⎛⎫∈-++ ⎪⎝⎭,于是()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭在区间ππ,43⎛⎫- ⎪⎝⎭上的最值点个数等价于()2sin g t t =在ππππ,4636ωω⎛⎫-++ ⎪⎝⎭上的最值点个数.由127ω>知,ππ046ω-+<,ππ036ω+>,因为()g t 在ππππ,4636ωω⎛⎫-++ ⎪⎝⎭上恰有一个最大值点和一个最小值点,所以3ππππ,2462πππ3π,2362ωω⎧-<-+<-⎪⎪⎨⎪<+<⎪⎩解得843ω<<.答案:B.2.(2023春·河南新乡·高一新乡市第一中学校考阶段练习)已知2πππ()sin (0),363f x x f f ωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()f x 在区间ππ,63⎛⎫ ⎪⎝⎭上有最大值,无最小值,则ω的值为()A .223B .263C .343D .383【答案】A 【解析】因为2πππ()sin (0),363f x x f f ωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数()f x 的图象关于πππ6324x +==对称,且()f x 在区间ππ,63⎛⎫ ⎪⎝⎭上有最大值,无最小值,所以ππ2πsin 1443f ω⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()π2ππ2π,Z 432k k ω+=+∈,所以()8282=8Z 33k k k ω=+--∈,当1k =时,223ω=,当2k =时,462π3πππ,46323363T ω===<-,此时在区间ππ,63⎛⎫ ⎪⎝⎭内已存在最小值;当2k >时,462π3πππ,46323363T ω><=<-,此时在区间ππ,63⎛⎫ ⎪⎝⎭内已存在最小值.故选:A .3.(2023春·江西宜春·高一江西省宜丰中学校考阶段练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为()A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ C .4280,8,33⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【答案】B【解析】由已知,函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,所以()111π2ππ2πZ 3k x k k ω-≤-≤∈,解得:()1112π2π2ππZ 33k k x k ωωωω-≤≤+∈,由于()111Z π,π,642π2π2ππ33k k k ωωωω⎡⎤⎡⎤⊆⎢⎥⎢⎣⎦⎣⎦-+∈,所以112ππ2π632πππ43k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()11141248Z 3k k k ω-≤≤+∈①又因为函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,43x ⎡⎤∈⎢⎥⎣⎦上()0f x ≥恒成立,所以()222πππ2π2π+Z 232k x k k ω-≤-≤∈,解得:()2222π2ππ5πZ 66k k x k ωωωω-≤≤+∈,由于()2222π2ππ5π,Z 6π,46π3k k k ωωωω-+⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣∈⎦,所以222πππ462ππ5π36k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()2222586Z 32k k k ω-≤≤+∈②又因为0ω>,当120k k ==时,由①②可知:04432532ωωω⎧⎪>⎪⎪-≤≤⎨⎪⎪-≤≤⎪⎩,解得403ω⎛⎤∈ ⎥⎝⎦,;当121k k ==时,由①②可知:028*******2ωωω⎧⎪>⎪⎪≤≤⎨⎪⎪≤≤⎪⎩,解得1782ω⎡⎤∈⎢⎥⎣⎦,.所以ω的取值范围为4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦.故选:B.4.(2023春·辽宁·高一辽宁实验中学校考阶段练习)若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫ ⎪⎝⎭上不单调,则实数ω的取值范围是.【答案】()()1,24,⋃+∞【解析】由题意得()()cos cos 033f x x x ππωωω⎛⎫⎛⎫=-=-> ⎪ ⎪⎝⎭⎝⎭,若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫ ⎪⎝⎭上单调递增,则π+2π2π,Z 3k x k k πω-≤-≤∈,解得:2+2π+2π33,Z k k x k ππωω-≤≤∈,所以2+2π36,Z +2π33k k k ππωππω⎧-⎪≤⎪⎪∈⎨⎪⎪≤⎪⎩,解得412,Z 16k k k ωω≥-+⎧∈⎨≤+⎩,即41216,Z k k k ω-+≤≤+∈,因为41216,k k k -+≤+∈Z ,所以56k ≤且0ω>,所以0k =,01ω<≤①若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫ ⎪⎝⎭上单调递减,则2ππ+2π,Z 3k x k k πω≤-≤∈,解得4+2π+2π33,Z k k x k ππωω≤≤∈,所以+2π36,Z 4+2π33k k k ππωππω⎧⎪≤⎪⎪∈⎨⎪⎪≤⎪⎩,解得212,Z 46k k k ωω≥+⎧∈⎨≤+⎩,即21246,Z k k k ω+≤≤+∈,因为21246,Z k k k +≤+∈,所以13k ≤且0ω>,所以0k =,24ω≤≤②又因为函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫ ⎪⎝⎭上不单调,且0ω>,所以ω的取值为①②所表示的不等式的补集,即12ω<<或4ω>.故答案为:12ω<<或4ω>.。
专题5.3 三角函数的图象与性质题型一 三角函数的值域题型一 三角函数的值域例1.(2023春·重庆铜梁·高一铜梁中学校校考期中)求2()2cos 2sin 3R f x x x x =--+∈()的最小值是_____例2.(2023·上海·高三专题练习)已知函数()1πsin 223f x x ⎛⎫=- ⎪⎝⎭,ππ,44x ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的值域为______.练习1.(2023春·北京·高一清华附中校考期中)当0,2x π⎛⎤∈ ⎥⎝⎦时,()14sin sin f x x x =+的最小值为( ) A .5 B .4C .2D .1练习2.(2023春·江苏镇江·高三江苏省扬中高级中学校联考期中)函数π()cos (sin ),[0,]4f x x x x x =∈的最大值与最小值的和为( )A B C D .3练习3.(2022·高三课时练习)函数y =tan(π-x ),x ∈(,)43ππ-的值域为________.练习4.(2023·全国·高三专题练习)函数()sin 2sin 1cos x xf x x=+的值域__________.练习5.(2023·福建龙岩·统考模拟预测)已知()23sin 8cos2xf x x =-,若()()f x f θ≤恒成立,则sin θ=( )A .35B .35 C .45D .45-题型二 求三角函数的周期性,奇偶性,单调性,对称性例3.(2023春·北京·高三北京一七一中校考期中)下列函数中,最小正周期为π的奇函数是( )A .sin2cos2y x x =+B .sin cos y x x =+C .πsin 22y x ⎛⎫=+ ⎪⎝⎭D .πcos 22y x ⎛⎫=+ ⎪⎝⎭例4.(2023春·海南海口·高三海口一中校考期中)(多选)已知函数()π2sin 26f x x ⎛⎫=-- ⎪⎝⎭则( )A .函数()f x 的最小正周期为2πB .函数()f x 的图像关于直线π6x =-对称 C .函数()f x 为偶函数D .函数()f x 的图像向左平移ϕ个单位后关于y 轴对称,则ϕ可以为5π6练习6.(2023春·全国·高三专题练习)(多选)若函数44()sin cos f x x x =+,则( ) A .函数()f x 的一条对称轴为π4x =B .函数()f x 的一个对称中心为π,04⎛⎫⎪⎝⎭C .函数()f x 的最小正周期为π2D .若函数3()8()4g x f x ⎡⎤=-⎢⎥⎣⎦,则()g x 的最大值为2练习7.(2023春·安徽六安·高三六安市裕安区新安中学校考期中)(多选)函数()π2sin 2f x x =+⎛⎫ ⎪⎝⎭,则以下结论中正确..的是( )A .()f x 在π0,2⎛⎫⎪⎝⎭上单调递减B .直线 π6x =为()f x 图象的一条对称轴C .()f x 的最小正周期为2πD .()f x 在π0,2⎛⎫ ⎪⎝⎭上的值域是(练习8.(2023春·江西·高三校联考期中)(多选)已知函数π()cos 25x f x ⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的图象关于2π,05⎛⎫- ⎪⎝⎭对称B .()f x 的图象关于直线8π5x =对称 C .3π5f x ⎛⎫+ ⎪⎝⎭为奇函数D .()f x 为偶函数练习9.(2023·北京海淀·高三专题练习)函数()cos π6f x x ω=+⎛⎫ ⎪⎝⎭在[]π,π-的图象如图所示.则(1)()f x 的最小正周期为__________; (2)距离y 轴最近的对称轴方程__________.练习10.(2023·北京海淀·高三专题练习)函数()()()cos sin f x x a x b =+++,则( ) A .若0a b +=,则()f x 为奇函数B .若π2a b +=,则()f x 为偶函数C .若π2b a -=,则()f x 为偶函数 D .若πa b -=,则()f x 为奇函数题型三 解三角不等式例5.(2023春·广东佛山·高三佛山一中校考阶段练习)不等式tan 1x >-的解集是________.例6.(2023春·辽宁本溪·高三校考阶段练习)已知函数()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)用五点法画出函数()f x 在2,33ππ⎡⎤-⎢⎥⎣⎦上的大致图像,并写出()f x 的最小正周期;(2)1≤.练习11.(2023秋·广东深圳·高三统考期末)已知函数()()lg 2cos 1f x x =-,则函数()f x 的定义域为( )A .ππ2π,2π,Z 33k k k ⎛⎫-+∈ ⎪⎝⎭B .ππ2π,2π,Z 33k k k ⎡⎤-+∈⎢⎥⎣⎦C .Z ππ,ππ2,266k k k ⎛⎫-+∈ ⎪⎝⎭D .Z ππ,ππ2,266k k k ⎡⎤-+∈⎢⎥⎣⎦练习12.(2023春·广东深圳·高一深圳市光明区高级中学统考期中)已知函数()()2sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若()f x >x 的取值范围.练习13.(2021春·高三课时练习)解不等式1tan x ≤≤-练习14.(2023春·辽宁铁岭·高三铁岭市清河高级中学校考阶段练习)已知某地某天从6时到22时的温度变换近似地满足函数π510sin π2084y x ⎛⎫=-+ ⎪⎝⎭.(1)求该地这一天该时间段内温度的最大温差;(2)若有一种细菌在15C 到25C 之间可以存活则在这段时间内,该细菌最多能存活多长时间?练习15.(2023春·江西南昌·高三校考阶段练习)函数lgsin y x =_________.题型四 由三角函数的值域(最值)求参数例7.(2023·全国·高三专题练习)已知函数()()11sin 06f x a x x a =-≠,且()7π6f x f ⎛⎫≤ ⎪⎝⎭恒成立,则()f x =______例8.(2023春·上海青浦·高三上海市朱家角中学校考期中)设函数sin y x =定义域为[],a b ,值域为11,2⎡⎤--⎢⎥⎣⎦,则b a -的最大值为______练习16.(2023春·江苏镇江·高三江苏省镇江中学校考期中)已知()π0,sin sin3a f x x a x ⎛⎫>=-- ⎪⎝⎭=a __________.练习17.(2023春·辽宁朝阳·高三朝阳市第一高级中学校考期中)已知函数()cos f x x x =-的定义域为[,]a b ,值域为[1,2]-,则b a -的取值范围是( ) A .π,π3⎡⎤⎢⎥⎣⎦B .π5π,26⎡⎤⎢⎥⎣⎦C .π24π,3⎡⎤⎢⎥⎣⎦D .2433ππ,⎡⎤⎢⎥⎣⎦练习18.(2023·上海·高三专题练习)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.练习19.(2023·湖北襄阳·襄阳四中校考模拟预测)若函数()sin cos()f x x x ϕ=++的最小值为ϕ的一个取值为___________.(写出一个即可)练习20.(2023春·北京·高三北师大二附中校考期中)已知函数()ππ2sin 25f x x ⎛⎫=+ ⎪⎝⎭,若对任意的实数x ,总有()()()12f x f x f x ≤≤,则12x x -的最小值是( ) A .2 B .4C .πD .2π题型五 根据单调求参数例9.(2021·高一课时练习)若不等式tan x a >在ππ,42x ⎛⎫∈ ⎪⎝⎭- 上恒成立,则a 的取值范围为( ) A .1a > B .1a ≤ C .1a <- D .1a ≤-例10.(2023·山东烟台·统考二模)已知函数()()()cos 202πf x x ϕϕ=+≤<在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ϕ的取值范围为( ). A .4ππ3ϕ≤≤ B .π4π23ϕ≤≤ C .4π2π3ϕ≤≤ D .4π3π32ϕ≤≤练习21.(2023秋·云南楚雄·高三统考期末)已知函数()()πcos 03f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间3π0,2⎛⎫⎪⎝⎭上为单调函数,则ω的取值范围是______.练习22.(2023春·河南南阳·高三南阳中学校考阶段练习)(多选)若函数cos2y x =与函数()sin 2y x ϕ=+在π0,4⎡⎤⎢⎥⎣⎦上的单调性相同,则ϕ的一个值为( )A .π6B .3π4C .4π3-D .4π3练习23.(2023春·四川成都·高三成都市第二十中学校校考阶段练习)已知函数 tan y x ω=在ππ,22⎛⎫- ⎪⎝⎭内是减函数, 则( ) A .01ω<< B .10ω-≤< C .1ω≥ D .1ω≤-练习24.(2023春·辽宁·高二辽宁实验中学校考阶段练习)若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫⎪⎝⎭上不单调,则实数ω的取值范围是______.练习25.(2023·河北承德·统考模拟预测)已知1ω>,函数π()cos 3f x x ω⎛⎫=- ⎪⎝⎭.(1)当2ω=时,求()f x 的单调递增区间; (2)若()f x 在区间ππ,63⎡⎤⎢⎥⎣⎦上单调,求ω的取值范围.题型六 根据对称求参数例11.(2023春·河北石家庄·高三石家庄市第十五中学校考阶段练习)若()ππcos 232f x x ϕϕ⎛⎫⎛⎫=++< ⎪⎪⎝⎭⎝⎭是奇函数,则ϕ=_________.例12.(湖南省名校2023届高三考前仿真模拟(二)数学试题)函数()()()sin cos f x x x ϕϕ=++的图象的一条对称轴方程是π4x =-,则ϕ的最小正值为( )A .π6B .π4C .π3D .π2练习26.(2023·全国·高三专题练习)(多选)若函数()ππsin cos sin sin 36f x x x ϕϕ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的图象关于坐标原点对称,则ϕ的可能取值为( ) A .π3-B .π6-C .π3D .2π3练习27.(2023·重庆·统考模拟预测)已知函数π()sin()(0)3f x x ωω=+>,若对于任意实数x ,都有π()()3f x f x =--,则ω的最小值为( )A .2B .52C .4D .8练习28.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)已知函数()2s πsin co 2f x x x x ⎛⎫=+ ⎪⎝⎭.(1)设[0,π)θ∈,函数()f x θ+是偶函数,求θ的值;(2)若()f x 在区间,π3m ⎡⎤-⎢⎥⎣⎦上恰有三条对称轴,求实数m 的取值范围.练习29.(2023·全国·高三专题练习)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若()0f =π6x =为()f x 图象的一条对称轴,则ω的最小值为______.练习30.(2022·高三课时练习)已知()()3sin f x x ωϕ=+对任意x 都有()()33ππ+=-f x f x ,则3f π⎛⎫⎪⎝⎭等于________.题型七 由图象确定三角函数解析式例13.(2023春·陕西安康·高三陕西省安康中学校考阶段练习)已知函数()()πcos 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则( )A .()7ππ2cos 123f x x ⎛⎫=+⎪⎝⎭ B .()ππ2cos 243f x x ⎛⎫=+ ⎪⎝⎭C .()11ππ2cos 243f x x ⎛⎫=-⎪⎝⎭ D .()11ππ2cos 243f x x ⎛⎫=+⎪⎝⎭例14.(2022春·福建·高二统考学业考试)(多选)函数()()sin 0y A x A ωϕ=+>的一个周期内的图象如图所示,下列结论正确的有( )A .函数()f x 的解析式是()π2sin 23f x x ⎛⎫=- ⎪⎝⎭B .函数()f x 的最大值是2C .函数()f x 的最小正周期是πD .函数()f x 的一个对称中心是π,06⎛⎫⎪⎝⎭练习31.(2023春·四川成都·高三石室中学校考期中)如图,函数()()sin f x A x =+ωϕ(0A >,0ω>,π<ϕ)的部分图象与坐标轴的三个交点分别为()1,0P -,Q ,R ,且线段RQ 的中点M 的坐标为31,22⎛⎫- ⎪⎝⎭,则()2f -等于( )A .1B .-1CD .练习32.(2023春·吉林长春·高三东北师大附中校考阶段练习)函数()()πsin (0,0,)2f x A x A ωϕωϕ=+>><的部图象如图所示,则ω=______,ϕ=______;练习33.(2023春·辽宁沈阳·高三沈阳二十中校联考期中)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭ 的部分图像如图所示,下列说法正确的是( )A .()f x 的图像关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图像关于直线5π12x =-对称 C .将函数2cos2y x =的图像向右平移π12个单位长度得到函数()f x 的图像D .若方程()f x m =在π,02⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m 的取值范围是(2,-练习34.(湖南省部分名校联盟2023届高三5月冲刺压轴大联考数学试题)(多选)如图是某质点作简谐运动的部分图象,位移y (单位:mm )与时间t (单位:s )之间的函数关系式是()sin 0,0,0,2y A t A πωϕωϕ⎛⎫⎛⎫=+>>∈ ⎪ ⎪⎝⎭⎝⎭,则下列命题正确的是( )A .该简谐运动的初相为π6B .该简谐运动的频率为12πC .前6秒该质点的位移为12mmD .当42π,33t ⎡⎤∈⎢⎥⎣⎦时,位移y 随着时间t 的增大而增大练习35.(2023春·河北衡水·高三衡水市第二中学期末)已知函数()()tan f x A x ωϕ=+π02ϕϕ⎛⎫>< ⎪⎝⎭,,()y f x =的部分图象如图,则 7π24f ⎛⎫= ⎪⎝⎭( )A .2+BC .D .题型八 描述三角函数的变换过程例15.(2022春·福建·高二统考学业考试)为了得到函数π()2cos 3f x x ⎛⎫=+ ⎪⎝⎭的图像,只需把曲线()cos f x x =上所有的点( )A .向左平移π3个单位,再把纵坐标伸长到原来的2倍B .向右平移π3个单位,再把纵坐标伸长到原来的2倍C .向左平移π3个单位,再把纵坐标缩短到原来的12D .向右平移π3个单位,再把纵坐标缩短到原来的12例16.(北京市2023届高三高考模拟预测考试数学试题)要得到cos 2xy =的图像,只要将sin 2xy =的图像( )A .向左平移π2个单位B .向右平移π2个单位C .向左平移π个单位D .向右平移π个单位练习36.(2021·高三课时练习)函数ππ()2sin(),0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示, 为了得到这个函数的图象,只要将2sin y x =的图象上所有的点 ( )A .向右平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向右平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向右平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变练习37.(2023春·江西赣州·高三校考期中)(多选)要得到函数y x =的图象,只需将函数π24y x ⎛⎫=+ ⎪⎝⎭的图象上所有的点的( )A .先向左平移π8个单位长度,再横坐标伸长到原来的2倍(纵坐标不变)B .先向左平移π4个单位长度,再横坐标缩短到原来的12倍(纵坐标不变)C .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π4个单位长度D .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π8个单位长度练习38.(2023春·贵州·高三校联考期中)为了得到函数πsin 28y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数πcos 24y x ⎛⎫=-- ⎪⎝⎭的图象( )A .向左平移5π8个单位长度 B .向右平移5π8个单位长度 C .向左平移5π16个单位长度 D .向右平移5π16个单位长度练习39.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)为得到函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象,只需把函数()cos g x x =图象上的所有点的( )A .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向左平移π6个单位长度B .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向右平移π12个单位长度 C .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向左平移π6个单位长度D .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向右平移π12个单位长度练习40.(2023春·辽宁朝阳·高二校联考期中(多选))已知函数()()2sin (π0,)f x x ωϕϕω><=+的部分图象如图所示,则()f x 的图象可以由函数()2sin g x x =的图象( )A .先纵坐标不变,横坐标变为原来的12,再向左平移11π12个单位长度得到 B .先纵坐标不变,横坐标变为原来的2倍,再向右平移π12个单位长度得到 C .先向右平移π12个单位长度,再纵坐标不变,横坐标变为原来的12得到 D .先向右平移π6个单位长度,再纵坐标不变,横坐标变为原来的12得到题型九 求图象变换前(后)的函数解析式例17.(2023·陕西榆林·统考模拟预测)将函数cos2y x =的图象向右平移π20个单位长度,再把所得图象各点的横坐标缩小到原来的12(纵坐标不变),所得图象的一条对称轴为x =( ) A .π80B .π60C .π40D .π20例18.(2023·江苏南通·统考模拟预测)将函数()πsin 13f x x ⎛⎫=++ ⎪⎝⎭的图象上的点横坐标变为原来的12(纵坐标变)得到函数()g x 的图象,若存在()0,πθ∈,使得()()2g x g x θ+-=对任意x ∈R 恒成立,则θ=( )A .π6B .π3C .2π3D .5π6练习41.(2023·河南郑州·模拟预测)把函数()y f x =图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,再把所得曲线向右平移π4个单位长度,得到函数πcos 3y x ⎛⎫=- ⎪⎝⎭的图象,则()f x =( ) A .15πsin 212x ⎛⎫+ ⎪⎝⎭B .πsin 212x ⎛⎫- ⎪⎝⎭C .5πsin 212x ⎛⎫+ ⎪⎝⎭D .1πsin 212x ⎛⎫- ⎪⎝⎭练习42.(2023·辽宁·校联考三模)(多选)已知函数()()cos 202f x x πϕϕ⎛⎫=+-<< ⎪⎝⎭图像的一条对称轴为8x π=,先将函数()f x 的图像上所有点的横坐标伸长为原来的3倍,再将所得图像上所有的点向右平移4π个单位长度,得到函数()g x 的图像,则函数()g x 的图像在以下哪些区间上单调递减( ) A .[],2ππ B .[]2,ππ--C .79,22ππ⎡⎤⎢⎥⎣⎦D .9,42ππ⎡⎤--⎢⎥⎣⎦练习43.(2023春·重庆铜梁·高三铜梁中学校校考期中)(多选)将函数π3sin()3y x =+的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移π3个单位长度,得到函数()y g x =的图象,下列结论正确的是( ) A .函数()y g x =的图象关于点π,06⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在π0,2⎡⎤⎢⎥⎣⎦上单调递增D .函数()y g x =的图象关于直线5π12x =对称练习44.(2023·江西上饶·校联考模拟预测)已知π3是函数()sin cos f x x a x =+的一个零点,将函数()2y f x =的图象向右平移π12个单位长度后所得图象的表达式为( ) A .7π2sin 26y x ⎛⎫=- ⎪⎝⎭B .π2sin 212y x ⎛⎫=+ ⎪⎝⎭C .2cos 2y x =-D .2cos2y x =。
三角函数图像性质精选提高题一.选择题(共12小题)1.已知f(x)=(ω>0)的图象与y=1的图象的两相邻交点间的距离为π,要得到y=f(x)的图象,只须把y=cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位2.已知函数的部分图象如图所示,将函数y=f(x)的图象上所有点的横坐标缩短为原来的,纵坐标不变,再将所得图象上所有点向右平移θ(θ>0)个单位长度,得到的函数图象关于直线x=对称,则θ的最小值为()A.B.C.D.3.将函数f(x)=sinωx(ω>0)的图象向右平移个单位长度,所得图象关于点对称,则ω的最小值是()A.B.1C.D.24.若函数f(x)=sin(ωx+)(ω>0),满足f(0)=f(),且函数在[0,]上有且只有一个零点,则f(x)的最小正周期为()A.B.πC.D.2π5.将函数f(x)=3sin(2x+φ),φ∈(0,π)的图象沿x轴向右平移个单位长度,得到奇函数g(x)的图象,则φ的值为()A.B.C.D.6.函数f(x)=tanωx(ω>0)的图象的相邻两支曲线截直线y=2所得的线段长为,则f()的值是()A.B.1C.﹣1D.﹣7.函数y=2sin(﹣2x)的单调递增区间是()A.B.C.D.8.函数的图象可由函数的图象至少向右平移()个单位长度得到.A.B.C.D.9.若f(x)=cos x﹣sin x在上是减函数,则m的最大值是()A.B.C.D.10.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)单调,则ω的最大值为()A.12B.11C.10D.911.已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(,0)对称B.关于点(,0)对称C.关于直线x=对称D.关于直线x=对称12.设k∈R,则函数f(x)=sin(kx+)+k的部分图象不可能是()A.B.C.D.二.填空题(共4小题)13.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则函数的最大值是,m的最小值.14.将函数f(x)=2sin(2x+φ)(φ<0)的图象向左平移个单位长度,得到偶函数g(x)的图象,则φ的最大值是.15.函数f(x)=tanωx(ω>0)的图象的相邻的两支截直线y=所得线段长为,则f()的值是.16.设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.三.解答题(共5小题)17.已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<.(1)若cos cosφ﹣sin sinφ=0.求φ的值;(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.18.已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示:(1)求ω,φ的值;(2)设g(x)=2f()f()﹣1,当x∈[0,]时,求函数g(x)的值域.19.函数的部分图象如图所示.(1)写出φ及图中x0的值;(2)设,求函数g(x)在区间上的最大值和最小值.20.已知函数f(x)=sin2x+sin x cos x+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调增区间:(2)设g(x)=f(x+φ).当g(x)为偶函数时.求φ的值.21.已知函数f(x)=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g(x)=f(3x)在上是增函数,求ω的最大值.答案一.选择题(共12小题)1.故选:C.2.故选:A.3.故选:D.4.故选:B.5.故选:B.6.故选:D.7.故选:B.8.故选:A.9.故选:D.10.故选:B.11.故选:A.12.故选:D.二.填空题(共4小题)13.故答案为:2;.14.故答案为:﹣.15.故答案为:016.故答案为:.三.解答题(共5小题)17.已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<.(1)若cos cosφ﹣sin sinφ=0.求φ的值;(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.【解答】解:(I)(Ⅱ)当且仅当即从而,最小正实数18.已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示:(1)求ω,φ的值;(2)设g(x)=2f()f()﹣1,当x∈[0,]时,求函数g(x)的值域.【解答】解:(1)由ω==2,φ=﹣.(2)g(x)的值域为19.函数的部分图象如图所示.(1)写出φ及图中x0的值;(2)设,求函数g(x)在区间上的最大值和最小值.【解答】解:(1)Φ=x0=;(2)当πx+=时,g(x)取得最小值为=.当πx+=时,g(x)取得最大值为1×=.20.已知函数f(x)=sin2x+sin x cos x+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调增区间:(2)设g(x)=f(x+φ).当g(x)为偶函数时.求φ的值.【解答】解:(1)函数的最小正周期为=π.函数的增区间为[kπ﹣,kπ+],k∈Z.(2)φ=.21.已知函数f(x)=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g(x)=f(3x)在上是增函数,求ω的最大值.【解答】解:(1)(2)ω的最大值为。
三角函数的图像与性质
一、选择题
1.若cos x =0,则角x 等于(
)
A .k π(k ∈Z )
B .
2
π
+k π(k ∈Z )C .
π
+2k π(k ∈Z )D .-
π
+2k π(k ∈Z )2.使cos x =
m
m
-+11有意义的m 的值为()
A .m ≥0
B .m ≤0
C .-1<m <1
D .m <-1或m >13.函数y =3cos (5
2x -
6
π
)的最小正周期是()A .
5
π2B .
2
π5C .2πD .5π
4.函数y =
x x
cos 2cos 2-+(x ∈R )的最大值是(
)
A .3
5B .
2
5C .3D .5
5.函数y =2sin 2x +2cos x -3的最大值是()
A .-1
B .
2
1C .-
2
1D .-5
6.函数y =tan a
x 的最小正周期是()
A .a π
B .|a |π
C .
a
πD .
|
|a π7.函数y =tan (
π
-x )的定义域是()
A .{x |x ≠
4
π
,x ∈R }B .{x |x ≠-
4
π
,x ∈R }C .{x |x ≠k π+
4
π
,k ∈Z ,x ∈R }D .{x |x ≠k π+4
π
3,k ∈Z ,x ∈R }8.函数y =tan x (-
4π≤x ≤4
π
且x ≠0)的值域是()
A .[-1,1]
B .[-1,0)∪(0,1]
C .(-∞,1]
D .[-1,+∞)
9.下列函数中,同时满足①在(0,π
)上是增函数,②为奇函数,③以π为最小正周期的函数是()
A .y =tan x
B .y =cos x
C .y =tan 2
x D .y =|sin x |
10.函数y =2tan (3x -
4
π
)的一个对称中心是()
A .(
3
π
,0)B .(
6
π
,0)C .(-
4
π
,0)D .(-
2
π
,0)二、解答题
11.比较下列各数大小:
(1)tan2与tan9;(2)tan1与tan4.
12.求函数y =tan 2x +tan x +1(x ∈R 且x ≠
2
π
+k π,k ∈Z )的值域.13.求函数y =1cos 3cos 22-+-x x +lg (36-x 2)的定义域.
参考答案一、选择题1.B
2.B
3.D 4.C
5.C
6.B
7.D
8.B
9.A
10.C
二、解答题
11.分析:同名函数比较大小时,应化为同一单调区间上两个角的函数值后,应用函数的单调性解决;而对于不同名函数,则应先化为同名函数再求解.解:(1)tan9=tan (-2π+9),
因为
2
π
<2<-2π+9<π,而y =tan x 在(
2
π
,π)内是增函数,所以tan2<tan (-2π+9),即tan2<tan9.(2)tan4=tan (4-π)而y =tan x 在(0,
π
)内是增函数,所以tan (4-π)<tan1,即tan4<tan1.
点评:比较两个三角函数值的大小,应先将函数名称统一,再利用诱导公式将角转化到同一个单调区间内,通过函数的单调性处理.12.解:设t =tan x ,由正切函数的值域可得t ∈R ,
则y =t 2+t +1=(t +2
1
)2+43≥4
3.∴原函数的值域是[4
3,+∞).
点评:由于正切函数的值域为R ,所以才能在R 上求二次函数的值域.13.解:欲求函数定义域,则由
⎪⎩⎪⎨⎧>-≥-+-,
,03601cos 3cos 222x x x 即⎩⎨
⎧<<-≤--,
,660)1)(cos 1cos 2(x x x
也即⎪⎩⎪⎨⎧<<-≤≤,
,661cos 2
1
x x 解得⎪⎩⎪⎨⎧<<-∈+≤≤+-.
66)(π23
ππ23π
x k k x k ,Z 取k =-1、0、1,可分别得到x ∈(-6,-
3π5)或x ∈[-3π,3π]或x ∈[3
π
5,6),即所求的定义域为(-6,-
3π5)∪[-3π,3π]∪[3
π
5,6)。