富勒烯的超分子自组装研究进展
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
超分子自组装技术的研究与应用超分子自组装技术是一种基于分子尺度上的组装和自组装的技术,它是化学、物理学、材料科学等学科交叉的前沿科学领域。
随着科技的发展和研究的深入,超分子自组装技术的研究和应用已经得到不断地推进和完善,成为目前前沿科学领域中备受关注的研究方向。
一、超分子自组装技术的概念超分子自组装技术是指利用分子间相互作用力,如范德华力、氢键、静电作用力等,进行有序组装和自组装的技术,从而形成具有特定功能和性能的超分子结构。
它既与传统的构筑方法不同,又是一种全新的自组装方法。
与传统方法相比,超分子自组装的优势主要表现在以下几个方面:首先,超分子自组装是一种自然的组装方式,可以得到高度有序的微纳米结构,这对于微纳米半导体器件、微纳米晶体和新型生物医用材料等有很大意义;其次,超分子自组装是一种非常灵活和可控的组装方式,可以根据所需的结构和性能调整设备参数、反应体系和组装条件,从而得到满足需求的微纳米结构;最后,超分子自组装具有成本低廉和易于大规模生产等优点,可以应用于许多领域,如生物医学、生物传感器、光电材料等。
二、超分子自组装技术的研究方法超分子自组装技术主要包括自组装控制和晶体生长控制两种方法。
自组装控制是一种利用分子之间特定相互作用的自组装方法,可以在液态或固态下得到高度有序的微纳米结构;晶体生长控制是一种利用物质在多相界面上的自组装方式,可以得到具有晶体结构的材料。
超分子自组装技术的研究方法包括传统试验方法和计算机模拟方法。
传统试验方法通常采用透射电子显微镜、原子力显微镜、X 射线衍射等技术,对组装结构进行表征和分析;计算机模拟方法则通过计算机仿真模拟分子间相互作用力,以反映组装结构和性能的变化规律。
三、超分子自组装技术在生物医学、传感器和光电材料等领域的应用1.生物医学方面的应用:超分子自组装技术可以制备一种新型的基于核酸荧光探针材料,用于细胞信号传递和病毒检测等方面研究,具有很高的灵敏度和特异性;超分子自组装技术还可以利用DNA的自组装特性,构筑出具有药物缓释功能的纳米微粒,并能够实现药物的定向输送和减少副作用等优点;超分子自组装技术与纳米技术相结合,可以制备一种新型的仿生荷磁性载体,该载体结构稳定,具有较强的磁活性和细胞特异性吸附,可用于癌症诊断和治疗等方面。
富勒烯(C60)研究与应用现状化工与材料学院富勒烯(C60)研究与应用现状(辽宁省大连市甘井子区轻工苑1号大连工业大学化工与材料学院116034)摘要:富勒烯发现至今只有短短20年时间,由于其独特的结构和物理、化学性质,吸引了众多科学家的目光,因此在这20 年中,使得C60化学得到了很大的发展.文章综述了富勒烯的几种合成方法,并阐述了目前常用的应用现状,最后对其未来的发展作了展望。
关键词富勒烯;合成方法;应用引言富勒烯的发现始于1985 年Kroto 等【1】在高真空环境下激光溅射石墨的研究。
利用这种方法只能产生数以千计的富勒烯分子,根本无法进行富勒烯详细的性质表征研究, 当然更谈不上应用。
1990年,Krastchmer 等【2】发明了低压氦气环境下石墨电极电弧放电法合成富勒烯,能够得到克量级的C60 产物。
由于富勒烯特殊的结构和性能,在材料、化学、超导与半导体物理、生物等学科和激光防护、催化剂、燃料、润滑剂、合成、化妆品、量子计算机等工程领域具有重要的研究价值和应用前景。
1991 年富勒烯被美国《科学》杂志评为年度分子,富勒烯被列为21 世纪的新材料。
此后,科学家经过不断的探索和研究,发明了更多生产富勒烯的方法,例如连续石墨电极放电法、激光配合高温石墨棒蒸发法【3】、引入铁磁性金属催化剂法【4、5】、高温等离子体石墨蒸发法【6、7】,苯高温火焰燃烧法【8-10】等。
而且富勒烯在日常生活中的应用越来越广泛, 因而富勒烯产品在未来社会具有很好的发展前景。
2.富勒烯的合成方法2.1水下放电法水下放电法【11】将电弧室中的介质由惰性气体换为去离子水, 采用直流电弧放电, 以碳纯度为99%、直径6mm的碳棒做阳极, 直径为12mm的碳棒做阴极, 放入2. 5L 的去离子水中至其底部3mm的位置, 在电压为16 ~17V、电流为30A的条件下拉直流电弧, 产物可在水表面收集。
水下放电法不需要传统电弧法的抽气泵和高度密封的水冷真空室等系统,免除了复杂昂贵的费用, 可进一步降低反应温度, 能耗更小, 并且产物在水表面收集而不是在整个有较多粉尘的反应室。
超分子化学研究中的自组装现象超分子化学研究是当今化学界的热门研究领域之一,它以分子为基本单位,研究分子之间的相互作用和组装形成的结构性质。
其中,自组装现象是超分子化学研究中的一个关键点。
在这篇文章中,我们将探讨超分子化学研究中的自组装现象,从原理、应用等方面展开讨论。
一、自组装现象的基本原理自组装是指由分子之间的相互作用而形成的结构。
自组装具有以下几个基本特征:(1)无需外界能量的干扰即可自发进行;(2)由初始分子集合形成;(3)由静态平衡所确定。
其中,分子之间的诸多相互作用力是自组装现象的基本驱动力,其中包括静电作用力、范德华力、氢键作用力、金属配位作用力等。
自组装是一个自我组织的过程,涉及到分子之间的相互作用。
分子之间的作用力可为黏附力、范德华力、氢键力、离子键、金属配位键、静电力、π-π相互作用、水合力、疏水作用、磁相互作用等,而这些作用力的大小和特性不同,在自组装过程中发挥着不同的作用。
二、自组装现象的应用A、超分子化学超分子化学是指基于分子间非共价相互作用而实现物理、化学、生物学等领域的功能材料设计和构建。
这项技术通常涉及到自组装现象,可以用于制造材料、用于催化、在药物研究、基因方法和高分子合成等。
B、纳米技术纳米技术是一种能够制造纳米尺寸的物质和工具的知识体系。
纳米技术中的自组装技术是通过分子间的相互作用可以形成不同的结构,控制体系在纳米尺度下的结构和性能。
C、药物研究在药物研究中,自组装技术可以用于开发新型药物,如用于智能药物释放和治疗癌症的载体。
D、智能材料智能材料是指一类能够根据自身内在的能量和信息,自我调整、调节、感知、反应、适应甚至主动控制自身形态和性能的功能材料。
自组装技术在智能材料的设计上拥有重要的作用,从而实现智能电子器件、生物传感器等领域的技术应用。
三、自组装现象的发展与展望随着科技的不断推进,超分子化学作为一种新兴领域在分子材料科学与工程学中占有了举足轻重的地位。
超分子化学中的自组装现象及其应用超分子化学是指通过自组装形成的超分子体系的化学研究。
自组装是指具有相似化学性质的分子在特定条件下自发组装成具有特定结构和功能的单元。
自组装过程通常受到溶液中各种化学、物理因素的影响,例如温度、pH值、各种离子、缔合剂等等。
超分子化学中的自组装现象在诸如生命科学、纳米技术和材料科学等众多领域均有广泛的应用。
自组装的理论基础与应用自组装现象最早可追溯到20世纪初,人们起先研究牛胰岛素的自我组合。
20世纪50年代,第一批超分子化学家开始着手研究分子之间基于自组装理论的液晶化和晶体有机化学反应。
在这其中,特别是许多显示具有深入的基础因素,从而可提高新物质的顺应性、生物学及分子人工智能科学等许多领域。
随着自组装理论的进一步发展,许多具有自相似性的超分子体系也被开发和应用于各个领域。
例如,利用分子间 Von Neumann型自复制体系可构筑出分子识别基元等分子机器和信息存储材料;制备介于单个和集合态之间的有序高分子学习材料等。
金属有机超分子体系金属有机超分子体系是利用有机分子作为架子将某些金属离子进行有序的穿插形成的一种静电纳米混合物。
这种混合物结构极其复杂,目前的研究主要侧重于结构、物性等方面的研究。
近年来,这种体系受到了人们的广泛关注。
人们不仅发展了诸如有机基催化、新型催化剂、超分子荧光探针等领域,还开拓了应用于药物控制释放和能源催化等复杂系统,如不对称双立体金属催化剂对选区性催化的提高具有重要意义。
DNA自组装DNA自组装是一种将DNA序列构建成为各种形态的自组合衍生物,这些衍生物能够完成多个重要的生物功能。
DNA自组装引起了人们对基因工程的进一步思考。
DNA自组装速度快,无需化学反应,可以扩增产物,遗传信息不易丢失,不需要线性过程。
人们发现DNA的自组金体系由于自身携带着不同的复制和传递机制,因此可以应用于不同的研究领域,例如生物传感器、药物定向运输、病毒学和分子计算等。
1,3,5,7,9-五吡唑心环烯的合成及配位自组装张逸璐;姚春瑞;张前炎;谢素原【期刊名称】《厦门大学学报(自然科学版)》【年(卷),期】2024(63)1【摘要】[目的]由于结构张力等因素,碗状心环烯分子通常难以与金属离子形成配位笼状超分子结构.为了构筑碗状心环烯分子的配位笼结构,在其分子边缘修饰上具有配位功能的基团,研究其与金属间的配位自组装行为.[方法]通过1,3,5,7,9-五氯心环烯与吡唑的亲核取代反应,合成1,3,5,7,9-五吡唑心环烯,通过高分辨质谱、核磁共振波谱对其分子结构进行表征,利用紫外-可见吸收光谱和荧光发射光谱研究其光学性质,并通过核磁滴定和高分辨质谱,探究1,3,5,7,9-五吡唑心环烯分别与富勒烯C_(60)和AgSO_(3)CF_(3)在液相中的超分子自组装行为.[结果]结构表征结果表明所合成的1,3,5,7,9-五吡唑心环烯具有C_(5)对称性,吡唑基团的引入扩展了π共轭体系导致其吸收波长红移,同时增强了其荧光性能.核磁滴定和高分辨质谱分析显示,在液相中,1,3,5,7,9-五吡唑心环烯与C_(60)仅发生弱的主客体自组装行为,而可与Ag^(+)发生配位形成M_(5)L_(2)分子笼状结构.[结论]本研究成功合成了C_(5)对称且含有5个配位位点的1,3,5,7,9-五吡唑心环烯,可在液相中与Ag^(+)发生配位自组装行为,可能形成了一种M_(5)L_(2)形式的配位笼状超分子结构.【总页数】7页(P49-55)【作者】张逸璐;姚春瑞;张前炎;谢素原【作者单位】厦门大学化学化工学院【正文语种】中文【中图分类】O613.42;O613.71【相关文献】1.1,3,5,7,9-五咔唑基心环烯的合成与表征2.立体化学刚性的七配位环戊二烯基三(二苄基二硫代氨基甲酸)钛、锆、铪配合物的合成和性质3.稀土冠醚配位化合物的研究——Ⅹ Ⅸ.对苯二甲酸二(2′,3′,9′,10′-二苯并-1′,4′,8′,11′,14′-五氧杂-环十六-6′-醇)酯及其稀土配位化合物的合成和性质4.1,3,5,7,9-五吩噻嗪基与1,3,5,7,9-五吩恶嗪基心环烯的合成与表征5.1,3,5,7,9-五蒽基心环烯的合成及表征因版权原因,仅展示原文概要,查看原文内容请购买。
自组装纳米材料的制备及其性能研究随着纳米技术的发展,纳米材料的制备技术也在不断地更新换代。
在纳米材料的制备过程中,自组装技术受到了广泛的关注。
自组装是指分子或化合物在特定条件下,通过非共价相互作用,自发地形成稳定的大分子或超分子结构。
它的原理是分子间存在的化学亲和性、堆积效应、极性、范德华力等相互作用力,从而形成三维的结构。
本文将详细介绍自组装纳米材料的制备方法及其性能研究。
1. 自组装纳米材料的制备方法1.1 薄膜自组装法薄膜自组装法是指将带有电荷的分子或化合物在固体表面进行自组装,形成具有多层交替排列的超分子薄膜。
该方法主要是利用有机物和离子表面活性剂,通过静电相互作用和范德华力的作用力,形成分子层和离子层的交替排列。
1.2 聚集诱导自组装法聚集诱导自组装法是指将分子或化合物在溶液中或液晶区域中通过水合作用、π-π作用、范德华力、静电作用、氢键等非共价相互作用,自发地形成稳定的聚集体结构,从而达到3D结构的自组装。
1.3 浸渍自组装法浸渍自组装法是指将无序的纳米粒子在液相中通过吸附或化学反应等方式,实现纳米材料的自组装制备。
该方法适用于无需组装很多层的热稳定材料,且制备过程简单,操作容易。
2. 自组装纳米材料的性能研究自组装纳米材料不仅具有超大的比表面积和高效的质量转移特性,还具有明显的结构可控性和形貌可调性,因此在吸附分离、催化、传感、药物释放和光催化等领域有着广泛的应用。
2.1 吸附分离自组装纳米材料可以通过调节不同组装的结构和形貌,以及表面活性剂的选择和浓度等因素,实现对不同体系物质的选择性吸附和分离。
例如,由于纳米材料显著的比表面积,可选择性吸附CO2、甲烷、乙烯等气体,并且具有重复使用的特性,因此在天然气/乙醇混合物的分离中具有广泛的应用前景。
2.2 催化自组装纳米材料不仅具有相应体系物质较大的比表面积和高效的传质特性,还能够控制纳米材料的晶体结构和物相,提高其催化性能。
例如,由于金属纳米材料具有丰富的表面反应活性位点,可以通过可控自组装,实现金属纳米颗粒的大小、形状、晶体结构等参数的控制调节,从而提高其催化性能。
超分子化学中的自组装现象研究自组装现象是超分子化学中一个很重要的研究方向。
它是指在一定条件下,一些有机或无机分子,可以自发地自行组成有规律的结构或体系,而无需外界的作用或控制。
自组装现象在超分子化学中的应用非常广泛,例如在材料科学领域中,可以通过自组装来制作人工晶体或高分子薄膜;在纳米技术领域中,自组装可以用来制备纳米颗粒或纳米管;在生物医学领域中,自组装在药物传递和细胞成像等方面也有着很大的潜力。
自组装现象的研究始于20世纪60年代,当时学者们发现了一种叫做“micelle”(胶束)的结构。
这种结构由一些亲水分子和疏水分子组成,亲水分子会寻找周围的水分子形成包裹状,而疏水分子则会相互聚集形成核心区域,并在外层包裹着亲水分子。
这样的结构具有极强的溶解能力,因此在化学、医学和生物学等领域得到了广泛的应用。
随着研究的深入,人们逐渐意识到自组装现象不仅仅局限于胶束这种单一的结构,还可以表现出更加复杂的现象,例如纳米颗粒、纳米线和超分子聚集体等。
这些结构具有优异的物理和化学性质,因此在理论和实际应用中都备受关注。
自组装现象的研究涉及到很多方面的知识,例如物理、化学、生物学和材料科学等。
其中物理化学是自组装研究的重要学科,它着眼于探究自组装现象的物理和化学原理,并通过实验和模拟技术来验证和解释自组装现象的规律和机制。
物理化学中常常使用分子动力学(molecular dynamics, MD)等计算机模拟技术来模拟自组装现象中分子之间的相互作用。
这些模拟技术可以模拟出自组装体系的结构、动力学行为和力学性质等。
此外,各种表征技术,如X射线衍射、原子力显微镜和低角度散射等,也可以用来表征自组装体系的结构和性质。
除了实验和计算模拟技术外,理论也对自组装现象的研究起着关键的作用。
在理论方面,自组装现象的研究主要集中在热力学和动力学两个方面。
热力学方面的研究主要关注自组装体系的稳定性和相稳定性,而动力学方面的研究则关注自组装过程中粒子之间的运动和相互作用。
摘要:
超分子自组装是发展超分子电子学的重要途径。
随着纳米科学和技术的迅速发展,自组装技术已成功地应用于纳米尺度物质的维数、形貌和功能等的调控。
作为构筑分子水平上一维、二维、三维有序功能结构和高有序分子聚集态结构的关键技术,超分子自组装技术有力地推动了具有优良光、电、磁性能的分子材料和纳米功能材料更深层次的研究。
本文综述了超分子自组装在富勒烯科学领域的基础研究和应用,特别是对有利于自组织和自组装功能的富勒烯基衍生物的设计与合成、超分子作用力引导的具有特定结构的分子体系的可控自组装、以及富勒烯分子聚集态结构材料的光物理过程、超分子中电子转移和能量转移现象进行了描述;并对卟啉、四硫富瓦烯、碗烯和杯芳烃等一系列富π电子化合物和大环主体分子等包含[60]富勒烯的主体化合物的超分子作用和超分自组装体以及通过氢键、π-π作用、静电力和范德华力和金属配位作用形成的[60]富勒烯超分子自组装体进行了总结,对未来发展进行了展望。
Abstract:
Supramolecular self-assembly is a significant strategy to develop supramolecular electronics. With the rapid development of nanoscience and nanotechnology, self-assembly technology has successfully been developed and applied for tuning of dimension, morphology and function of nanomaterials. As a key methodology for construction of of 1D, 2D or 3D well-defined functional nanostructures in molecular level and high ordered molecular aggregation, it pushes deeper study on optical, electronic, magnetic molecular materials and functional nanomaterials. In this paper, the fundamental studies and
applications of supramolecular self-assembly, especially, design and synthesis of fullerene derivatives for benefiting self-organization and self-assembly which involve controllable supramolecular self- assembly with special structures;
optical physical process in the aggregation structure of fullerene molecules; electronic and energy transfer in
supramolecules were reviewed. Generally, π-rich compounds and macrocyclic host molecules, such as porphyrins, TTFs, corannulenes and calixarenes, were developed to incorporate [ 60] fullerene. Hydrogen-bonding, π-π interaction,
electrostatic effects, Van der Waals force and metal-coordination, etc. were used individually or jointly to construct self-assemble nanostructures.。