初中数学知识树
- 格式:pdf
- 大小:2.45 MB
- 文档页数:18
初中数学知识树一、数的认识1. 整数(1)正整数、零、负整数(2)整数的基本性质2. 分数(1)真分数、假分数、带分数(2)分数的基本性质3. 小数(1)小数的意义(2)小数的性质二、数的运算1. 加法(1)整数加法(2)分数加法(3)小数加法2. 减法(1)整数减法(2)分数减法(3)小数减法3. 乘法(1)整数乘法(2)分数乘法(3)小数乘法4. 除法(1)整数除法(2)分数除法(3)小数除法5. 混合运算(1)加减混合运算(2)乘除混合运算(3)加减乘除混合运算三、方程与不等式1. 一元一次方程(1)方程的概念(2)解一元一次方程的方法2. 一元一次不等式(1)不等式的概念(2)解一元一次不等式的方法四、几何图形1. 点、线、面(1)点、线、面的概念(2)点、线、面的性质2. 平面图形(1)三角形(2)四边形(3)圆3. 立体图形(1)长方体(2)正方体(3)圆柱(4)圆锥五、概率与统计1. 概率(1)概率的概念(2)概率的计算方法2. 统计(1)平均数(2)中位数(3)众数(4)方差(5)标准差六、数学应用1. 实际问题求解(1)应用题的解题思路(2)应用题的解题方法2. 数学建模(1)数学建模的概念(2)数学建模的步骤(3)数学建模的应用七、数学思维与能力培养1. 抽象思维(1)抽象思维的概念(2)抽象思维的培养方法2. 逻辑思维(1)逻辑思维的概念(2)逻辑思维的培养方法3. 创新思维(1)创新思维的概念(2)创新思维的培养方法八、数学学习方法与技巧1. 课堂学习(1)认真听讲(2)做好笔记(3)积极参与讨论2. 课后复习(1)及时复习(3)做习题巩固3. 考试技巧(1)合理安排时间(2)仔细审题(3)规范答题九、数学竞赛与拓展1. 数学竞赛(1)数学竞赛的意义(2)数学竞赛的准备(3)数学竞赛的参赛技巧2. 数学拓展(1)数学拓展的意义(2)数学拓展的方法(3)数学拓展的实践十、数学与生活1. 数学与生活(1)数学在生活中的应用(2)数学与生活的关系2. 数学与科技(1)数学在科技中的应用(2)数学与科技的关系3. 数学与艺术(1)数学在艺术中的应用(2)数学与艺术的关系初中数学知识树一、数的认识1. 整数(1)正整数、零、负整数(2)整数的基本性质2. 分数(1)真分数、假分数、带分数(2)分数的基本性质3. 小数(1)小数的意义(2)小数的性质二、数的运算1. 加法(1)整数加法(2)分数加法(3)小数加法2. 减法(1)整数减法(2)分数减法(3)小数减法3. 乘法(1)整数乘法(2)分数乘法(3)小数乘法4. 除法(1)整数除法(2)分数除法(3)小数除法5. 混合运算(1)加减混合运算(2)乘除混合运算(3)加减乘除混合运算三、方程与不等式1. 一元一次方程(1)方程的概念(2)解一元一次方程的方法2. 一元一次不等式(1)不等式的概念(2)解一元一次不等式的方法四、几何图形1. 点、线、面(1)点、线、面的概念(2)点、线、面的性质2. 平面图形(1)三角形(2)四边形(3)圆3. 立体图形(1)长方体(2)正方体(3)圆柱(4)圆锥五、概率与统计1. 概率(1)概率的概念(2)概率的计算方法2. 统计(1)平均数(2)中位数(3)众数(4)方差(5)标准差六、数学应用1. 实际问题求解(1)应用题的解题思路(2)应用题的解题方法2. 数学建模(1)数学建模的概念(2)数学建模的步骤(3)数学建模的应用七、数学思维与能力培养1. 抽象思维(1)抽象思维的概念(2)抽象思维的培养方法2. 逻辑思维(1)逻辑思维的概念(2)逻辑思维的培养方法3. 创新思维(1)创新思维的概念(2)创新思维的培养方法八、数学学习方法与技巧1. 课堂学习(1)认真听讲(2)做好笔记(3)积极参与讨论2. 课后复习(1)及时复习(3)做习题巩固3. 考试技巧(1)合理安排时间(2)仔细审题(3)规范答题九、数学竞赛与拓展1. 数学竞赛(1)数学竞赛的意义(2)数学竞赛的准备(3)数学竞赛的参赛技巧2. 数学拓展(1)数学拓展的意义(2)数学拓展的方法(3)数学拓展的实践十、数学与生活1. 数学与生活(1)数学在生活中的应用(2)数学与生活的关系2. 数学与科技(1)数学在科技中的应用(2)数学与科技的关系3. 数学与艺术(1)数学在艺术中的应用(2)数学与艺术的关系在探索数学的旅程中,我们不仅要掌握基础的知识点,还要学会如何灵活运用这些知识解决实际问题。
七年级数学知识树七年级数学,就像一棵枝繁叶茂的大树,每一片叶子,每一根枝条,都藏着知识的奥秘和趣味。
咱先来说说有理数这部分。
有理数啊,就像是一群有组织有纪律的小伙伴。
正数、负数和零,它们各有各的特点。
正数像是充满活力、积极向上的孩子,总是带着满满的正能量;负数呢,则像是有点小情绪、有点低落的小伙伴,但它们的存在也让这个世界变得更加丰富和多样。
零就像一个中立的裁判,不偏不倚,维持着平衡。
整式这一块,那可像是一个精美的衣柜。
单项式就像一件件单独的漂亮衣服,而多项式呢,就是把这些漂亮衣服搭配在一起的套装。
加减乘除这些运算,就是给这个衣柜整理和搭配的魔法工具,能让整式变得更加整齐和漂亮。
方程,这可是解决问题的神器!一元一次方程就像是一把简单却实用的钥匙,能打开一些小秘密的门;二元一次方程组呢,就像是一把更复杂一点的万能钥匙,可以解决更复杂的难题。
想象一下,生活中的各种问题,比如买东西算价钱,安排活动算人数,这不都能通过方程这把钥匙找到答案吗?再看看图形的初步认识,那简直就是一个奇妙的魔法世界。
点、线、面、体,它们相互关联,就像一个大家庭里的成员。
点是最小的精灵,线是精灵们手拉手组成的队伍,面是队伍们排好的方阵,体就是多个方阵组合起来的大部队。
还有角,角就像两个好朋友之间的拥抱,有大有小,有锐角的轻轻相拥,有直角的规规矩矩的拥抱,还有钝角的大大的拥抱。
统计这部分呢,就像是一个小侦探在收集线索。
收集数据、整理数据、分析数据,一步步地找出隐藏在数字背后的真相。
七年级数学这棵知识树啊,每个分支都充满了惊喜和挑战。
咱们只要用心去浇灌,用努力去修剪,就能让这棵树茁壮成长,结出丰硕的果实。
难道你不想在这棵知识树上留下自己努力的痕迹,收获满满的知识吗?所以,别害怕,别退缩,勇敢地去探索七年级数学这棵神奇的知识树吧!。
初中数学知识树初中数学知识树初中数学知识点归纳.有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解先想完全平方式,十字相乘是其次。
初中数学知识点总结知识树一、数与代数A. 有理数1. 整数与分数2. 正数与负数3. 有理数的四则运算4. 绝对值B. 整数的性质1. 素数与合数2. 奇数与偶数3. 整数的因数与倍数C. 代数表达式1. 单项式与多项式2. 代数式的加减运算3. 乘法公式D. 一元一次方程与不等式1. 方程与方程的解2. 解一元一次方程3. 一元一次不等式及其解法E. 二元一次方程组1. 方程组的解法2. 线性方程组的应用问题二、几何A. 平面图形1. 点、线、面的基本性质2. 角的分类与性质3. 三角形的基本性质4. 四边形的基本性质5. 圆的基本性质B. 几何图形的计算1. 面积与周长的计算2. 相似三角形的性质与应用3. 勾股定理及其应用C. 空间几何1. 立体图形的基本概念2. 立体图形的表面积与体积计算3. 空间图形的投影与视图三、统计与概率A. 统计1. 数据的收集与整理2. 频数与频率3. 统计图表的绘制与解读4. 平均数、中位数与众数B. 概率1. 事件的概率定义2. 概率的基本性质3. 简单事件的概率计算四、函数与图像A. 函数的概念1. 函数的定义2. 函数的表示方法3. 函数的性质B. 一次函数与二次函数1. 一次函数的图像与性质2. 二次函数的图像与性质3. 函数的应用问题C. 函数的基本运算1. 函数的加减乘除运算2. 复合函数与反函数五、数列A. 等差数列1. 等差数列的定义与性质2. 等差数列的通项公式3. 等差数列的求和公式B. 等比数列1. 等比数列的定义与性质2. 等比数列的通项公式3. 等比数列的求和公式六、解题技巧与方法A. 逻辑思维与推理1. 归纳与演绎2. 分析与综合B. 解题策略1. 问题转化2. 画图辅助3. 分类讨论C. 常见数学思想1. 数形结合2. 函数与方程3. 转化与化归以上是初中数学知识点的总结知识树,涵盖了初中阶段数学课程的核心内容。
每个部分都有其详细的知识点和相应的学习方法,学生可以根据这个知识树来复习和巩固所学知识,为进一步的数学学习打下坚实的基础。
初中数学知识树初中数学是数学学习的一个重要阶段,它为我们奠定了后续学习的基础。
对于初中数学的知识,我们可以将其组织成一个知识树,以便更好地理解和掌握。
知识树的构建可以从最基础的数学知识开始,逐步扩展到更高级的数学概念。
对于初中数学而言,我们可以将其分为以下几个主要部分:基本几何知识:直线、射线、线段、角度、面积、体积等平面几何图形:三角形、四边形、圆形、椭圆等及其性质立体几何图形:长方体、正方体、圆柱体、圆锥体等及其性质空间位置关系:点、线、面的位置关系,平行与垂直等数据收集与整理:图表、统计表、平均数、中位数、众数等概率与随机事件:概率计算、随机事件、排列组合等化归思想:将复杂问题转化为简单问题,将未知问题转化为已知问题数形结合思想:将数量关系和几何图形结合起来解决问题函数思想:用函数关系描述变量之间的关系,预测变化趋势等以上是初中数学知识树的主要内容,这些知识点之间有着密切的和相互渗透。
在学习的过程中,我们需要不断地将这些知识点进行比较、归纳和总结,以便更好地掌握初中数学的知识体系。
在数学学习的世界中,小学阶段是基础知识积累的关键时期。
这个阶段的学习,就像一棵扎根于土壤的大树,不断地吸收营养,壮大自己,等待着日后的茁壮成长。
这棵“小学数学知识树”便是对小学数学学习内容的形象比喻。
这棵大树主要由三个主要的树干组成,分别是“数与运算”、“几何与空间”以及“统计与概率”。
这些树干分别代表了数学学习的三大领域,它们交织在一起,形成了小学数学的知识结构。
“数与运算”是这棵大树的主干,它包括数的认识、数的比较、数的运算和简易方程等部分。
数的认识从整数开始,逐渐引入分数、小数、百分数等,帮助学生建立数的概念。
数的比较教学生如何比较大小,数的运算则教学生如何进行加减乘除等基本运算,以及如何解决生活中的简单数学问题。
简易方程则是初步引入了代数思维,为日后的数学学习打下基础。
“几何与空间”是这棵大树的一个主要分支,它包括图形的认识、测量、图形与变换和图形与位置等部分。
初中数学知识树一、数与式(一)有理数1. 有理数的分类2. 数轴的定义与应用3. 相反数4. 倒数5. 绝对值6. 有理数的大小比较7. 有理数的运算(二)实数8. 实数的分类9. 实数的运算10. 科学记数法11. 近似数与有效数字12. 平方根与算术根和立方根13. 非负数14. 零指数次幂、负指数次幂(三)代数式15. 代数式、代数式的值16. 列代数式(四)整式17. 整式的分类18. 整式的加减、乘除的运算19. 幂的有关运算性质20. 乘法公式21. 因式分解(五)分式22. 分式的定义23. 分式的基本性质24. 分式的运算(六)二次根式25. 二次根式的意义26. 根式的基本性质27. 根式的运算二、方程和不等式(一)一元一次方程28. 方程、方程的解的有关定义29. 一元一次的定义30. 一元一次方程的解法31. 列方程解应用题的一般步骤(二)二元一次方程32. 二元一次方程的定义33. 二元一次方程组的定义34. 二元一次方程组的解法(代入法消元法、加减消元法)35. 二元一次方程组的应用(三)一元二次方程36. 一元二次方程的定义37. 一元二次方程的解法(配方法、因式分解法、公式法、十字相乘法)38. 一元二次方程根与系数的关系和根的判别式39. 一元二次方程的应用(四)分式方程40. 分式方程的定义41. 分式方程的解法(转化为整式方程、检验)42. 分式方程的增根的定义43. 分式方程的应用(五)不等式和不等式组44. 不等式(组)的有关定义45. 不等式的基本性质46. 一元一次不等式的解法47. 一元一次不等式组的解法48. 一元一次不等式(组)的应用三、函数(一)位置的确定与平面直角坐标系49. 位置的确定50. 坐标变换51. 平面直角坐标系内点的特征52. 平面直角坐标系内点坐标的符号与点的象限位置53. 对称问题:P(x,y)→Q(x,- y)关于x轴对称;P(x,y)→Q(- x,y)关于y轴对称;P(x,y)→Q(- x,- y)关于原点对称54. 变量、自变量、因变量、函数的定义55. 函数自变量、因变量的取值范围(使式子有意义的条件、图象法)56. 函数的图象:变量的变化趋势描述(二)一次函数与正比例函数57. 一次函数的定义与正比例函数的定义58. 一次函数的图象:直线,画法59. 一次函数的性质(增减性)60. 一次函数y=kx+b(k≠0)中k、b符号与图象位置61. 待定系数法求一次函数的解析式(一设二列三解四回)62. 一次函数的平移问题63. 一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)64. 一次函数的实际应用65. 一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合(三)反比例函数66. 反比例函数的定义67. 反比例函数解析式的确定68. 反比例函数的图象:双曲线69. 反比例函数的性质(增减性质)70. 反比例函数的实际应用71. 反比例函数的综合应用(四个方面、面积问题)(四)二次函数72. 二次函数的定义73. 二次函数的三种表达式(一般式、顶点式、交点式)74. 二次函数解析式的确定(待定系数法)75. 二次函数的图象:抛物线、画法(五点法)76. 二次函数的性质(增减性的描述以对称轴为分界)77. 二次函数y=ax^2+bx+c(a≠0)中a、b、c、△与特殊式子的符号与图象位置关系78. 求二次函数的顶点坐标、对称轴、最值79. 二次函数的交点问题80. 二次函数的对称问题81. 二次函数的最值问题(实际应用)82. 二次函数的平移问题83. 二次函数的实际应用84. 二次函数的综合应用(1)二次函数与方程综合(2)二次函数与其它函数综合(3)二次函数与不等式的综合(4)二次函数与几何综合1,过两点有且只有一条直线2,两点之间线段最短3,同角或等角的补角相等4,同角或等角的余角相等5,过一点有且只有一条直线和已知直线垂直6,直线外一点与直线上各点连接的所有线段中,垂线段最短7,经过直线外一点,有且只有一条直线与这条直线平行8,如果两条直线都和第三条直线平行,这两条直线也互相平行9,同位角相等,两直线平行10,内错角相等,两直线平行11,同旁内角互补两直线行12,两直线平行,同位角相等13,两直线平行,内错角相等14,两直线平行,同旁内角互补15,三角形两边的和大于第三边16,三角形两边的差小于第三边17,三角形三个内角的和等180°18,直角三角形的两个锐角互余19,三角形的一个外角等于和它不相邻的两个内角的和20,三角形的一个外角大于任何一个和它不相邻的内角21,全等三角形的对应边,对应角相等22,有两边和它们的夹角对应相等的两个三角形全等 (SAS)23 有两角和它们的夹边对应相等的两个三角形全等(ASA)24,有两角和其中一角的对边对应相等的两个三角形全等(AAS)25,有三边对应相等的两个三角形全等 (SSS)26,有斜边和一条直角边对应相等的两个直角三角形全等(HL)27,在角的平分线上的点到这个角的两边的距离相等28,到一个角的两边的距离相同的点,在这个角的平分线上29,角的平分线是到角的两边距离相等的所有点的集合30,等腰三角形的性质定理等腰三角形的两个底角相等31,等腰三角形顶角的平分线平分底边并且垂直于底边32,等腰三角形的顶角平分线,底边上的中线和高互相重合33,等边三角形的各角都相等,并且每一个角都等于60°34,等腰三角形的判定定理如果一个三角形有两个角相等, 那么这两个角所对的边也相等(等角对等边)35,三个角都相等的三角形是等边三角形36,有一个角等于60°的等腰三角形是等边三角形37,在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38,直角三角形斜边上的中线等于斜边上的一半39,线段垂直平分线上的点和这条线段两个端点的距离相等40,和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41,线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42,关于某条直线对称的两个图形是全等形43,如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44,两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45,如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46,直角三角形两直角边a,b的平方和,等于斜边c的平方,即a+b=c47,如果三角形的三边长a,b,c有关系a+b=c,那么这个三角形是直角三角形48,四边形的内角和等于360°49,四边形的外角和等于360°50,多边形内角和定理 n边形的内角的和等于(n-2)×180°51,任意多边的外角和等于360°52,平行四边形的对角相等53,平行四边形的对边相等54,夹在两条平行线间的平行线段相等55,平行四边形的对角线互相平分56,两组对角分别相等的四边形是平行四边形57,两组对边分别相等的四边形是平行四边形58,对角线互相平分的四边形是平行四边形59,一组对边平行相等的四边形是平行四边形60,矩形的四个角都是直角61,矩形的对角线相等62,有三个角是直角的四边形是矩形63,对角线相等的平行四边形是矩形64,菱形的四条边都相等65,菱形的对角线互相垂直,并且每一条对角线平分一组对角66,菱形面积=对角线乘积的一半,即S=(a×b)÷267,四边都相等的四边形是菱形68,对角线互相垂直的平行四边形是菱形69,正方形的四个角都是直角,四条边都相等70,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71,关于中心对称的两个图形是全等的72,关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73,如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74,等腰梯形在同一底上的两个角相等75,等腰梯形的两条对角线相等76,在同一底上的两个角相等的梯形是等腰梯形77,对角线相等的梯形是等腰梯形78,如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79,经过梯形一腰的中点与底平行的直线,必平分另一腰80,经过三角形一边的中点与另一边平行的直线,必平分第三边81,三角形的中位线平行于第三边,并且等于它的一半82,梯形的中位线平行于两底,并且等于两底和的一半L=(a+b) S=L×h83,如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84,如果a/b=c/d,那么(a±b)/ b=(c±d)/d85,如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86,三条平行线截两条直线,所得的对应线段成比例87,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89,平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90,平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91,两角对应相等,两三角形相似(ASA)92,直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93,两边对应成比例且夹角相等,两三角形相似(SAS)94,三边对应成比例,两三角形相似(SSS)95,如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96,相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97,相似三角形周长的比等于相似比98,相似三角形面积的比等于相似比的平方99,任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100,任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101,圆是定点的距离等于定长的点的集合102,圆的内部可以看作是圆心的距离小于半径的点的集合103,圆的外部可以看作是圆心的距离大于半径的点的集合104,同圆或等圆的半径相等105,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106,和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107,到已知角的两边距离相等的点的轨迹,是这个角的平分线108,到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109,不在同一直线上的三个点确定一条直线110,垂直于弦的直径平分这条弦并且平分弦所对的两条弧111, ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112,圆的两条平行弦所夹的弧相等113,圆是以圆心为对称中心的中心对称图形114,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115,在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116,一条弧所对的圆周角等于它所对的圆心角的一半117,同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118,半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119,如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120,圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121,①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122,经过半径的外端并且垂直于这条半径的直线是圆的切线123,圆的切线垂直于经过切点的半径124,经过圆心且垂直于切线的直线必经过切点125,经过切点且垂直于切线的直线必经过圆心126,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127,圆的外切四边形的两组对边的和相等128,弦切角等于它所夹的弧对的圆周角129,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130,圆内的两条相交弦,被交点分成的两条线段长的积相等131,如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133,从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134,如果两个圆相切,那么切点一定在连心线上135,①两圆外离d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136,相交两圆的连心线垂直平分两圆的公共弦137,把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138,任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139,正n边形的每个内角都等于(n-2)×180°/n140,正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141,正n边形的面积Sn=pnrn/2 p表示正n边形的周长142,正三角形面积√3a/4 a表示边长143,如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144,弧长计算公式:L=n∏R/180145,扇形面积公式:S扇形=n∏R/360=LR/2146,内公切线长= d-(R-r) 外公切线长= d-(R+r)[/watermark]。