c ○ 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Testability Properti
- 格式:pdf
- 大小:164.02 KB
- 文档页数:13
常见化学研究英文期刊及缩写字体: 小中大发表于: 2008-6-17 22:02 作者: 007 来源: 课件下载网常见化学研究英文期刊及缩写Common Chemical Journals 常见化学研究英文期刊及缩写Acta Chimica SlovenicaAbbreviation: Acta Chim. Slov.ISSN: 1318-0207Publisher: Slovenian Chemical SocietyActa PolymericaAbbreviation: Acta Polym.ISSN: 0323-7648Publisher: Wiley - VCHAdditives for PolymersAbbreviation:ISSN: 0306-3747Publisher: Elsevier Advanced Technology - Elsevier ScienceAnalytical LettersAbbreviation: Anal. Lett.ISSN: 0003-2719Publisher: Marcel Dekker JournalsAnalusisAbbreviation: AnalusisISSN: 0365-4877Publisher: EDP Science and WILEY-VCHAnalystAbbreviation: AnalystISSN: 0003-2654Publisher: Royal Society of ChemistryAnalytica Chimica ActaAbbreviation: Anal. Chim. ActaISSN: 0003-2670Publisher: Elsevier ScienceAnalytical Biochemistry网页P(1)常见化学研究英文期刊及缩写Abbreviation: Anal. Biochem.ISSN: 0003-2697Publisher: Academic PressAnalytical ChemistryAbbreviation: Anal. Chem.ISSN: 0003-2700Publisher: American Chemical Society PublicationsBiochemistry and Molecular Biology Education(Former title: Biochemical Education) a publication of the International Union of Biochemistry and Molecular BiologyAbbreviation:ISSN: 1470-8175Publisher: Elsevier ScienceBiochemistryAbbreviation: Biochemistry-USISSN: 0006-2960Publisher: American Chemical Society PublicationsCement and Concrete ResearchAbbreviation: Cement Concrete Res.ISSN: 0008-8846Publisher: Pergamon - Elsevier ScienceChemical EducatorAbbreviation:ISSN: 1430-4171Publisher: SpringerChemical Engineering and ProcessingAbbreviation: Chem. Eng. Process.ISSN: 0255-2701Publisher: Elsevier ScienceChemical Engineering & TechnologyAbbreviation: Chem. Eng. Technol.ISSN: 0930-7516网页P(2)常见化学研究英文期刊及缩写Publisher: Wiley-VCHChemical Engineering ScienceAbbreviation: Chem. Eng. Sci.ISSN: 0009-2509Publisher: Pergamon - Elsevier ScienceChemometrics and Intelligent Laboratory Systems - a journal sponsored by the Chemometrics SocietyAbbreviation: Chemometr. Intell. Lab.ISSN: 0169-7439Publisher: Elsevier ScienceChromatographiaAbbreviation: ChromatographiaISSN: 0009-5893Publisher: Elsevier ScienceComputers & Chemical EngineeringAbbreviation: Comput. Chem. Eng.ISSN: 0098-1354Publisher: Pergamon - Elsevier ScienceComputers & ChemistryAbbreviation: Comput. Chem.ISSN: 0097-8485Publisher: Pergamon - Elsevier ScienceCorrosion Science - an official journal of the Institute of Corrosion Abbreviation: Corros. Sci.ISSN: 0010-938XPublisher: Pergamon - Elsevier ScienceCritical Reviews in Analytical ChemistryAbbreviation: Crit. Rev. Anal. Chem.ISSN: 1040-8347Publisher: CRC PressCroatica Chemica ActaAbbreviation: Croat. Chem. Acta网页P(3)常见化学研究英文期刊及缩写ISSN: 0011-1643Publisher: Croatian Chemical SocietyElectroanalysisAbbreviation: Electroanal.ISSN: 1040-0397Publisher: Wiley-VCHElectrochimica Acta - a journal of the International Society of ElectrochemistryAbbreviation: Electrochim. ActaISSN: 0013-4686Publisher: Pergamon - Elsevier ScienceEnvironmental Science & TechnologyAbbreviation: Environ. Sci. Technol.ISSN: 0013-936XPublisher: American Chemical Society PublicationsFlavour and Fragrance JournalAbbreviation:ISSN: 0882-5734Publisher: Wiley-Interscience PublicationFood ChemistryAbbreviation: Food Chem.ISSN: 0308-8146Publisher: Elsevier ScienceFresenius' Journal of Analytical Chemistry in cooperation with the FECS Division of Analytical ChemistryAbbreviation: Fresen. J. Anal. Chem.ISSN: 0937-0633Publisher: SpringerJournal of Applied ElectrochemistryAbbreviation: J. Appl. Electrochem.ISSN: 0021-891XPublisher: Kluwer Academic PublishersJournal of Applied Polymer Science网页P(4)常见化学研究英文期刊及缩写Abbreviation: J. Appl. Polym. Sci.ISSN: 0021-8995Publisher: Wiley-Interscience PublicationJournal of Chemical EducationAbbreviation: J. Chem. Educ.ISSN: 0021-9584Publisher: Division of Chemical Education, American Chemical SocietyJournal of Chemical Technology & Biotechnology - a journal of the Society of Chemical Industry (SCI)Abbreviation: J. Chem. Technol. Biot.ISSN: 0268-2575Publisher: Wiley-Interscience)Journal of Chemical ThermodynamicsAbbreviation: J. Chem. Thermodyn.ISSN: 0021-9614Publisher: Academic PressJournal of ChemometricsAbbreviation: J. Chemometr.ISSN: 0886-9383Publisher: Wiley-InterscienceJournal of Computational ChemistryAbbreviation: J. Comput. Chem.ISSN: 0192-8651Publisher: Wiley-Interscience PublicationJournal for Corrosion Science and Engineering published in collaboration with the International Corrosion CouncilAbbreviation:ISSN: 1466-8858Publisher: Corrosion and Protection CentreJournal of Electroanalytical ChemistryAbbreviation: J. Electroanal. Chem.ISSN: 0022-0728网页P(5)常见化学研究英文期刊及缩写Publisher: Elsevier ScienceJournal of Materials ScienceAbbreviation: J. Mater. Sci.ISSN: 0022-2461Publisher: Kluwer Academic PublishersJournal of Physical Chemistry AAbbreviation: J. Phys. Chem. AISSN: 1089-5639Publisher: American Chemical Society PublicationsJournal of Physical Chemistry BAbbreviation: J. Phys. Chem. BISSN: 1089-5647Publisher: American Chemical Society PublicationsJournal of Power SourcesAbbreviation: J. Power SourcesISSN: 0378-7753Publisher: Elsevier ScienceMaterials Chemistry & PhysicsAbbreviation: Mater. Chem. Phys.ISSN: 0254-0584Publisher: Elsevier ScienceMicrochemical Journal - a journal of the Americal Microchemical Society Abbreviation: Microchem. J.ISSN: 0026-265XPublisher: Elsevier ScienceMikrochimica ActaAbbreviation: Mikrochim. ActaISSN: 0026-3672Publisher: SpringerNatureAbbreviation: NatureISSN: 0028-0836网页P(6)常见化学研究英文期刊及缩写Publisher: Macmillan PublishersPolymer Degradation & StabilityAbbreviation: Polym. Degrad. Stabil.ISSN: 0141-3910Publisher: Elsevier ScienceSensors & Actuators B: ChemicalAbbreviation: Sensor Actuat. B-Chem.ISSN: 0925-4005Publisher: Elsevier ScienceSurface ScienceAbbreviation: Surf. Sci.ISSN: 0039-6028Publisher: North-Holland - Elsevier ScienceTalantaAbbreviation: TalantaISSN: 0039-9140Publisher: Elsevier ScienceThermochimica ActaAbbreviation: Thermochim. ActaISSN: 0040-6031Publisher: Elsevier ScienceWater Research - a journal of the International Water Association (IWA)Abbreviation: Water Res.ISSN: 0043-1354Publisher: Pergamon - Elsevier Science本文来自: 课件下载论坛(/) 详细出处参考:/kejian/html/40/t-340.html。
《中国社会科学》关于引文注释的规定《中国社会科学》的引文出处均采用页下注(脚注)。
作者投稿请遵照以下标注格式。
一、非连续出版物㈠普通图书⑴著作标注顺序:责任者/著作名/出版者/出版年/页码茅盾:《神话研究》,百花文艺出版社,1981年,第14页。
刘少奇:《论共产党员的修养》(2版修订本),人民出版社,1962年,第76页。
许毅等:《清代外债史论》,中国财政经济出版社,1996年,第95页。
任继愈主编《中国哲学发展史(先秦卷)》,人民出版社,1983年,第25页。
黑格尔:《逻辑学》上卷,杨一之译,商务印书馆,1977年,第30-35页。
谢兴尧整理《荣庆日记》,西北大学出版社,1986年,第175页。
参见恩格斯《自然辩证法》(人民出版社,1971年)第21页。
⑵析出文献标注顺序:著者/析出篇名/文集编者/文集题名/出版者/出版年/页码杜威〃佛克马:《走向新世界主义》,王宁、薛晓源编《全球化与后殖民批评》,中央编译出版社,1999年,第247-266页。
范文澜:《论中国封建社会长期延续的原因》,《范文澜历史论文选集》,中国社会科学出版社,1979年,第41页。
李鹏程《序言》,《当代文化哲学沉思》,人民出版社,1994年,第2页。
《马克思恩格斯选集》第2卷,人民出版社,1972年,第169、170页。
㈡古籍⑴古籍一般应标注责任者、书名、卷次或责任者、篇名、部类名、卷次、版本王夫之:《周易外传》卷5。
杨时:《陆少卿墓志铭》,《龟山集》卷34,《四库全书》本。
⑵如果需要,作者前也可标注朝代名[晋]慧远:《沙门不敬王者论》,《弘明集》卷5。
⑶常用古籍可不注编撰者和版本《孟子〃公孙丑上》。
《史记》卷25《李斯列传》。
二、连续出版物中析出文献㈠期刊标注顺序:著者/篇名/期刊名/年期何龄修:《读顾城〈南明史〉》,《中国史研究》1998年第3期。
周荫棠:《为读一部史书运动进一解》,《斯文》第2卷第4期(1941年12月1日)。
规范的参考文献格式一、参考文献的类型参考文献(即引文出处)的类型以单字母方式标识,具体如下:M——专著C——论文集N——报纸文章J——期刊文章D——学位论文R——报告S——标准P——专利A——文章对于不属于上述的文献类型,采用字母“Z”标识。
常用的电子文献及载体类型标识:[DB/OL]——联机网上数据(database online)[DB/MT]——磁带数据库(database on magnetic tape)[M/CD]——光盘图书(monograph on CD ROM)[CP/DK]——磁盘软件(computer program on disk)[J/OL]——网上期刊(serial online)[EB/OL]——网上电子公告(electronic bulletin board online)对于英文参考文献,还应注意以下两点:①作者姓名采用“姓在前名在后”原则,具体格式是:姓,名字的首字母. 如:Malcolm Richard Cowley 应为:Cowley, M.R.,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris,F. & I.Gordon.;②书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly。
二、参考文献的格式及举例1.期刊类【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号):起止页码.【举例】[1] 周融,任志国,杨尚雷,厉星星.对新形势下毕业设计管理工作的思考与实践[J].电气电子教学学报,2003(6):107-109.[2] 夏鲁惠.高等学校毕业设计(论文)教学情况调研报告[J].高等理科教育,2004(1):46-52.[3] Heider, E.R.& D.C.Oliver. The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, (3): 62 – 67.2.专著类【格式】[序号]作者.书名[M].出版地:出版社,出版年份:起止页码.【举例】[4] 刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.[5] Gill, R. Mastering English Literature [M]. London: Macmillan, 1985: 42-45.3.报纸类【格式】[序号]作者.篇名[N].报纸名,出版日期(版次).【举例】[6] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27(3).[7] French, W. Between Silences: A Voice from China[N]. Atlantic Weekly, 1987-8-15(33).4.论文集【格式】[序号]作者.篇名[C].出版地:出版者,出版年份:起始页码.【举例】[8] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979:12-17.[9] Spivak,G. “Can the Subaltern Speak?”[A]. In C.Nelson & L. Grossberg(eds.). Victory in Limbo: Imigism [C]. Urbana: University of Illinois Press, 1988, pp.271-313.[10] Almarza, G.G. Student foreign language teacher’s knowledge growth [A]. InD.Freeman and J.C.Richards (eds.). Teacher Learning in Language Teaching [C]. New York: Cambridge University Press. 1996. pp.50-78.5.学位论文【格式】[序号]作者.篇名[D].出版地:保存者,出版年份:起始页码.【举例】[11] 张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所, 1983:1-7.6.研究报告【格式】[序号]作者.篇名[R].出版地:出版者,出版年份:起始页码.【举例】[12] 冯西桥.核反应堆压力管道与压力容器的LBB分析[R].北京:清华大学核能技术设计研究院, 1997:9-10.7.专利【格式】[序号]专利所有者.题名[P].国别:专利号,发布日期.【举例】[13] 姜锡洲.一种温热外敷药制备方案[P].中国专利:881056073, 1989–07–26.8.标准【格式】[序号]标准编号,标准名称[S].【举例】[14] GB/T 16159—1996, 汉语拼音正词法基本规则[S].9.条例【格式】[序号]颁布单位.条例名称.发布日期【举例】[15] 中华人民共和国科学技术委员会.科学技术期刊管理办法[Z].1991—06—0510.电子文献【格式】[序号]主要责任者.电子文献题名.电子文献出处[电子文献及载体类型标识].或可获得地址,发表或更新日期/引用日期.【举例】[16] 王明亮.关于中国学术期刊标准化数据库系统工程的进展[EB/OL].http: ///pub/wml.txt/980810–2.html, 1998–08–16/1998–10–04.[17] 万锦.中国大学学报论文文摘(1983–1993).英文版[DB/CD]. 北京: 中国大百科全书出版社, 1996.11.各种未定义类型的文献【格式】[序号] 主要责任者.文献题名[Z].出版地:出版者, 出版年.三、注释注释是对论文正文中某一特定内容的进一步解释或补充说明。
原文地址:国内外著名的出版社作者:l33831、综合性出版社:历史悠久,规模较大,编辑出版力量雄厚,可有计划地组织世界各地学科带头人撰稿,出版的图书、期刊包括自然科学、社会科学各个门类,质量较高。
如美国西蒙和舒斯特公司(Simon & Schuster Ltd.)美国约翰·威利父子公司(John Wiley & Son, Inc.)麦格劳—希尔出版公司(McGraw-Hill Co.)英国的培格曼出版社(Pergamon Press Ltd.)联邦德国的施普林格出版公司(Springer-Verlag GmbH & Co. KG)荷兰的埃尔塞维尔科学出版公司(Elsevier Science Publishers)克吕维尔学术出版社集团等(Kluwer Academic Publishers Group)哈珀科林斯(HarperCollins Publishers)CRC出版有限公司(CRC Press)学术出版社(Academic Press)国际汤普森出版公司(International Thomson Publishing Ltd.)麦克米伦出版公司(Macmillan Publishers Ltd.)朗曼出版集团公司(Longman Group Ltd.)里德·埃尔塞维尔(Reed Elsevier Ltd.)等。
2、专业出版社:规模一般不大,书刊富有特色,具有较高的学术水平,受专业读者重视,书刊内容限于一定学科范围之内。
如美国专门出版数学书刊的数学学会出版社、出版科技类的普莱南出版公司(Plenum Publishing Corporation)、擅长科技手册和百科全书的马塞尔·德克尔公司(Marcel Dekker, Inc.)、出版档案图书馆类的档案出版公司(Facts on File, Inc.)、出版科技和人文科学的戈登和布里奇科学出版公司(Gordon & Breach Science Publishers Ltd.)、出版年鉴类的简氏出版公司(Jane's Publishing Company Ltd.)、出版医学和生物类的利平科特—雷文出版公司(Lippincott-Raven Publishers)、出版医学类的莫斯比出版社(Mosby Publisher)、出版教育类图书的法尔默出版社(Falmer Press)等等。
一检索课题概况(一)检索课题名称(中英文)信息管理与信息系统专业的研究The Information Management and Information System Major(二)课题简介及总体检索思路信息管理与信息系统学科是一门集信息技术与管理科学于一体的交叉学科。
计算机及其他现代信息技术属于传统的工科领域, 而信息管理在我国则属于管理学领域。
科学技术发展的最终目的是为人类的生产、生活和文明进步服务, 上世纪40 年代以来, 高速发展的信息技术自然要广泛地应用到信息管理中来。
在信息管理中应用现代信息技术, 自然就产生了信息管理与信息系统这一新兴的交叉学科。
本学科着重培养学生的通信技术与生产组织管理的基本知识、现代经营管理理论与方法、计算机与信息处理原理,信息系统设计、开发与管理的能力。
本课题将通过对信息管理与信息系统专业的有关资料的检索使我们能够更加准确,深入的了解这一门学科,为以后的学习以及毕业后的就业提供指导以及规划。
本课题将首先利用中国知网——中国期刊全文数据库进行检索,了解国内对信息管理与信息系统专业的研究情况;再利用万方外文文献数据库进行检索,了解国外对信息管理与信息系统专业的研究情况;最后利用Soso 和 Baidu 进行相关搜索,了解有关信息。
二检索过程记录(一)检索馆藏书目的情况1.赵泉. 信息检索. 机械工业出版社, 2008 .2.张小栓, 张健, 穆维松 .信息管理与信息系统研究方法论.社会科学文献出版社,2008 .3.薛华成.管理信息系统.清华大学出版社,2003 .4.金银秋.数据库原理与设计.科学出版社,2000.5. 桂学文, 娄策群.信息经济学.科学出版社,2006 .(二)检索馆藏中外文数据库的情况1.中文数据库1——CNKI:数据库名称(全称)及简要概况:中国知网是中国知识基础设施(China National Knowledge Infrastructure,简称CNKI)工程的重点项目之一。
JOURNAL OF ELECTRONIC TESTING:Theory and Applications11,197–209(1997)c 1997Kluwer Academic Publishers.Manufactured in The Netherlands.Testability Properties of Divergent Trees∗R.D.(SHAWN)BLANTONCenter for Electronic Design Automation,ECE Department,Carnegie Mellon University,Pittsburgh,PA15213-3890blanton@JOHN P.HAYESAdvanced Computer Architecture Laboratory,EECS Department,University of Michigan,Ann Arbor,MI48109-2122jhayes@Received March20,1996;Revised June6,1997Editor:A.PaschalisAbstract.The testability of a class of regular circuits called divergent trees is investigated under a functional fault model.Divergent trees include such practical circuits as decoders and demultiplexers.We prove that uncontrolled divergent trees are testable with afixed number of test patterns(C-testable)if and only if the module function is surjective.Testable controlled trees are also surjective but require sensitizing vectors for error propagation.We derive the conditions for testing controlled divergent trees with a test set whose size is proportional to the number of levels p found in the tree(L-testability).By viewing a tree as overlapping arrays of various types,we also derive conditions for a controlled divergent tree to be C-testable.Typical decoders/demultiplexers are shown to only partially satisfy L-and C-testability conditions but a design modification that ensures L-testability is demonstrated. Keywords:fault detection,fault modeling,regular circuits,interactive logic arrays,structured circuits,test gen-eration1.IntroductionIt has long been recognized that regular logic cir-cuits,which are constructed from identical modules that are interconnected in a uniform fashion,are easier to test than irregular circuits.For example,the circuit of Fig.1(a)is an8-bit ripple-carry adder composed of eight identical modules(full adders)connected as a one-dimensional array.This adder is testable for all sin-gle stuck-line faults[1]with eight test patterns.These eight tests also detect any fault that alters the function of any single module in the circuit.This testing prop-∗This research was supported by the National Science Foundation under Grant No.MIP–9503463.erty is true for an n-bit adder as well,that is,eight tests are required for a ripple-carry adder regardless of the number of modules in the array,a property known as C-testability[2].The one-dimensional array adder of Fig.1(a)is a special case of a type of regular circuit called a tree.In general,trees are combinational logic circuits that have at most one path between any two input/output ports.A path can contain single or multiple lines(buses). The modules or cells used to construct a tree circuit can have internal reconvergent fanout,but fanout is not allowed among the modules.Figure1(b)illustrates an 8-bit parity tree constructed from2-bit EXCLUSIVE-OR modules.For this tree,the size of the buses that interconnect the modules is one,and between any two198Blanton andHayes(a)(b)Fig.1.Examples of regular tree circuits:(a)an 8-bit ripple-carry adder and (b)an 8-bit parity circuit.module ports there is only one path.One can easily see how the one-dimensional array structure of the adder results if the parity tree is restricted to a single module per level.It is useful to extend the notion of a tree to make a distinction between data and control inputs.A tree with both data and control lines is called a controlled tree .The 3-to-8decoder circuit constructed from 1-to-2decoder (Dcd)modules and the demultiplexer circuit constructed from 1-to-2demultiplexer (Dmx)modules of Fig.2are examples of such a circuit.Tree circuits can be convergent,divergent,or neither,that is,the(a)(b)Fig.2.Examples of divergent tree circuits:(a)a 1-to-8demultiplexer and (b)a 1-to-8decoder.number of signal lines can increase,decrease or re-main the same as one moves from the primary inputs to outputs.The parity tree is an example of a tree that converges,while the decoder and demultiplexer trees are examples of divergent trees.The ripple-carry adder is a tree that neither diverges or converges.In general,regular circuits are easy to test because the testing requirements for the circuit’s modules are identical and the regular interconnections allow tests for one module to be used on other modules.They also have other advantages.For example,because regular circuits are made by connecting identical modules inTestability Properties of Divergent Trees 199a regular fashion,large circuits are easy to build and have fewer design errors.The interconnection structure of regular circuits is also ideal for layout in a VLSI environment.As a result,they are used a great deal in large designs.For example,two-dimensional arrays and trees in the form of storage arrays,decoders,and multiplexers can be found in all memory designs.The testing properties of one-dimensional arrays have been studied extensively [2–4].In [2],the con-cept of C-testability was introduced,and conditions required for arrays without vertical outputs to be C-testable are presented.In [3],necessary and sufficient conditions for the C-testability of unilateral and bilat-eral one-dimensional arrays with vertical outputs are presented.The authors of [4]present similar testing conditions to those in [3]along with conditions for lo-cating faulty modules within the array.The testability of two-dimensional arrays has been similarly investi-gated.For example,various sets of sufficient condi-tions for the C-testability of two-dimensional arrays are presented in [5–7].In [8]and [9],C-testable two-dimensional array designs for multiplier and divider circuits respectively,are discussed.In [10],an auto-matic test pattern generator called NCUBE for two-dimensional arrays is described.The testing character-istics of systolic arrays have also been investigated in [11,12].Systolic arrays are one-and two-dimensional arrays and trees with buffer memory added to the cir-cuit’s modules.Some research has addressed the testability of con-vergent trees [13–18],but there appears to be no work on divergent trees.In this paper,we examine the test-ing properties of divergent tree circuits like the de-coder and demultiplexers of Fig.2.The rest of this paper is organized as follows.Section 2presents our notation for describing the function and structure of divergent trees.The IP fault model adopted is then(a)Z l X i ,l ˆX 1i ,l ˆX 2i ,l 000001101000111(b)Fig.3.(a)A 1-to-2demultiplexer module M i ,l and (b)the truth table for M i ,l .defined and illustrated.The testability of uncontrolled and controlled divergent trees is analyzed under this fault model in Section 3.Section 4presents conditions for testing divergent trees with very few test patterns,while Section 5describes design methods for ensuring that these conditions are satisfied.Finally,Section 6summarizes our results.2.Function and StructureAn n -ary p -level divergent tree D (n ,p )is constructed from a set of identical modules arranged in p levels.Each module M i ,l has a single state input bus X ,an optional level-control input bus Z l ,and n state outputbuses denoted ˆX1i ,l ,ˆX 2i ,l ,...,ˆX n i ,l ;see Fig.3(a).(The subscripts i ,l will only be used when the correspond-ing module name is ambiguous.)The word size forX and each ˆXj is n x and the word size of Z l is n z .Thus,the set of values that can be assigned to X is I X ={0,1,...,2n x −1},where each n x -bit value is denoted by a decimal number.Similarly,the set of val-ues assignable to Z l is I Z ={0,1,...,2n z −1}.The set of possible output values that can be produced ateach state output ˆXj is also I X .The n state output functions ˆXj for 1≤j ≤n of the divergent tree module can be described by a com-posite truth table containing n output columns labeledˆX1,ˆX 2,...,ˆX n .Each row r k and column ˆX j entry specifies an input pattern ip k =(v 0,v 1)and an out-put value v k .Here ip k denotes a control value v 0and a state input value v 1,while v k denotes the state out-put value produced at ˆXj when ip k is applied.Row k of the truth table thus defines the fault-free mappingdenoted ip k →v k at state output ˆXj or,equivalently,ˆXj (i p k )=v k .A controlled n -ary p -level divergent tree CD (n ,p )has a control input bus Z l for each M i ,l in level l ,where200Blanton and Hayes1≤l ≤p .A controlled divergent tree is globally controlled if all Z l are connected together.A diver-gent tree is uncontrolled if no Z l is present.If a di-vergent tree has n p −l modules on every level l ,then the tree is complete ,otherwise it is incomplete .Here,we only consider complete trees,but our results ap-ply to incomplete trees as well.Figure 3illustrates our notation for a module that represents a 1-to-2demulti-plexer.We employ a special case of the input pattern (IP)fault model [19].The IP fault model assumes only a single module in the circuit can be faulty.All modules are assumed to be combinational,and the function of a faulty module is assumed to remain combinational,that is,no sequential behavior is allowed.No restriction is placed on the type or size of the module,making it possible to apply the IP model to circuits described at different design levels.A fault f i that affects output ˆXk can change the re-sponse to an input pattern ip j from v j to v j ;we denote this change by ip j →(v j ,v j )k and refer to it as a sin-gle input pattern fault,or simply as an IP fault.Thepair of distinct state values (v k ,vk)denoting the good and faulty output values is the error corresponding to the IP fault.The IP fault model allows a single module to be affected by a single IP fault or a set of such faults (a multiple IP fault )F ={f 1,f 2,...,f q }.It is impor-tant to note that a multiple IP fault is not restricted to asingle state output ˆXk .The IP fault model can be customized for the testing application of concern.For example,in the special case where all single and multiple IP faults are assumed possible,the IP model becomes equivalent to the well-known cell fault model [20],where all modules are required to be tested pseudo-exhaustively.This special case of the IP fault model is advantageous in situations where the implementation details of the circuit modules are unknown.The characteristics of the IP fault model are il-lustrated by the following example.Figure 4shows truth tables for all 16possible Boolean functions of Input Output columns (ˆX 1,ˆX 2)X 0123456789101112131415000000000010101011010101011111111100011011000110110001101100011011Fig.4.The 16possible Boolean functions of a 1-bit uncontrolled divergent tree module.an uncontrolled divergent tree module M i ,l with n =2and n x =1.Assume both the ˆX1and ˆX 2outputs of M i ,l implement the NOT function,which is defined by column 12of Fig.4.The remaining columns repre-sent all the possible faulty functions allowed by the IP fault model.For example,the faulty function of col-umn 11is easily described by the multiple IP fault F ={1→(0,1)1,0→(1,0)2,1→(0,1)2}.Notice that columns 0,4,8,13,14,and 15are the only faulty functions possible under the single stuck-line (SSL)fault model.(Under the SSL fault model [1],a sin-gle signal line in the circuit can either become perma-nently fixed (stuck)at a logical 1or 0value.)Thus,the IP fault model is more general than the widely-used SSL model because it allows for many more faulty behaviors.In this paper,we assume that a tree module can be affected by any single or multiple IP fault (i.e.,the cell fault model).This means a faulty divergent tree module can produce an erroneous output value at one or more of its n state outputs for one or more input patterns.Since error masking is not possible in a divergent tree (due to the absence of reconvergence),the set of (single and multiple)IP faults that affect a single state output X j for 1≤j ≤n are dominated by the set of all possible IP faults.Thus,we need only to explicitly consider IPfaults that affect a single output ˆXj for 1≤j ≤n .Moreover,the set of all multiple IP faults that affect asingle state output ˆXj dominate the set of all single IP faults that affect the same output ˆXj .Thus,adoption of the cell fault model only requires us to consider the set of all possible single IP faults that affect each state output.The number of possible single IP faults for an n -output divergent tree module is nK (W −1),where K =2n x +n z and W =2n x .Note that this number of faults is much smaller than the 2K nn x −1possible faulty module functions.For example,the demulti-plexer module of Fig.3has 28−1=255different func-tional faults.The set of eight single IP faults for thetwo state outputs ˆX1and ˆX 2are shown in Fig.5.Testability Properties of Divergent Trees201ˆX1IP faultsˆX2IP faultsZ l X→(v k,v k)j Z l X→(v k,v k)j00→(0,1)100→(0,1)201→(1,0)101→(0,1)210→(0,1)110→(0,1)211→(0,1)111→(1,0)2Fig.5.The eight IP faults for theˆX1andˆX2state outputs of the1-to-2demultiplexermodule of Fig.3.3.Tree TestabilityWe now examine the testing properties of tree circuits.A tree is testable for all single IP faults(and,therefore testable under the cell fault model)if each module in the tree can have every possible module input pattern applied to its inputs,and any resulting error can be propagated to the tree’s output.For uncontrolled trees, we derive both necessary and sufficient conditions for testability.We then extend our fault model to controlled tree circuits and derive the necessary and sufficient con-ditions for controlled divergent tree testability.Uncontrolled Trees.We begin by defining the sur-jective property for a divergent tree module and then show how this property is both necessary and sufficient for an uncontrolled divergent tree to be testable.Definition1.A divergent tree module is surjective if the set of output values produced at eachˆX j is I X,for 1≤j≤n.In other words,there is at least one occur-rence of every possible state output value in each output column of the module’s truth table.Figure6shows two examples of binary(n=2)di-vergent tree modules.The module of Fig.6(a)is not surjective because state value3is absent from theˆX2 output column.The second module of Fig.6(b)is sur-jective because both theˆX1andˆX2output columns con-tain all members of the set I X={0,1,2,3}.Notice that surjectivity in an uncontrolled divergent module implies that the state output functions are information lossless.This means that the output values produced by a module uniquely determines the input value ap-plied.This is true for the uncontrolled divergent tree module since it has the same number of signal lines for the state input X and each state outputˆX j.Module D1XˆX1ˆX2030111222300Module D2XˆX1ˆX2002110223331(a)(b)Fig.6.Truth tables for two uncontrolled di-vergent modules:(a)D1which is not surjec-tive and(b)D2which is surjective.Theorem1.An n-ary p-level uncontrolled divergent tree D(n,p)is testable if and only if M i,l is surjective.Proof:First,we show that the surjective property is necessary.Assume D(n,p)is testable but M i,l is not surjective.Then there is a state value v j∈I X that cannot be generated as an output value at some state outputˆX j. As a result,v j cannot be applied to the internal module M j,1connected toˆX j1,1.Hence,D(n,p)cannot be fully tested unless M i,l is surjective.Now we show that the surjective property is suffi-cient for testability.Assume the divergent tree module is surjective.Then every state output function is surjec-tive,so error propagation from the state input X to each state outputˆX is guaranteed.We now use induction on the number of levels p to show that each module input pattern ip j can be applied to all modules in D(n,p) using2n x test patterns.Obviously,all2n x input pat-terns can be applied to the1-level tree D(n,1)with 2n x tests.By the inductive hypothesis,assume2n x tests are sufficient for a(p−1)-level tree D(n,p−1).A p-level tree can be viewed as a(p−1)-level tree with an additional level of modules connected to the outputs of D(n,p−1).D(n,p)is testable with the same2n x tests used for D(n,p−1)because the level-1surjective modules of D(n,p−1)produce all2n x input patterns for the new level-1modules of D(n,p).Thus by the principle of induction,all uncontrolled divergent trees D(n,p)with p≥1can have all module input patterns applied to every module with2n x tests.PExample1.Reconsider the truth tables for the diver-gent tree modules of Fig.6.Module D1is not sur-jective and therefore does not satisfy the conditions of Theorem1.Figure7(a)shows how the state out-put value3,which is missing fromˆX2in Fig.6(a), prevents testability of a3-level uncontrolled divergent202Blanton and Hayes(a)(b)Fig.7.Three-level uncontrolled divergent trees constructed from the modules defined in Fig.6:(a)D1and(b)D2.tree.Module D2is surjective and therefore satisfies Theorem1.Figure7(b)shows the2n x=22=4test patterns that completely test a3-level uncontrolled di-vergent tree constructed from D2modules.These four test patterns also test an arbitrarily large tree of p levels.Controlled Trees.The testing of a controlled tree is complicated by faults affecting the control input buses Z1,Z2,...,Z p.We assume that each control input bus Z l,1≤l≤p,can be affected by a set of“stuck-bus”faults,each of which is denoted Z l/v z,where v z∈I Z is some control input value.A control input fault Z l/v z causes the control input bus Z l of all modules M i,l in level l to be permanentlyfixed at v z.Because it af-fects more than one module,the fault Z l/v z is not cov-ered by our fault model.The inclusion of control input faults also subsumes SSL faults on the lines making up Z l.Thus,we define a controlled divergent tree to be completely testable if each module M i,l in the tree can be tested for all its IP faults,and each level l can be tested for all its control input faults of the form Z l/v z.A single-fault assumption is still made,in that only a single functional fault affecting a module or a single control input fault can occur.We now turn our attention to the testability of controlled divergent trees.We define the sensitizing property for these trees and then present conditions for testability.Definition2.A sensitizing vector for an error(v a,v b) on state input X of a divergent tree module is a control input value v0∈I Z such thatˆX j(v0,v a)=ˆX k(v0,v b) for some j=k.In other words,v0is a control value that causes at least two state outputs to produce different values when the error(v a,v b)is present on the state input.Theorem2.An n-ary p-level controlled divergent tree C D(n,p)is testable if and only if M i,l is surjective and there exists a sensitizing vector for every possible error(v a,v b).Here,we sketch the proof of Theorem2.The sur-jective condition,similar to Theorem1,is necessary and sufficient for applying every input pattern to ev-ery module in an arbitrarily large tree.The sensitizing vector condition is required for propagating all possible errors to an output from any module within the tree. Figure8shows a truth table for a1-to-2decoder mod-ule function.A controlled divergent tree constructed from these modules is indeed testable because the errors(1,0)and(0,1)both have the sensitizing vec-tors Z l=1and Z l=0,and eachˆX j is surjective,that is,the values I X={0,1}appear in the output columns ˆX1andˆX2.Also note that any1-bit,1-to-n decoder will always be testable under the functional fault model since,by definition,each module output will be surjec-tive and the required sensitizing vectors must exist.Z l XˆX1ˆX20001011110101111Fig.8.Truth tablefor the1-to-2decodermodule.Testability Properties of Divergent Trees 2034.Efficient TestingWe next examine two special properties called level-testability and C-testability that greatly reduce the num-ber of tests for a controlled divergent tree.L-testability.Consider the problem of testing a tree for all IP faults using the smallest possible test set.The size of the required test set can be exponential in the number of levels in the tree.For example,consider the demultiplexer module defined in Fig.3.A p -level demultiplexer constructed from these modules requires 2p −1different test patterns just for the set of SSL faults [15].A tree is level-testable (L-testable)if all l -level mod-ules M i ,l can be simultaneously tested for any IP faultip k →(v k ,v k)j.Trees that are L-testable have a test set whose size is bounded by W ·p ,where W is a con-stant typically equal to the number of possible input patterns.Theorem 3.An n-ary p-level controlled divergent tree CD (n ,p )is L-testable if and only if (1)there is a sensitizing vector for every error (v a ,v b );(2)for each v k ∈I X there is an input pattern ip k that producesv k at each state output ˆXj ,for 1≤j ≤n ;and (3)for each control value v 1∈I Z there is a v 2∈I Z suchthat subfunctions ˆXj (Z l =v 1)=ˆX k (Z l =v 2),for some 1≤j ,k ≤n.The proof of Theorem 3is similar to that of Theorem 1.The sensitizing condition of Theorem 3insures error propagation while condition (2)is re-quired for simultaneously applying any given input pattern ip k to all modules on any single level.This ca-pability accompanied by the sensitizing condition (1)allows all level-l (for any l )modules to tested simul-taneously for all n (2n x −1)possible single IP faults.Condition (3)is both necessary and sufficient for test-ing control input faults.Example 2.A truth table for a 1-to-2decoder func-tion different from Fig.8is shown in Fig.9.This de-coder module partially satisfies the conditions of The-orem 3.Condition (1)is satisfied in that sensitizing vectors exist for the errors (0,1)and (1,0).Condi-tion (3)is satisfied as well in that the subfunctionsˆX1(Z l =0)and ˆX 2(Z l =1)are not equal,that is,ˆX1(Z l =0)=ˆX 2(Z l =1).But condition (2)is only partially satisfied.This condition states that for each v k ∈I X ={0,1}there must be an input pattern ip k thatZ l X ˆX 1ˆX 20010011110011111Fig.9.Truth table for a 1-to-2decoder mod-ule.IP faultsIP faultsAre the faults affecting ˆX 1affecting ˆX 2L-testable?01→(1,0)101→(1,0)2yes 11→(1,0)111→(1,0)2yes 00→(1,0)100→(0,1)2no 10→(0,1)110→(1,0)2noFig.10.L-testability of the IP faults of the 1-to-2decoder function defined in Fig.9.produces v k at ˆX1and ˆX 2.This is true for v k =1but not for v k =0,that is,we have two input patterns,namely (Z l ,X )=(0,0)and (0,1),that produce 1at both state outputs but no input pattern that produces 0at both state outputs.Since the testability of control faults only depends on conditions (1)and (3)of Theorem 3,we can con-clude that a decoder of any size composed of the 1-to-2decoder modules is testable for all control faults.We can also state that all IP faults involving the state input value 1are L-testable,but the IP faults requiring the state input value 0are not.Figure 10summarizes the L-testability of IP faults in this case.Example 3.RTRAM is a RAM architecture designed to improve both testability and performance [21].It utilizes a complex decoder that has additional modes of operation beyond the normal decode function.Figure 11shows the gate-level implementation of a de-coder used in RTRAM.In [21],the authors show that the decoder is stuck-fault testable with a test set whose size is exponential in the number of levels.Analysis of the decoder implementation indicates that its func-tion completely meets the L-testability conditions of Theorem 3.The decode function provides the sensitiz-ing vectors and there exist many input patterns that produce a 0and a 1at both outputs;for example,000000→00and 110111→11.This means that the204Blanton andHayesFig.11.Gate-level implementation of the RTRAM decoder module[21].27=128IP faults of each l-level decoder module are testable with64patterns.C-testability.A closer examination of the divergent tree structure illustrated in Fig.2shows that it can be viewed as n p−1arrays of n different types.For each array type j,the module input X i,l serves as the ar-ray’s state input while the control input Z l serves as the array’s vertical input;the outputˆX j i,l is the array’s state output.Figure12shows a covering of the de-multiplexer circuit of Fig.2(a)with four arrays of two different types.Obviously a binary(n=2)divergent tree module has two array types while an n-ary output module has n array types.Viewing trees as overlapping arrays allows the testing properties of array circuits to be generalized to divergent trees.Fig.12.A covering of a3-level demulti-plexer tree by four arrays of two differenttypes.An IP fault is C-testable in an array of arbitrarysize if it can be tested with k test patterns,where kis some constant.Friedman[2]showed that an IP faultip1→(v1,v 1)is C-testable in a one-dimensional array if there is a sequence of module input patterns that re-generates ip1at an arbitrarily large number of modulesand can propagate the error(v1,v 1)from each of those modules.The following lemma gives a bound on test set size when faults are C-testable in the arrays within the divergent tree.Lemma1.An n-ary p-level controlled divergent treeCD(n,p)can be tested with at most kn p−1test patternsif each type-j array is C-testable,where1≤j≤n. Proof:If the conditions of the lemma are satisfied then the module is surjective.Hence,any module in CD(n,p)can have any input pattern ip k applied,and therefore CD(n,p)can be tested by testing each ar-ray within the tree separately.Since each array type is C-testable,the bound on the number of test patterns is kn p−1,where is k is some constant.Also note that any control-input fault is covered by testing the arrays contained in the tree.P Because an error at the input of a divergent tree mod-ule can be propagated to one or more of the module’s n state outputs,the conditions for C-testability of ar-rays within a controlled divergent tree are less restric-tive than the single array case.Thus,determining array C-testability for divergent trees should consider all n state outputs.This point is illustrated in the following example.Example4.Reconsider the demultiplexer module.Its truth table and IP faults are shown again inTestability Properties of Divergent Trees205Z l XˆX1ˆX2 0000 0110 1000 1101ˆX1IP faultsˆX2IP faults Z l X→(v k,v k)j Z l X→(v k,v k)j 00→(0,1)100→(0,1)2 01→(1,0)101→(0,1)2 10→(0,1)110→(0,1)2 11→(0,1)111→(1,0)2(a)(b)Fig.13.(a)Truth table for the1-to-2demultiplexer module and(b)IP faults for the1-to-2demultiplexer module.Figs.13(a)and(b),respectively.Inspection of the truth table indicates that any control value applied to Z l will propagate any error to eitherˆX1orˆX2.Thus,an IP fault ip i→(v i,v i)j is C-testable for a type-j array ifip i can be repetitively applied along an array of type j. The truth table reveals that all but two of the eight IP faults are C-testable in their corresponding array types; the two exceptions are11→(0,1)1and01→(0,1)2. But note that all internal tree modules(all modules not on the output level p)are tested for these two faults when the other six faults are tested.For example, testing theˆX2-type arrays for11→(1,0)2,also tests each internal module for the fault11→(0,1)1.The number of p-level modules not tested for this fault is equal to the number of modules not contained in an array of typeˆX2,that is,2p−2.Thus,an additional 2p−2tests are needed to cover these modules.Simi-larly,any internal module fault01→(0,1)2is detected by test patterns for the fault01→(1,0)1.Hence, an additional2p−2separate tests are required for the p-level modules and the fault01→(0,1)2.Thus, a test set for a p-level demultiplexer is bounded by 2·2p−2+6·2p−1=7·2p−1.For the3-level demulti-plexer of Fig.12,the bound is7·4=28tests.In Section3,we found that an uncontrolled diver-gent tree that is testable is also C-testable.This is in contrast to a controlled divergent tree which can easily be testable without being C-testable.But under cer-tain conditions a controlled divergent tree is C-testable. First,the arrays within a divergent tree must all be C-testable if the divergent tree is to be C-testable.Sec-ond,all l-level modules(for1≤l≤p)must have the same control value applied when the divergent tree is being tested.These conditions are formally stated in the following theorem.Theorem4.An n-ary p-level controlled divergent tree CD(n,p)is C-testable if and only if each type-j array is C-testable for1≤j≤n and all input patternssimultaneously applied to a given level l have identicalcontrol values.The proof of Theorem4is very similar to the con-vergent tree case proven in[18]and is therefore notpresented here.Example5.In Example4,we found that any patternof control values will propagate errors to the demulti-plexer tree outputs.Thus any set of input patterns thatcan be repetitively applied along each of the two ar-ray types that have identical control values will beC-testable.Input patterns10and00are two patternsthat satisfy these conditions.Thus four of the possibleeight IP faults associated with the demultiplexer mod-ule(also any of the decoder modules)are C-testable.The two test patterns that test for the faults{00→(0,1)1,00→(0,1)2,10→(0,1)1,10→(0,1)2}are shown in Fig.14.The second test pattern shown inFig.14illustrates error propagation for a faulty mod-ule(shaded)affected by the IP fault00→(0,1)2. 5.Design for TestabilityThe conditions of Theorem3suggest how to introduceL-testability into divergent tree circuits.Theorem3states that a controlled divergent tree is L-testable ifthe required sensitizing vectors exist,and for each statevalue v k∈I X there is an input pattern ip i that produces v k at each state outputˆX j.By adding a single control line or utilizing an unused control value v z∈I Z,the conditions of Theorem3can be easily satisfied. Example6.Consider testing a1-to-1024decoder im-plemented as a9-level controlled divergent tree of1-to-2decoder modules;large decoders of this sort are commonly found in memory chips.The decoder has to be exhaustively tested to detect all SSL faults[15],。