第五章模拟信号的波形编码详解
- 格式:ppt
- 大小:2.04 MB
- 文档页数:105
第一部 各章重要习题及详细解答过程第1章 绪论1—1 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解:英文字母E 的信息量为105.01log 2=E I =3.25bit 英文字母x 的信息量为002.01log 2=x I =8.97bit 1—2 某信息源的符号集由A 、B 、C 、D 和E 组成,设每一符号独立出现,其出现概率分别为1/4、l/8、l/8/、3/16和5/16。
试求该信息源符号的平均信息量。
解:平均信息量,即信息源的熵为∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-163log 1632-165log 1652- =2.23bit/符号1—3 设有四个消息A 、BC 、D 分别以概率1/4、1/8、1/8和l/2传送,每一消息的出现是相互独立的,试计算其平均信息量。
解:平均信息量∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-21log 212-=1.75bit/符号1—4 一个由字母A 、B 、C 、D 组成的字。
对于传输的每一个字母用二进制脉冲编码,00代替A ,01代替B ,10代替C ,11代替D ,每个脉冲宽度为5ms 。
(1)不同的字母是等可能出现时,试计算传输的平均信息速率。
(2)若每个字母出现的可能性分别为P A =l/5,P B =1/4,P C =1/4,P D =3/10 试计算传输的平均信息速率。
解:(1)不同的字母是等可能出现,即出现概率均为1/4。
每个字母的平均信息量为∑=-=ni i i x P x P H 12)(log )(=41log 4142⨯-=2 bit/符号因为每个脉冲宽度为5ms ,所以每个字母所占用的时间为 2×5×10-3=10-2s每秒传送符号数为100符号/秒 (2)平均信息量为∑=-=ni i i x P x P H 12)(log )(=51log 512-41log 412-41log 412-103log 1032-=1.985 bit/符号平均信息速率为 198.5 比特/秒1—5 国际莫尔斯电码用点和划的序列发送英文字母,划用持续3单位的电流脉冲表示,点用持续1个单位的电流脉冲表示;且划出现的概率是点出现概率的l/3;(1)计算点和划的信息量;(2)计算点和划的平均信息量。
第五章 脉冲编码调制本章内容:● 引言● 脉冲编码调制(PCM)基本原理● 低通与带通抽样定理● 实际抽样● 模拟信号的量化● PCM编码原理引言模拟信号数字传输的步骤:(1) 把模拟信号数字化,即模数转换(A/D)(2) 数字传输(3) 把数字信号还原为模拟信号,即数模转换(D/A)。
说明:由于A/D,D/A变换的过程通常由信源编(译)码器实现,所以我们把发端的A/D变换称为信源编码,而收端的D/A变换称为信源译码,如语音信号的语音编码。
模拟信号数字化的方法:大致可划分为波形编码和参量编码两大类。
波形编码:直接把时域波形变换为数字序列,比特率通常在16kb/s~64kb/s;目前用的最普遍的Δ波形编码方法有PCM和M。
参量编码:利用信号处理技术,提高语音信号的特征参量,再变换为数字代码,起比特率在16kb/s 以下。
5.1 PCM基本原理PCM概念是1937年又法国工程师Alec Reeres最早提出来的。
脉冲编码调制简称脉码调制,是一种将模拟语音信号变换成数字信号的编码方式,主要包括:抽样、量化、编码。
图1 PCM 原理图抽样:把连续时间模拟信号转换成离散时间连续幅度的抽样信号。
量化:把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字信号。
编码:将量化后的信号编码形成一个二进制码输出。
国际标准化的PCM 码是一位码代表一个抽样值。
说明:(1)预滤波:把原始语音信号的频带(40~10000Hz 左右)限制在300~3400Hz 标准的长途模拟电话的频带内。
(2)在解调器过程中,一般采用抽样保持电路,所以LPF 均需要采用x/sinx 型频率响应以补偿抽样保持电路引入的频率失真sinx/x 。
(3)的失真主要来源于量化以及信道传输误码,通常用信号与量化噪声的功率比(S/N )来表示。
(4)PCM 编码过程是模拟信号调制一个二进制脉冲序列,载波是脉冲序列,调制改变脉冲序列的有无或“1”,“0”,所以PCM 称为脉冲编码调制。
模拟信号的基本原理和信号编码方案介绍-基础电子模拟信号是传播能量的一种形式,它指的是在时间上连续的(不间断),数值幅度大小也是连续不问断变化的信号(传统的音频信号、视频信号)。
如声波使它经过的媒体产生振动,可以以频率(以每秒的周期数或赫兹(Hz)为单位)测量声波。
通过将二进制数表示为电脉冲(其中每个脉冲是一个信号元素)使数字信号通过媒体传输。
线路上的电压在高低状态之间变化。
例如,可以采用高电平传输二进制的1,采用低电平传输二进制的0。
带宽是指每秒通过链路传输位数的术语。
图1描述了模拟和数字信号,其中模拟信号与数字信号等效。
在长距离传输时,信号由于衰减、噪声和导线束中其他导线的干扰而退化。
模拟信号可以周期性地加以放大,但是如果信号受到噪声破坏,则放大的是失真信号。
相比而言,由于可以很容易地从噪声中提取数字信号并重发,所以长距离传输数字信号更可靠。
信号编码方案数字数据传输利用PCM数字信道传输数据信号,首先要解决的问题是数据信号如何进入PCM话路的问题。
主要通过两种方式:同步方式和异步方式。
同步方式利用PCM数字信道传输数据,如果数据信号与数字端局的时钟是同步的,这时,数据终端输出的数据信号是受PCM 信道时钟控制的,因此只需对数据信号进行多路化处理即可。
这里数据终端设备处于受控制的从属地位,因此灵活性差。
如果数据信号与数据端局时钟是异步的,这时数据信号可采用填充方式复用到64kbit/s的集合信号,这就是异步方式。
如上所述,数字数据借助于电脉冲传输。
一一对应使用单脉冲表示一个位。
它的效率是非常低的,因此已经开发了多种编码方案以使用电脉冲更高效地传输数字数据。
结果大大提高了吞吐量。
这与使用旗语发送消息的情况相类似。
比如说“信号旗升起”表示1,“信号旗降下”表示O。
一种更有效的编码方案是“只在出现二进制1时升起或降下信号旗”。
例如,如果信号旗已经举起,则把它降下来。
不管信号旗是举起还是降下,它的运动才是指示器。