光合作用的发现史资料
- 格式:docx
- 大小:20.09 KB
- 文档页数:9
光合作用的发现史
光合作用是指植物和一些原生生物利用太阳能将二氧化碳和水转化成有机物和氧气的过程。
光合作用的发现历程可以追溯到17世纪,当时英国科学家约翰·鲍尔发现了植物能够产生氧气。
随着科学技术的发展,人们对光合作用的研究也越来越深入。
19世纪,瑞士植物学家尤金·威廉·帕斯特为光合作用研究奠定了基础。
他通过实验发现,光合作用需要光合色素的参与。
20世纪初,德国的植物生理学家梅尔文·卡尔文和同事开始研究光合作用的机理。
他们利用放射性同位素标记技术,成功追踪了二氧化碳在光合作用中的路径,为光合作用的详细机理研究提供了重要的依据。
近年来,随着基因工程技术的发展,人们对光合作用的研究取得了更多的进展。
研究人员通过对光合作用相关基因的调控和改变,成功实现了提高作物光合效率、抗旱、抗病等目标。
总之,光合作用的发现史是科学研究不断发展进步的历史。
光合作用的研究不仅有助于增加粮食产量,也为生态环境保护和人类健康做出了重要贡献。
- 1 -。
光合作用发现历程
1.1771年,英国科学家普利斯特利通过实验发现植物可以“净化”空气。
2.1864年,德国科学家萨克斯把绿叶放在暗处理的绿色叶片一半暴光,另
一半遮光,然后用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色,证明绿色叶片在光合作用中产生了淀粉。
3.1880年,德国科学家恩吉尔曼用水绵进行光合作用的实验,证明叶绿体
是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
4.20世纪30年代,美国科学家鲁宾和卡门采用同位素标记法研究了光合作
用,证明光合作用释放的氧全部来自来水。
光合作用发现历史光合作用是植物和一些单细胞生物利用太阳能将二氧化碳和水转化为有机物和氧气的过程。
这是地球上最重要的生化过程之一,也是维持生态平衡的关键。
光合作用的发现可以追溯到17世纪。
1627年,奥斯瓦尔德·库尔德(Oswald Croll)首先提出了光合作用的观点,他认为蕨类植物是从水和土壤中吸收养分,通过太阳光合成为自己的食物。
然而,在当时,此观点并未受到广泛接受。
1779年,尼古拉斯·特楚斯·德·塞尔诺(Nicolas-Theodore de Saussure)进行了一系列实验,证明了光合作用过程中涉及水和二氧化碳的参与。
他还发现了植物体内存在一种奇特的气体,这就是氧气。
1796年,瑞典化学家卡尔·威廉·蔡尔龄(Carl Wilhelm Scheele)通过实验证明了植物在光照条件下吸收二氧化碳,释放出氧气。
他还发现了植物体内所含的绿色色素。
1804年,法国物理学家雅克·图内尔(Jean Senebier)通过一系列实验,确认了光合作用仅在光照下进行。
他观察到,植物在黑暗中无法进行光合作用,而只能进行呼吸作用。
1837年,德国植物学家伊伦斯特·威尔海多·冯·维尔特(Eduard Strasburger)首次将光合作用的过程进行了系统分类。
他认为光合作用分为光化学和光合化学两个阶段。
1864年,英国生物化学家朱利热斯·冯·萨克(Julius von Sachs)证明了光合作用基本上是在植物叶绿体中进行的。
他观察到,在黄绿色的花粉中包含有叶绿素,而不同颜色的花粉则没有。
1905年,德国生物化学家理查德·威尔斯(Richard Willstätter)成功地从黄豆中提取出了叶绿素,这是人们首次获得纯净的叶绿素样品。
他还通过一系列实验,确认了叶绿素参与光合作用过程中的光反应。
植物光合作用的发现小资料小资料1 探究光合作用的主要历程(1900年前)1648年范·海尔蒙特从柳树的生长得到启发: 水是植物生长的因子。
1676年Antonie Van Leeuwenhoek 、Schimper 、Meyer 等对叶绿体进行了研究。
1771年普利斯特莱等的试验表明CO2和阳光是植物生长的因子。
1804年德·索苏尔(Nicholas de Saussure )发现一棵生长着的植物所制造的全部物质,比它所吸收的2CO 多,2CO 和水是光合作用的原料。
他们都认为氧气是在光合作用中产生的。
1842年梅耶(Robert Mayer )指出能量不灭定律:能量既不能产生也不能毁灭,只能是形式上的变化。
绿色植物制造的食物是所有有机物质的源泉,也是所有生物能量的源泉。
光合作用对整个生物界贮存太阳能是必不可少的。
结论:光合作用合成碳水化合物时,需要四种因子--二氧化碳、水、阳光和叶绿素,同时产生了氧气。
1880年恩格尔曼(Engelmann )的实验证明植物利用吸收的光能进行光合作用。
小资料2 探究光合作用的主要历程(1900年后)1905年布莱克曼(Blackman )通过改变提供给光照下的小球藻的2CO 数量来测定光合作用速度,发现2CO 浓度的增加,可以促进光合作用。
1939年希尔的实验证明氧气是在光合作用的早期产生的。
鲁宾(Rrben )、卡门(Kamen )通过同位素o 18标记示踪发现氧气来自水。
范·尼尔(Van Niel )通过研究比较光合细菌中紫色细菌的光合作用和绿色植物的光合作用后认为:水分解产生氧气和氢,氧气释放出去,而氢则与2CO 结合,还原2CO 变成O CH 2,进一步构成葡萄糖。
这一观点受到鲁宾、卡门的实验的支持。
1954年阿农(Arnon )利用放射性同位素技术和色谱法,用菠菜的叶绿体作为实验材料,检查叶绿体光反应的产物,发现光反应不能产生碳水化合物,但能产生A TP 以及将NADP 还原成NADPH ,水分解提供还原NADP 所需的氢。
光合作用发现史1、早在两千多年前,古希腊著名哲学家亚里士多德认为,植物是由“土壤汁”构成的。
这一观点一直沿用到 18 世纪中期。
17 世纪上半叶,比利时学者海尔蒙特所做的柳树试验,使他自然而然地相信:柳树生长所需要的物质,来自于浇灌的水。
这个结论首次提出了水参与植物有机物制造,但没有考虑到空气对植物体物质形成的作用。
2、我国明代学者宋应星、英国植物学家斯蒂芬. 黑尔斯也曾指出:植物在生长时主要用空气当养分。
但他们并未用实验证明这一判断。
3、1771 年,英国科学家普利斯特利通过实验证实,植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。
由于普里斯特利所做的这个出色的实验,人们把 1771 年定为发现光合作用的年代。
但是,他并没有发现光在植物更新空气中的作用,而是将空气的更新归因于植物的生长。
当时有人重复他的实验,却得到完全相反的结论。
因此这个实验引起人们的关注。
4、1779 年,荷兰科学家英格豪斯做了500 多次植物更新空气的实验,得出结论:绿色植物只有在光下才能更新空气。
直到 1785 年,人们才明确绿叶在光下放出的气体是氧气,吸收的是二氧化碳。
5、1782 年,瑞士牧师吉恩 .谢尼伯证实了英格豪斯的发现,并指出植物“净化”空气的活性,除光合作用外,还取决于“所固定的空气”。
6、1804 年,瑞士学者索热尔研究植物光合作用过程中,二氧化碳吸收量、有机物生成量、氧气释放量之间的数量关系。
他发现,植物制造的有机物质总量和氧气释放量,远远超过二氧化碳吸收量。
根据实验中除植物、空气和水以外,没有其他物质,他断定光合作用除吸收二氧化碳外,二氧化碳水也是光合作用的反应物。
7、1817 年,法国的两位植物学家,佩利蒂欧和卡文陶从叶片中分离出叶绿素。
后来有人证明叶绿素对于光能的吸收、传递和转化起着极为重要的作用。
8、1845 年,德国科学家梅耶根据能量转化与守恒定律明确指出,植物在进行光合作用时,把光能转换成化学能储存起来。
光合作用的发现过程涉及多个阶段和科学家们的贡献。
以下是这个过程的概述:
1. 早期认识:18世纪后期,伴随着拉瓦锡新化学体系的建立,人类开始了对光合作用的认识。
1771年,英国化学家普利斯特列通过实验发现植物可以“净化”空气,这标志着对光合作用早期认识的开始。
2. 进一步探索:1779年,荷兰人英格豪茨进一步证实绿色植物只有在日光下才能“净化”空气。
1782年,瑞士的森尼别用化学分析证明二氧化碳是光合作用所必需的,而氧气是光合作用的产物。
3. 能量转换的观点:1845年,德国生理学家迈耶用能量转化的观点认识植物代谢过程,明确指出植物在进行光合作用时,把光能转换成化学能储存起来。
这标志着对光合作用早期认识的初步完成。
4. 光合作用的过程:随着研究的深入,科学家们逐渐揭示了光合作用的过程。
首先,植物吸收太阳光分解体内的水,水被分解成了氧气和具有还原性的H。
然后,利用光能将化学能转化为电能合成ATP,ATP是一切细胞活动的能量来源。
光合作用产生的能量储存在ATP的高能磷酸键中,与还原型H一起进入暗反应阶段。
暗反应是在叶绿体基质中进行的,包括二氧化碳的固定和还原等步骤。
5. 后续研究:1864年,德国的萨克斯发现光合作用产生淀粉。
他通过实验证明绿色叶片在光和作用中产生淀粉。
1880年,美国的恩格尔曼发现叶绿体是进行光合作用的场所,氧是由叶绿体释放出来的。
综上所述,光合作用的发现过程是一个漫长而逐步深入的过程,涉及多个科学家们的贡献和实验证据。
这个过程从早期对植物“净化”空气的认识开始,逐渐揭示了光合作用的过程和机制。
光合作用的发现历程光合作用是指植物利用光能将二氧化碳和水转化成为有机化合物和氧气的生物化学过程。
光合作用的发现历程始于17世纪初,经历了一系列研究,最终在20世纪初被完全阐明。
下面将详细介绍光合作用的发现历程。
早在公元木纹时期,人们就观察到植物在阳光照射下会生长,并且得到实验证明光是植物生长所必需的。
然而,直到17世纪初,光合作用的本质还不为人们所知。
1648年,荷兰科学家Jan Baptist van Helmont进行了一项著名的实验,他将一棵柳树幼苗种在一固定重量的土壤中,仅给予水作为营养源。
五年后,他惊讶地发现柳树幼苗的体重增加了164磅,而土壤的重量仅增加了2磅。
这个实验被认为是光合作用观念的先驱,但当时并没有对这一观念展开深入的研究。
1779年,Jan Ingenhousz发表了一篇名为《植物生命的新发现》的论文。
他通过实验证明了在阳光下,植物具有释放氧气的能力。
他发现在光照条件下,植物能够释放氧气,而在无光照条件下则反而释放二氧化碳。
他得出的结论是植物只有在光照条件下才能进行光合作用,并产生氧气。
十九世纪初,法国生物学家Joseph Priestley和瑞士化学家Jean Senebier进一步研究了植物对氧气和二氧化碳的利用。
他们发现植物对光的反应是一种顺序性的反应,即先吸收二氧化碳,然后释放氧气。
这一观察为后来的研究奠定了基础。
到了十九世纪末和二十世纪初,德国生物学家和植物生理学家在光合作用的研究中取得了重大突破。
1883年,薄叶片(F.F.Félix Dujardin研究的一种叶状藻类)被发现可以根据光线的强度来改变它的生长方向。
1905年,德国生物学家Einstein首次提出光合作用与光的物理性质之间的关系。
他认为光合作用是通过光子能量的吸收和转换来实现的。
并通过实验证明了光是光合作用所必需的能量源。
1905年,德国生物学家Wilhelm Pfeffer提出了关于光合作用的另一个重要名词,“光合反应”的概念。
光合作用的历史一、古代发现在古代,人们已经开始观察到一种神奇的现象,即植物在太阳下生长茂盛。
古埃及人相信太阳是所有生命的创造者,植物能够通过太阳的光线进行某种转化来生长。
这种现象引发了人们对光合作用的好奇与探索。
二、植物光合作用的启示17世纪,“生命之火”的理论被研究者鲍因提出,他认为光合作用如同植物的呼吸一样,是植物生存的关键。
这种启发促使科学家们开始深入研究植物如何利用阳光进行光合作用的过程。
三、光合作用的关键发现19世纪末20世纪初,科学家们对光合作用的研究取得了重大突破。
荷兰科学家范尼尔发现植物只有在光照下才能释放氧气,他发现了氧气的来源是水分子,这一发现揭开了光合作用的核心过程。
四、光合作用的机制解析20世纪,科学家们对光合作用的机制有了更深入的理解。
他们发现叶绿体是光合作用的主要场所,光能被捕获并转化为化学能。
通过光合作用,植物可以将二氧化碳和水转化成糖类物质,并释放出氧气。
五、现代光合作用研究随着科学技术的飞速发展,现代对光合作用的研究变得更加深入和细致。
科学家们利用分子生物学、蛋白质结构等技术手段,揭示了光合作用背后更为复杂的化学过程。
六、光合作用的意义与展望光合作用作为自然界中一个重要的生命过程,对地球生态系统的稳定起着至关重要的作用。
通过光合作用,植物制造出氧气、提供能量和营养物质,为整个生物圈的生存发展做出了巨大贡献。
结语光合作用的历史早已悠久,经过多个阶段的探索与发现,人类对光合作用的了解不断深化,这一生命之源的奥秘仍然让我们充满好奇和探求。
愿科学家们继续保持对光合作用的研究热情,揭示更多有关这一生命过程的秘密。
1845年,德国科学家梅耶(R.Mayer)根据能量转化与守恒定律明确指出,植物在进行光合作用时,把光能转换成化学能储存起来。
1864年,德国的萨克斯发现光合作用产生淀粉。
他做了一个试验:把绿色植物叶片放在暗处几个小时,目的是让叶片中的营养物质消耗掉,然后把这个叶片一半曝光,一半遮光。
过一段时间后,用碘蒸汽处理发现遮光的部分没有发生颜色的变化,曝光的那一半叶片则呈深蓝色。
这一实验成功的证明绿色叶片在光和作用中产生淀粉。
1880年,美国的恩格尔曼发现叶绿体是进行光合作用的场所,氧是由叶绿体释放出来的。
他把载有水绵(水绵是多细胞低等绿色植物,其细而长的带状叶绿体是螺旋盘绕在细胞内)和好氧细菌的临时装片放在没有空气的暗环境里,然后用极细光束照射水绵通过显微镜观察发现,好氧细菌向叶绿体被光照的部位集中:如果上述临时装片完全暴露在光下,好氧细菌则分布在叶绿体所有受光部位的周围。
恩格尔曼的实验证明了氧气是从中叶绿体释放出来的;叶绿体是绿色植物进行光合作用的场所。
1897年,“光合作用”这个名称首次在教科书中出现。
1905年英国植物学家F.F.布莱克曼提出光合作用包括需要光照的“光反应”和不需光照的“暗反应”两个过程,二者相互依赖,光反应时吸收的能量,供给暗反应时合成含高能量的多糖等的需要。
20年代,O.瓦尔堡进一步提出在光反应中不是温度而是光的强度起作用。
1929~1931年荷兰微生物学家C.B.范尼尔通过比较生化研究,发现光合硫细菌与绿色植物一样,也进行光合作用。
但它们是从硫化氢等而不是从水取得还原二氧化碳的氢,也不释放氧气。
他把这个反应称为细菌光合作用。
C.B.范尼尔的工作改变了长期以来认为光合作用一定要放氧的看法希尔(Robert.Hill曾获1922年诺贝尔化学奖)1939年在剑桥大学发现:在叶绿体悬浮液中加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气。
这个反应称为希尔反应。
此反应证明了氧的释放与CO2还原是两个不同的过程,而且是第一次用离体的叶绿体做试验,把对光合作用的研究深入到细胞器水平,为光合作用研究开创了新的途径。
光合作用发现历史资料整理一、传统史料---光合作用反应式的发现1.过去,人们一直以为,小小的种子之所以能够长成参天大树,古希腊哲学家亚里士多德认为,植物生长所需的物质完全依靠于土壤。
2. 1648年,一位荷兰科学家范·赫尔蒙特对此产生了怀疑,于是他设计了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。
虽然他没有认识到空气中的物质参与了有机物的形成,但从此拉开了光合作用的研究史。
赫尔蒙特把90千克的土壤放在花盆中,然后种上2千克重的柳树,并经常浇水,5年过去了,柳树长到76千克重,而花盆中的土壤只少了60克。
3.早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出“人所食物皆为气所化,故复于气耳”。
可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。
直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。
而最先用实验方法证明绿色植物从空气中吸收养分的是英国著名的化学家约瑟夫·普利斯特利。
在1771年发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。
4. 1779年,荷兰科学家英恩豪斯(Jan Ingenhousz)进一步证明只有植物的绿色部分在光下才能起使空气变“好”的作用,而其他所有器官即使在白天也会使空气变坏。
这些实验结果为后来人们认识植物绿色部分和光在植物光合作用中的重要性奠定了基础。
5.1872年,科学家塞尼比尔(J.Senebier)如何做实验证明光和CO2的必要性。
6.1804年,瑞士学者德·索苏尔研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。
由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。
光合作用的发现史资料
玉米在拔节期间,每天可以长高8cm以上,大牡竹曾有每天增高41㎝的记录。
植物在生长发育中所需要的物质是从何而来的呢?
⒈早在两千多年前,古希腊著名哲学家亚里士多德认为,植物是由“土壤汁”构成的。
直至十七世纪初,人们都相信植物是从土壤中获得生活需要的全部元素。
⒉17世纪上半叶,比利时学者海尔蒙特(j.b.vanhelmont)所做的柳树试验,使他自然而然地相信:柳树生长所需要的物质,来自于浇灌的水。
这个结论首次提出了水参与植物有机物制造,但没有考虑到空气对植物体物质形成的作用。
早在1637年,我国明代学者宋应星在《论气》一文中指出“人所食物皆为气所化,故复于气而”,已注意到空气和植物的关系。
1727年,英国植物学家斯蒂芬.黑尔斯(stephenhales)也指出,植物在生长时主要用空气当养分。
但是,他们都没有通过实验来验证自己的
论断。
⒊1771年-1777年间,英国著名科学家约瑟夫.普里斯特利(josephpriestley)通过对呼吸和燃烧一系列实验研究认为,绿色植物能逆转动物的呼吸过程。
1771年,通过“小鼠、蜡烛和薄荷”的实验使他相信:植物能更新因燃烧或动物呼吸而变污浊的空气。
由于普里斯特利所做的这个出色的实验,人们把1771年定为发现光合作用的年代。
但是,普里斯特利把植物改善空气的作用归功于植物的缓慢生长过程,没有认识到光对植物的作用。
这样,当有人重复普利斯特利的实验时,有人成功,有人不成功,甚至得到完全相反的结论,认为植物不仅不能净化空气,反而使空气受到更严重的污染。
⒋1779年,荷兰医生英格豪斯(janingenhousz)通过实验确认,植物确实有净化空气的作用。
他进一步指出,植物净化空气的作用不是普利斯特利说的是由于植物缓慢生长过程所致,而是由于太阳光照射植物的结果,这种净化作用在几小时内便可完成,并不需要让植物生长若干天。
英格豪斯还发现,植物还具有很强的释放气体的能力,而且这种能力与天气晴朗程度尤其是植物所受光照的强度成正比。
在黑暗中,植物不仅不能净化空气,反而放出对动物有害的气体。
英格豪斯用植物的各个部分做试验,发现只有叶片和绿色枝条在阳光下,才有改善空气的作用,其他器官即使在光下也会使空气变得更坏。
⒌1782年,瑞士牧师吉恩.谢尼伯(jeansenebier)证实了英格豪斯的发现,并指出植物“净化”空气的活性,除光合作用外,还取决于“所固定的空气”。
但是,当时人们不了解植物在光下释放的气体和植物在黑暗中所有器官释放的气体究竟是什么。
1785年科学家们发现了空气成分,从而认识到绿色植物在光下释放氧气。
而各种器官在暗中释放二氧化碳。
⒍1804年,瑞士学者索热尔(n.t.desaussure)研究植物光合作用过程中,二氧化碳吸收量、有机物生成量、氧气释放量之间的数量关系。
他发现,植物制造的有机物质总量和氧气释放量,远远超过二氧化碳吸收量。
根据实验中除植物、空气和水以外,没有其他物质,
他断定光合作用除吸收二氧化碳外,二氧化碳水也是光合作用的反应物。
⒎1817年,法国的两位植物学家,佩利蒂欧(pelletier)和卡文陶(cawentou)从
叶片中分离出叶绿素。
后来有人证明叶绿素对于光能的吸收、传递和转化起着极为重要的作用。
⒏1845年,德国医生罗伯特.梅耶(robertmayer)根据能量转
化定律明确指出,植物进行光合作用时,把太阳能转化为化学能储藏起来。
当时人们用下式表示光合作用:
绿色植物co2+h22+有机物质+能量⒐1864年,法国植物生理学家鲍辛高特(t.b.boussingault)根据阿伏伽德罗定律,精密地测定多种陆生植物,发现它们在进行光合作用时,放出的氧气和吸收的二氧化碳体积的比值接近1。
⒑1864年,德国著名植物生理学家朱利叶斯.萨克斯(julliussachs)用实验成功地证明植物叶片在光合作用中形成淀粉。
他先把绿叶放在黑暗中数小时,在这段时间内,由于叶片中的物质的输出和呼吸代谢的结果,使原先存在于叶片里的淀粉消失。
然后把经黑暗处理的叶片一半曝光,另一半叶片仍然置于黑暗中,经过一定时间后,用碘蒸汽处理叶子,结果发现处于黑暗的一半叶片无颜色变化,而曝光的一半叶片显示出深蓝色。
这是由于碘与淀粉形成淀粉-碘络合物的结果。
⒒1880年,德国科学家恩吉尔曼(c.engelmann)把装有水绵和嗜氧细菌悬浮液的载玻片置于没有空气的小室里,然后照光。
通过显微镜观察发现,嗜氧细菌向被光照射到的水绵的叶绿体部位集中,从而证明了植物光合作用的放氧结构是叶绿体。
在另一组实验中,他把一个棱镜放在光源与显微镜台之间,用光照射水绵,结果发现位于蓝、红光下的叶绿体周围细菌最多。
藻中的叶绿素吸收蓝光和红光,恩吉尔曼得出结论:叶绿素是光合作用的接收光的色素。
1939年,英国的希尔(r.hill)发现从破碎的叶子中分离出来的叶绿体,一旦加入人工电子受体(如高铁氰化钾),照光后便会释放出氧气,这就更直
接证明了氧气是从叶绿体释放出来的。
⒓1938年,美国的科学家鲁宾(s.rubin)和卡门(carmen)首先采用同位素示踪
181818法研究氧气的来源,它们用氧的同位素o分别标记h2o 和co2,使它们成为h2o和co2,然
1818后用h2o与正常的co2和co2与正常的h2o这两种组合,分别作为试验植物(或叶绿体)光
18合作用的原料,再分析释放的氧气。
结果表明,用前一种组合时,放出的氧气完全是o2,
18而用后一种组合时,放出的氧气完全不含o2。
可以表示为: 1818co2+2h2o→(ch2o)+o2+h2o
181818co2+2h2o→(ch2o)+o2+h2o
上述的试验充分证明了光合作用中释放的氧气完全来自水,同时还说明水的光氧化和二氧化碳的还原是分别进行的。
⒔20世纪二十年代,德国的瓦布格证明了光合作用中存在两个
反应过程:一个是需光的,随光照强度提高而加快的“光反应”;另
一个是不需要光的,象一般化学反应那样随温度提高而加快的“暗反应”。
后来,美国科学家阿侬(d.iarnon)用分离出来的离体叶绿体,令人信服地证实了光反应和暗反应是完全可以分开的两个组成部分。
⒕20世纪三十年代初期,以范尼尔(c.b.vanniel)为代表的一些学者证明,光合细菌也能像植物一样,利用光能将二氧化碳还原为有机物。
所不同的是以硫化物、有机物或氢做为供氢体。
它们的光合作用反应式可以写成:
光co2+2h22o)++h2o+2a
色素
⒖20世纪四十年代,美国的爱默生(r.emerson)及其同事,用测定光合作用最高量子产额的方法,研究不同藻类的光合作用。
所谓量子产额,又称量子效率,是以光量子为基础的光合作用效率,即在光合作用中,每吸收一个光量子所释放出氧或固定二氧化碳的分子数。
爱默生等在研究中发现,对小球藻的光合作用最有效的光是
650-680nm的红光和波长为400-460nm的蓝光,叶绿素恰好对这两个波段的光有强烈的吸收。
当波长超过680nm时,光合作用的量子产额发生急剧下降,这就是光合作用的“红降”现象,也称为爱默生第一效应。
如果提供一点辅助性的短波长光(如波长为650nm光),那么,大于685nm的远红光的光合作用量子产额就会显著增加,比单独使用长波光或短波光的效率都高。
这就是双光增益效应,又成为爱默生第二效应。
14⒗20世纪四十年代初,卡尔文等用co2饲养小球藻,观察小球藻光合作用中碳的转
化和去向,阐明了光合作用碳同化途径,提出了卡尔文-本森循环。
⒘1954年,美国的阿侬、弗伦凯尔(a.w.frenkel)等分别发现菠菜叶绿体和光合细菌载色体,在光照条件下能够把adp和无机磷酸合成atp。
由于这个反应是需要光的反
+应,故称为光合磷酸化。
1951年,希尔又发现希尔反应可以把
辅酶Ⅱ(nadp)还原成还
原态的辅酶Ⅱ(nadph),从而揭示出nadph的来源。
atp和nadph 都是光合作用的光反应的产物,共同构成光合作用中二氧化碳的同化力。
⒙20世纪60年代以来,人们自然而然地把注意力集中到光能如何推动两个光反应,以及电子传递链中的电子载体的成分和它们的光谱学等研究上。
同时,在光合膜、颗粒和大分子水平上,深入开展对放氧机理、反应中心的组成、反应中心叶绿素分子的电荷分离、色素蛋白复合体、光合膜的结构和功能以及光合作用的人工模拟等方面的研究。