土壤中的氮素及其转化
- 格式:doc
- 大小:2.51 MB
- 文档页数:10
土壤中氮的形态和转化1、土壤中氮的形态土壤中的氮素形态分为无机态氮和有机态氮两类,二者合为土壤全氮。
1.有机态氮水溶性有机氮 : 一般不超过全氮的5%。
它们主要是一些游离的氨基酸、胺盐及酰胺类化合物,分散在土壤溶液中,很容易水解,释放出离子,是植物速效性氮源。
水解性有机氮 : 占全氮总量的50%-70%。
主要是蛋白质多肽和氨基糖等化合物。
用酸碱等处理时能水解成为较简单的易溶性化合物。
非水解性有机态氮 : 占全氮的30%-50%。
它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。
2.无机态氮土壤无机态氮很少,一般表土不超过全氮的1%-2%。
土壤无机态氮主要是铵态氮和硝态氮及亚硝态氮。
它们都是水溶性的,都能直接为植物吸收利用。
硝态氮:土壤中硝态氮主要来源于施人土壤中的硝态氮肥和微生物的硝化产物。
铵态氮:土壤中的铵态氮又分为三种,铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。
亚硝态氮:土壤中的亚硝态氮是硝化作用的中间产物。
二、土壤中氮素的转化铵态氮硝态氮吸附态铵或固定态铵水体中的硝态氮氨化作用硝化作用生物固定硝酸还原作用NH 3N 2、NO 、N 2O 挥发损失反硝化作用吸附固定淋洗损失有机氮有机氮生物固定土壤氮素形态较多,各种形态的氮素处于动态变化之中,不同形态的氮素互相转化,对于有效氮的供应强度和容量有重要意义。
1.有机态氮的转化土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。
它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。
土壤有机氮的矿化过程是包括许多过程在内的复杂过程。
① 氨化过程 氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。
氨化作用可在多种多样条件下进行。
无论水田、旱田,只要微生物活动旺盛,氨化作用都可以旺盛进行。
氨化作用产生的铵可被植物和微生物吸收利用,是农作物的优良氮素营养。
氮在土壤中的迁移转化(一)植物对土壤中氮的汲取植物从土壤中汲取氮的过程很复杂,就形态而言多为铵态氮和硝态氮。
普通旱作土壤中硝态氮比铵态氮浓度高,简单通过质流而蔓延到根部,因此硝态氮(NO3--N)是旱地植物养分主要的氮源之一;而对于水田,如种植水稻的水稻土其氮养分主要是铵态氮(NH4+-N)。
(1)硝态氮植物汲取NO3-量高,且为主动汲取;土壤pH 低时更易汲取NO3-,而NH4+可与之竟争削减植物汲取NO3-。
植物施用大量NO3-时,体内合成的有机阴离子数量增强,无机阳离子Ca2+、Mg2+和K+的堆积也相应增强,从而促使根际的pH升高。
(2)铵态氮 NH4+是植物一种抱负的氮源,在蛋白质合成中若利用NH4+则比NO3-更为节能。
NO3-结合进蛋白质以前必需还原,这是一种消耗能量的过程,还原1分子NO3-需2分子NADH(二磷酸吡啶核苷酸),而且NH4+在上壤中既不易淋失,也不易发生反硝化作用,损失较少。
当pH为7时,植物汲取NH4+较多,酸度增强则汲取量降低。
根汲取NH4+后,植物组织中无机阳离子Ca2+,Mg2+和K+浓度下降,而无机阴离子PO43-,SO42-和Cl-浓度增强,从而促使根际pH下降。
无论是根际pH升高或下降对根际中营养有效性、生物活性以及污染物的行为都有重要影响。
(二)土壤中氮素转化的重要过程 1.土壤无机氮的微生物固持和有机氮的矿化土壤无机氮的微生物固持,是指进入土壤的或土壤中原有的NH4+和NO3-被微生物转化成微生物体的有机氮。
它不同于土壤的NH4+的矿物固定,也不同于NH4+和NO3-被高等植物的同化。
土壤有机氮的矿化,是指土壤中原有的或进入到土壤中的有机肥和动植物残体中的有机氮被微生物分解改变为氨,因此,这一过程又叫氨化过程。
有机氮的矿化和矿质氮的微生物固持是土壤中同时举行的两个方向相反的过程,这两者的相对强弱受到许多因素,特殊是可供微生物利用的有机碳化物(即能源物质)的种类和数量的影响。
植物是如何吸收和利⽤⼟壤中的氮素的?⾮常愿意回答⽼师提出的问题,虽然这个氮素的吸收分解过程很复杂,但对于我们来说,只要掌握了其中的要点也就很容易理解了。
⼀、⼟壤中氮素构成总体来讲,⼟壤中的氮可分为有机氮和⽆机氮两种。
⽽有机氮是氮存在的主要形式,占总氮源的90%以上,有机氮不经转化,基本上不会被作物吸收。
⼤体可分为⽔解性和⾮⽔解性两种有机氮,另外还有少量的⽔溶性有机氮能直接被作物吸收。
⽆机氮是微⽣物活动的产物,易被作物所吸收,但也会随着变化⽽挥发。
⽆机氮主要包括铵态氮和硝态氮两种。
也有⼀部分被⼟壤吸附固定的⽆机氮。
我们平常⽤的尿素是酰胺态氮,它会转化为铵态氮被作物吸收。
⼆、⼟壤中氮素转化基本形式现在我们明⽩了,⼟壤中的氮⼤部分是以有机氮形态存在的,是不能被作物直接吸收利⽤的。
这些有机氮必须通过微⽣物⽔解和氨化过程,才能转化为铵态氮或硝态氮被作物所吸收。
下⾯简单介绍⼀下铵态氮和硝态氮的转化过程。
1、铵态氮如上图所述,铵态氮通过有机态氮的矿化作⽤转化⽽来,也能通过硝态氮的硝化作⽤转化⽽来。
铵态氮部分被粘⼟矿物固定吸附,⼀部分以铵离⼦的形态在⼟壤溶液中被作物所吸收。
2、硝态氮硝态氮中硝酸离⼦NO3可被作物直接吸收。
硝酸根离⼦NO2浓度较⼤时对作物有害。
硝态氮通过硝酸还原反应会转化成铵态氮被作物吸收。
⼀部分硝态氮会被固定成有机态氮。
特别说明:尿素作为⼀种有机氮肥,它可以通过分⼦形式被作物直接吸收,或者通过脲酶转化成铵态氮,被作物吸收。
三、我们如何利⽤氮的转化来合理施肥我们了解到了,作物氮素吸收得通过铵离⼦或者硝酸离⼦来被作物吸收。
⼤多数的氮素还是以有机态的形式存在,再通过⼀定的转化来形成铵离⼦和硝酸离⼦来被作物吸收,这些被固定的氮以⼤多数存在。
⽽⼟壤中的⼤多数氮都是由根外施肥来达到的。
所以,我们在施肥过程中,要注意提前测定⼟壤碱解氮的含量,以了解⼟壤内部有机质的含量和腐熟程度。
由于铵离⼦转化过程中会氨化,形成⽓体,容易氮素流失,所以我们在施⽤氮肥的时候,应注意施⼊覆⼟。
土壤中氮素转化过程及植物吸收方式土壤中的氮素转化过程及植物吸收方式是农业和植物生长中非常重要的一个环节。
氮素在土壤中的循环和转化,对于植物的生长发育以及农田生态系统的稳定性具有重要影响。
下面将详细介绍土壤中氮素转化的过程以及植物吸收氮素的方式。
一、土壤中氮素转化的过程1.氮固定:氮气(N2)通过闪电放电、细菌或蓝藻的作用转化为氨(NH3)、亚硝酸盐(NO2-)或硝酸盐(NO3-)。
这个过程主要发生在土壤中的根际区、豆科植物的根瘤以及水生植物的根系中。
2.脱氮:土壤中的一些细菌能够利用有机物质作为能源,通过对有机氮的分解而释放氨气(NH3)。
此外,土壤中的硝酸盐还可以通过反硝化作用还原为氨气。
3.氨氧化:土壤中的一些细菌(如氨氧化细菌)能将氨氧化为亚硝酸盐,这是一种氧化反应。
亚硝酸盐还可以进一步氧化为硝酸盐,这是另一种氧化反应。
这两个反应过程被称为氨氧化和亚硝酸盐氧化。
4.类硝化:一些细菌能够将有机氮(如氨、蛋白质)氧化为亚硝酸盐或硝酸盐。
这种氧化反应也被称为类硝化。
5.氮素沉积:氮气经大气中的物理和化学作用沉积到土壤中,形成可用于植物吸收的硝酸盐和铵盐。
二、植物吸收氮素的方式植物吸收土壤中的氮素主要发生在根系中,有以下几种方式:1.根系吸收硝态氮:植物的根细胞通过氮素转运蛋白将土壤中的硝酸盐转运到根内。
硝态氮进入根系后,一部分被还原为氨,然后转运到植物体内参与氨基酸、蛋白质和其他氮化合物的合成。
2.根系吸收铵态氮:植物根系能通过氨离子转运蛋白直接吸收土壤中的铵盐。
铵态氮进入植物体内后,一部分被转化为氨基酸,另一部分直接用于合成其他氮化合物。
3.根际微生物共生吸收:植物根际与一些细菌、真菌共生,这些共生微生物能够吸收土壤中的氮素,并将其转化为可供植物利用的形式。
植物通过与这些微生物共生,间接获取了土壤中的氮素。
总结:土壤中氮素转化的过程包括氮固定、脱氮、氨氧化、类硝化和氮素沉积等,这些过程通过细菌、蓝藻、有机物质的分解等途径进行。
土壤中的氮素及其转化1•土壤中氮素的来源和含量1.1来源①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮;④雷电降雨带来的N03—N。
1.2含量我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关2.土壤中氮素的形态3.土壤中氮素的转化3.1有机氮的矿化作用定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。
过程:有机氮'氨基酸k NH4J N +有机酸结果:生成NH4+-N (使土壤中有机态的氮有效化)3.2 土壤粘土矿物对NH4+的固定定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4 +的吸附作用②晶格固定(粘土矿物固定):NH4 +进入2:1型膨胀性粘土矿物的晶层间而被固定的作用过程:结果:减缓NH4+的供应程度(优点?缺点?3.3氨的挥发定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程过程:结果:造成氮素损失 3.4硝化作用定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象过程:结果:形成NO-N禾I」:为喜硝植物提供氮素弊:易随水流失和发生反硝化作用3.5无机氮的生物固定定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。
过程:结果:减缓氮的供应,可减少氮素的损失3.6反硝化作用定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象过程:结果:造成氮素的气态挥发损失,并污染大气3.7硝酸盐的淋洗损失NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。
结果:氮素损失,并污染水体4.小结:土壤有效氮增加和减少的途径增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物力④生物固氮;⑤雷电降雨降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物弱④ 反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时)氮肥的种类、性质和施用氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。
氮素转化模型mcmc算法概述说明以及解释1. 引言1.1 概述在当今科学研究中,模型的应用已经成为一种普遍的方法,氮素转化模型是其中具有重要意义的一个领域。
氮素转化模型可以帮助我们更好地理解和预测氮素的转化过程,对于农业生产、环境保护和生态系统管理等方面具有重要的实际应用价值。
MCMC算法则是在统计建模和贝叶斯分析中常用的方法之一。
通过利用随机采样方式和马尔可夫链蒙特卡洛(MCMC)采样技术,MCMC算法可以对复杂的概率模型进行推断和参数估计。
在氮素转化模型中应用MCMC算法可以提供关键性的参数估计结果,并为进一步研究和改进提供基础。
本文旨在对氮素转化模型和MCMC算法进行综述,并详细解释了它们之间的关系以及如何应用于氮素转化模型中。
1.2 文章结构本文主要分为五个部分:引言、氮素转化模型、MCMC算法概述、氮素转化模型的MCMC算法解释以及结论部分。
在引言部分,我们将简要介绍本文的研究内容,包括对氮素转化模型和MCMC 算法的概述。
同时还将阐明文章的结构,以便读者更好地理解全文组织和内容安排。
在氮素转化模型部分,我们将详细定义和背景知识,介绍氮素转化模型的原理和应用领域。
通过深入了解氮素转化过程和相关模型,有助于读者对后续章节的理解和技术方法的应用。
在MCMC算法概述部分,我们将介绍MCMC的基本概念、算法步骤以及其在实际案例中的应用。
这一部分作为后续章节中MCMC算法与氮素转化模型结合的基础,将为读者提供必要的背景知识。
在氮素转化模型的MCMC算法解释部分,我们将详细探讨MCMC算法在氮素转化模型中的具体应用,并解释参数估计方法及实现过程。
此外,我们还将讨论该算法存在的优势和局限性。
最后,在结论部分,我们会对全文进行总结回顾,并展望未来研究中可能存在的发展方向和挑战。
1.3 目的本文的主要目的是概述氮素转化模型和MCMC算法,并解释它们之间的关系以及如何应用于氮素转化模型中。
通过本文的阐述,读者能够对氮素转化模型和MCMC算法有一个全面且深入的了解,并理解其在科学研究和实际应用中的重要性。
土壤中的氮素及其转化1.土壤中氮素的来源和含量1.1 来源①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮;④雷电降雨带来的NO3—N。
1.2 含量我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关。
2. 土壤中氮素的形态3. 土壤中氮素的转化3.1 有机氮的矿化作用定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。
过程:有机氮氨基酸 NH4+-N+有机酸结果:生成NH4+-N(使土壤中有机态的氮有效化)3.2 土壤粘土矿物对NH4+的固定定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用②晶格固定(粘土矿物固定):NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用过程:结果:减缓NH4+的供应程度(优点?缺点?)3.3氨的挥发定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程过程:结果:造成氮素损失3.4硝化作用定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象过程:结果:形成NO3--N利:为喜硝植物提供氮素弊:易随水流失和发生反硝化作用3.5无机氮的生物固定定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。
过程:结果:减缓氮的供应,可减少氮素的损失3.6反硝化作用定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象过程:结果:造成氮素的气态挥发损失,并污染大气3.7硝酸盐的淋洗损失NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。
结果:氮素损失,并污染水体4. 小结:土壤有效氮增加和减少的途径增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物);④生物固氮;⑤雷电降雨降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物);④反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时)氮肥的种类、性质和施用氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。
土壤氮素的形态及其转化过程土壤氮素是指土壤中存在的不同形态的氮元素化合物。
氮素是植物生长和发育所必需的主要营养元素之一,在土壤中通常以无机氮和有机氮的形式存在。
土壤中的无机氮形态主要包括铵态氮(NH4+)和硝态氮(NO3-)。
铵态氮是由土壤中有机物分解产生的,也可以通过氮肥的施用或者转化过程中产生。
硝态氮则是由土壤中的氨氧化细菌通过氧化铵态氮产生。
硝态氮相对更容易被植物吸收,因为它具有更高的溶解度和更低的电荷密度,可以通过土壤水分迁移更容易到达植物根系。
土壤中的氮素转化过程主要包括氨化、硝化和脱氮三个过程。
氨化是将有机氮转化为铵态氮的过程,这一过程主要由分解有机物的微生物参与。
在氨化过程中,微生物通过分解有机物产生氨,并进一步转化为铵离子。
硝化是将铵态氮转化为硝态氮的过程,这一过程主要由氨氧化细菌参与。
在硝化过程中,氨氧化细菌氧化铵态氮为硝酸盐,产生硝态氮。
脱氮是将土壤中的硝态氮转化为氮气并释放到大气中的过程,这一过程主要由脱氮细菌参与。
土壤中氮素形态和转化过程对植物的生长和发育具有重要影响。
由于铵态氮和硝态氮的溶解度和化学活性不同,它们对植物的吸收和利用方式也不同。
铵态氮主要通过质子泵和电中性离子转运到达植物根系并被吸收,而硝态氮则主要通过硝酸胺盐共转运体转运到达植物根系并被吸收。
土壤中的氮素转化也会影响土壤中的养分循环、植物种群结构以及氮素肥料的利用效率等。
综上所述,土壤中的氮素主要存在于铵态氮、硝态氮和有机氮的形式。
氮素在土壤中通过氨化、硝化和脱氮等转化过程进行相互转化。
氮素的形态和转化过程对植物的生长和发育具有重要影响,也对土壤养分循环和植物种群结构等生态系统功能产生影响。
土壤中氮素转化过程1. 氮素在土壤中的来源和形态1.1 氮素的来源•大气沉降:大气中的氮气通过降雨等形式进入土壤中。
•植物残体和动物粪便:植物和动物的死亡体和排泄物中含有氮素,进入土壤后分解释放出来。
•化肥施用:农业生产中常用的氮肥含有丰富的氮素,施用后进入土壤。
•生物固氮:部分细菌和蓝藻具有固定氮气的能力,将氮气转化为可利用的氨态氮。
1.2 氮素的形态•无机氮:主要有铵态氮(NH4+)和硝态氮(NO3-)。
•有机氮:主要有蛋白质、氨基酸和有机酸等形式。
2. 氮素的转化过程2.1 氮素的硝化过程1.氨氧化:氨氧化细菌(如亚硝酸盐氧化细菌)将铵态氮氧化成亚硝酸盐(NO2-)。
2.亚硝酸盐氧化:亚硝酸盐氧化细菌将亚硝酸盐进一步氧化成硝酸盐(NO3-)。
2.2 氮素的还原过程1.反硝化:反硝化细菌将硝酸盐还原为亚硝酸盐,进一步还原为氮气(N2)释放到大气中。
2.3 氮素的固定过程1.生物固氮:一些细菌和蓝藻能够将大气中的氮气固定为氨态氮,进一步转化为有机氮。
2.化学固氮:高温高压下,氮气与氢气反应生成氨,再与氧反应生成硝酸盐。
3. 影响氮素转化的因素3.1 温度•氮素转化反应速率随温度升高而增加。
3.2 湿度•适当的湿度有利于氮素的转化过程。
3.3 pH值•不同形态的氮素在不同pH条件下的转化速率有所不同。
3.4 有机质含量•有机质含量越高,土壤中的氮素转化速率越快。
4. 土壤中氮素转化的意义4.1 植物生长与氮素转化•植物需要氮素作为合成蛋白质和核酸的原料,氮素转化过程为植物提供了可利用的氮源。
4.2 土壤肥力与氮素转化•氮素转化过程中产生的硝酸盐是植物的主要氮源之一,对土壤肥力的提高具有重要意义。
4.3 环境影响与氮素转化•氮素的转化过程中产生的硝酸盐容易溶解于水中,并随水流迁移,可能对水体造成污染。
5. 总结本文主要探讨了土壤中氮素的转化过程,包括氮素的来源和形态、氮素的硝化过程、还原过程以及固定过程等。
1.1.1土壤微生物与氮素转化过程研究进展(1500字)土壤微生物与氮素转化的关系:氮循环(Nitrogen Cycle)(Arrigo2005)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。
构成氮循环的主要环节是生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。
其中氨化作用、硝化作用、反硝化作用以及固氮作用都有微生物完成,因此自然界中氮循环的微生物作用一直是世界研究的前沿课题。
氨化作用(ammonification)是微生物分解有机氮化物产生氨的过程。
产生氨,一部分供微生物或植物同化,一部分被转变成硝酸盐。
很多细菌、真菌和放线菌都能分泌蛋白酶,在细胞外将蛋白质分解为多肤、氨基酸和氨(NH3)。
其分解能力强并释放出NH3的微生物称为氨化微生物。
分解作用较强的主要是细菌,如某些芽抱杆菌、梭状芽抱杆菌和假单抱菌等。
硝化作用(nitrification)是硝化细菌将氨氧化为硝酸的过程。
先是亚硝化单胞菌将钱氧化为亚硝酸;然后硝化杆菌再将亚硝酸氧化为硝酸。
反硝化作用(denitrification)也称脱氮作用,是反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。
微生物和植物吸收利用硝酸盐有两种完全不同的用途:植物利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-、NH+、有机态氮,许多细菌、放线菌和霉菌也能利用硝酸盐作为氮素营养;但是也有许多细菌利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2- →N2。
例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸。
生物固氮作用(biologicalnitrogenfixation)是指固氮微生物将大气中的氮还原成氨的过程,只发生在少数的细菌和藻类中。
因地壳含有极少的可溶性无机氮盐,所有生物几乎都需要依赖固氮生物固定大气中的氮而生存,因此生物固氮对维持自然界的氮循环起着极为重要的作用。
植物根系吸收土壤中氮元素的方式
1 植物根系吸收氮元素
植物根系是植物吸收土壤中氮元素的主要器官,氮元素对作物生
长具有重要作用,是植物合成体内生理活性物质的基本元素。
植物根
系吸收氮元素主要采用以下两种方式:
1.1 植物吸收土壤氮离子
根系可吸收土壤水的氮离子,如NH4+、NO3-、N2O5和HNO2等,
然后将氮离子带入根细胞,或将它们转化为复合物,例如,将NH4+转
化为尿素,将NO3-转化为尿素和谷胱甘肽,然后将其传递到植物上部,为植物提供养分。
1.2 植物吸收土壤硝酸盐
植物性根也可以直接吸收土壤中的氮离子,比如NO2-、N2O5和HNO2等,这种氮离子有一个质子,容易被根系吸收,并进入根细胞,
然后进入植物的各种细胞,为植物提供养分。
以上便是植物根系吸收土壤中氮元素的两种方法,这是植物获取
氮营养的主要途径。
氮元素丰富的土壤能帮助植物获得良好的生长,
进而影响植物的生长和生产率。
因此,要提高作物的生效,有必要采
取有效措施来增加土壤中的氮元素含量。
氮的同化作用
氮是生命体中不可或缺的元素之一,它在生命体内的作用十分重要。
氮的同化作用是指将无机氮转化为有机氮的过程,这个过程在生命体
内是必不可少的。
下面我们将从植物和微生物两个方面来介绍氮的同
化作用。
植物的氮同化作用
植物的氮同化作用是指将土壤中的无机氮转化为有机氮的过程。
植物
通过根系吸收土壤中的氮元素,然后将其转化为氨基酸等有机物质,
这个过程需要植物体内的一系列酶的参与。
其中最重要的酶是谷氨酸
合成酶,它能够将谷氨酸和丙酮酸合成天冬氨酸,然后再将天冬氨酸
转化为其他氨基酸。
这个过程中需要消耗大量的能量,因此植物需要
通过光合作用来提供能量。
微生物的氮同化作用
微生物的氮同化作用是指将空气中的氮气转化为有机氮的过程。
这个
过程主要由一些细菌和蓝藻来完成。
这些微生物能够利用一些特殊的
酶来将氮气转化为氨气,然后再将氨气转化为其他有机物质。
这个过
程对于土壤中的氮素循环来说非常重要,因为它能够将空气中的氮气
转化为植物可以利用的有机氮。
总结
氮的同化作用是生命体中不可或缺的过程,它能够将无机氮转化为有机氮,为生命体提供必要的营养物质。
植物和微生物是氮同化作用的两个主要参与者,它们通过不同的途径将无机氮转化为有机氮。
在生态系统中,氮的同化作用是非常重要的,它能够促进土壤中氮素的循环,为生态系统的平衡提供保障。
第三章植物的氮素营养与氮肥第一节植物的氮素营养一、植物体内氮的含量与分布1. 含量:占植物干重的0.3~5%影响因素:植物种类:豆科植物>非豆科植物品种:高产品种>低产品种器官:种子>叶>根>茎秆组织:幼嫩组织>成熟组织>衰老组织,生长点>非生长点生长时期:苗期>旺长期>成熟期>衰老期,营养生长期>生殖生长期2. 分布:幼嫩组织>成熟组织>衰老组织,生长点>非生长点原因:氮在植物体内的移动性强在作物一生中,氮素的分布是在变化的:营养生长期:大部分在营养器官中(叶、茎、根)生殖生长期:转移到贮藏器官(块茎、块根、果实、籽粒),约占植株体内全氮的70%注意:作物体内氮素的含量和分布,明显受施氮水平和施氮时期的影响。
通常是营养器官的含量变化大,生殖器官则变动小,但生长后期施用氮肥,则表现为生殖器官中的含氮量明显上升。
二、植物体内含氮化合物的种类(氮的生理功能)1. 氮是蛋白质的重要成分(蛋白质含氮16~18%)——生命物质2. 氮是核酸和核蛋白的成分(核酸中的氮约占植株全氮的10%)——合成蛋白质和决定生物遗传性的物质基础3. 氮是酶的成分——生物催化剂4.氮是叶绿素的成分(叶绿体含蛋白质45~60%)——光合作用的场所5. 氮是多种维生素的成分(如维生素B1、B2、B6等)--辅酶的成分6. 氮是一些植物激素的成分(如IAA、CK)--生理活性物质7. 氮也是生物碱的组分(如烟碱、茶碱、可可碱、咖啡碱、胆碱--卵磷脂--生物膜)氮素通常被称为生命元素三、植物对氮的吸收与同化吸收的形态无机态:NO3--N、NH4+-N (主要)有机态:NH2 -N、氨基酸、核酸等(少量)(一)植物对硝态氮的吸收与同化1. 吸收:旱地作物吸收NO3--N为主,属主动吸收吸收后:10%~30%在根还原;70%~90%运输到茎叶还原;小部分贮存在液胞内(硝酸根在液泡中积累对离子平衡和渗透调节作用具有重要意义。
氮肥的合理施用氮素是限制作物产量和品质的主要元素之一。
称为生命元素。
一、土壤氮素(一)土壤氮素的含量我国土壤全氮含量变化很大,变幅0.4--3.8g/kg,平均为1.3g/kg,多数和土壤在0.5--1.0g/kg。
土壤中的氮素含量与气候、地形、植物、成土母质、农业利用的方式及年限。
(二)土壤氮素的来源耕作土壤中氮的来源主要有:生物固氮、降水、尘埃、施入的肥料、土壤吸附空气中的NH3、灌溉水和地下水的补给,其中生物固氮和施肥是主要来源方式。
(三)土壤氮素的形态(四)土壤氮素的转化1.矿化作用矿化作用是指在土壤中的有机物经过矿化作用分解成无机氮素的过程。
矿化作用主要分为两步:水解作用和氨化作用。
水解作用是指在蛋白质水解酶、纤维素水解酶、木酵素菌等各种水解酶的作用下将高分子的蛋白质、纤维素、脂肪、糖类分解成为各种氨基酸。
氨化作用是指土壤中的有机氮化物在微生物——氨化细菌的作用下进一步分解成为铵离子(NH4+)或氨气(NH3)。
2.硝化作用土壤中的氨(NH3)或铵离子(NH4+)在硝化细菌的作用下转化为硝酸的过程叫硝化作用。
硝化作用产生的硝态氮是作物最容易吸收的氮素。
3.反硝化作用反硝化作用是硝酸盐或亚硝酸盐还原为气体分子态氮氧化物的过程中。
4.土壤中的生物固氮作用土壤中的生物固氮作用是指通过一些生物所有的固氮菌将土壤空气中气态的氮被植物根系所固定而存在于土壤中的氮,生物固氮作用一般发生在豆科植物的根系。
5.土壤对氮素的固定与释放土壤中的氮素在处于铵离子状态时可以从土壤溶液中被颗粒表面所吸附,另一方面被土壤吸附的铵离子还可以被释放出返回土壤溶液中。
在一定条件下铵离子在固相和液相之间处于一种动态平衡状态。
6.氮素在土壤中的淋溶作用土壤中以硝酸或亚硝酸形态存在的氮素在灌溉条件下,随着灌溉水的下渗作用。
7.氨的挥发作用铵转化成氨气损失掉的过程。
二、氮肥的性质和施用氨态氮肥 NH4HCO3、NH4Cl、(NH4)2SO4根据氮素的形态分硝态氮肥与硝铵态氮肥 NH4NO3酰胺态氮肥 CO(NH2)2速效氮肥根据肥效分缓(长)效氮肥(一)铵态氮肥的特点与施用1.铵态氮肥的特点氮素形态以氨或铵离子形态存在的氮肥称为铵态氮肥。
土壤氮氧循环的原理土壤是地球生态系统中不可或缺的组成部分,承载着许多生物生长和繁衍所必需的养分。
其中,氮和氧元素在土壤中的循环过程尤为重要。
本文将深入探讨土壤氮氧循环的原理,以揭示其在土壤生态系统中的重要性和作用。
土壤中的氮氧元素来源主要包括大气沉降、氮固定作用、微生物分解、植物吸收等多种途径。
当氮氧元素进入土壤后,就会参与到土壤中的循环过程中。
其中,氮元素主要以氨氮、硝酸氮和有机氮的形式存在,通过细菌和真菌的作用,发生着氨化、硝化、固氮、反硝化等一系列化学反应,将氮元素在不同形式之间互相转化,从而为土壤中生物生长提供养分。
氧元素在土壤中的循环过程主要涉及到土壤通气和有机质分解两个方面。
氧气通过土壤孔隙和根系的通气作用,参与到土壤中的微生物呼吸和分解有机质的过程中,维持土壤中适宜的气体含量和氧化还原环境。
此外,有机质中的碳、氮等元素的分解过程也会释放氧气,促进氧元素在土壤中的周转和循环。
土壤氮氧循环的原理在土壤生态系统中扮演着重要的角色。
首先,氮氧元素的周转和循环过程为土壤中生物的生长和代谢提供了必要的能量和养分,维持了土壤中生物多样性和生态平衡。
其次,氮氧元素的转化过程也直接影响着土壤中的有机质分解速率和养分释放速度,对土壤的肥力和生产力具有重要影响。
此外,土壤中氮氧元素的循环过程还能影响大气中N2O和CH4等温室气体的释放,对全球气候变化产生一定的影响。
然而,土壤氮氧循环的原理也面临着一些挑战和问题。
例如,氮肥的过量施用和化肥的不合理利用会导致土壤中氮元素的积累和排放,对环境造成污染。
另外,土壤中氧气的供应也会受到土壤结构和通气性的限制,影响土壤中微生物的呼吸过程和有机质的分解速率。
因此,如何有效地管理土壤中的氮氧元素循环过程,减少有害物质的释放,提高土壤的养分利用率和生产力,成为当前土壤生态系统保护和可持续发展中的重要课题。
为了更好地理解土壤氮氧循环的原理,需要继续加强对土壤生态系统中生物、物理和化学过程的研究。
简述土壤微生物的生态作用一、物质转化过程中的碳素来源在整个植物的生长发育期中,通过不断地吸收和利用外界环境中的营养物质,在细胞中积累了各种营养物质的同时也产生出大量的有机酸和氨基酸。
这些有机酸和氨基酸不能立即被植物所吸收利用,而必须经过微生物分解后才能进入植物体内,从而将无机态的营养物质转变成为可以被植物利用的有机物。
因此,土壤微生物既是植物生长的有机肥料制造者,又是土壤物质的重要转化者。
二、氮素代谢过程中的碳素来源土壤中的氮素绝大部分来自土壤有机质的分解。
土壤有机质主要由各种微生物的活动形成,有机质腐解过程中每形成1克干物质约需要1. 4~1.8千克分解底物(动植物残体及其排泄物)。
因此,土壤中的氮素主要来自于土壤微生物的分解作用。
土壤微生物的分解作用受到土壤条件的严格限制,在含水量10%左右的潮湿土壤上几乎完全停止;在不透水或缺水的粘土或砂壤土上也会逐渐减弱;在渗透压较高的沙土或低温时,分解速度减慢甚至停止。
另外,由于土壤矿物质、氧化铁、氧化锰、二价铁、三价铁、铝离子等非土壤微生物还原性强,难以被土壤微生物还原,加之这些元素在土壤中的含量相对很少,所以对土壤微生物的影响不大。
而有效磷(以PO4计)在土壤中的含量远比氮(以N计)多得多,因此磷的有效性也是较高的。
三、生产者四、消费者,合成细菌,硫化细菌等是在植物体内合成糖类、氨基酸、核苷酸等物质的直接和间接来源。
合成细菌还参与细胞壁的形成。
由于合成细菌具有生物膜的特点,所以它们对生物膜的分泌与合成具有重要作用。
此外,合成细菌还对光能的固定具有重要意义,这就是微生物生产的光能效率比绿色植物生产的光能效率高。
另外,除少数微生物(如乳酸菌)以分解有机质的形式提供能量外,大多数土壤微生物都要消耗无机化合物,最终分解释放出二氧化碳、氢气和热量,同时形成少量有机酸,并且释放出可溶性的离子态的矿物盐类,作为植物营养的补充。
五、土壤中生活着丰富的微生物,如有根瘤菌,还有固氮菌等微生物,不仅改良土壤的结构,促使土壤团粒化,而且有的能够固定空气中的氮素,增加空气中的氮素。
土壤中的氮素及其转化
1.土壤中氮素的来源和含量
1.1 来源
①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮;
④雷电降雨带来的NO3—N。
1.2 含量
我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关。
2. 土壤中氮素的形态
3. 土壤中氮素的转化
3.1 有机氮的矿化作用
定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。
过程:有机氮氨基酸NH4+-N+有机酸
结果:生成NH4+-N(使土壤中有机态的氮有效化)
3.2 土壤粘土矿物对NH4+的固定
定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用
②晶格固定(粘土矿物固定):NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用
过程:
结果:减缓NH4+的供应程度(优点?缺点?)
3.3氨的挥发
定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程
过程:
结果:造成氮素损失
3.4硝化作用
定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象
过程:
结果:形成NO3--N
利:为喜硝植物提供氮素
弊:易随水流失和发生反硝化作用
3.5无机氮的生物固定
定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。
过程:
结果:减缓氮的供应,可减少氮素的损失
3.6反硝化作用
定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象
过程:
结果:造成氮素的气态挥发损失,并污染大气
3.7硝酸盐的淋洗损失
NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。
结果:氮素损失,并污染水体
4. 小结:土壤有效氮增加和减少的途径
增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物);④生物固氮;⑤雷电降雨
降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物);④反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时)
氮肥的种类、性质和施用
氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。
①铵态氮肥,如氨水、硫酸铵、碳酸氢铵、氯化铵等;②硝态氮肥,如硝酸钠、硝酸钙、硝酸钾等;③酰胺态氮肥,如尿素。
另外还有一类不同于以上的是长效氮肥(缓释/控释氮肥),如合成有机肥料(脲甲醛,脲乙醛等)和包膜肥料等。
1.铵态氮肥
共同性质:①易溶于水,易被作物吸收;②易被土壤胶体吸附和固定;③可发生硝化作用;④碱性环境中氨易挥发。
2.硝态氮肥
共同性质:①易溶于水,易被作物吸收(主动吸收);②不被土壤胶体吸附,易随水流失;③易发生反硝化作用;④促进钙镁钾等的吸收;⑤吸湿性大,具助燃性(易燃易爆);⑥硝态氮含氮量均较低。
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。