第五章波动率的估计(GARCH模型)ppt课件
- 格式:ppt
- 大小:161.50 KB
- 文档页数:25
第5章波动率模型前面介绍的模型都是预测被解释变量的期望值,而ARCH,GARCH模型预测的是被解释变量的方差。
ARCH模型在分析金融时间序列中有着广泛的应用。
5.1 问题的提出以前介绍的异方差属于递增型异方差,即随机误差项方差的变化随解释变量的增大而增大。
但利率,汇率,股票收益等时间序列中存在的异方差却不属于递增型异方差。
例如,汇率,股票价格常常用随机游走过程描述,x t = x t -1 + u t(5.1)其中u t为白噪声过程。
1971M01-2004M10日元兑美元汇率时间序列及差分序列见图5.1和图5.2。
图5.1 日元兑美元汇率序列ER_sa 图5.2 日元兑美元汇率差分序列(收益)图5.3 收益绝对值序列图5.4 D(ER_sa)的平方金融时间序列具有如下的特征(1)过程的方差不仅随时间变化,而且有时变化得很激烈。
(2)按时间观察,表现出“波动集群”(volatility clustering)特征,即方差在一定时段中比较小,而在另一时段中比较大。
(3)取值的分布是“高峰厚尾”(leptokurtosis and fat-tail)特征,即均值附近与尾区的概率值比正态分布大,而其余区域的概率比正态分布小。
(4)取值的分布是“非对称”(asymmetries)特征,即在平均收益率之下和之上的分布不对称。
图5.5给出高峰厚尾分布示意图。
图5.6给出一个高峰厚尾分布实例。
显然现期方差与前期的“波动”有关系。
描述这类关系的模型称为自回归条件异方差(ARCH)模型(Engle 1982年提出)。
ARCH模型的应用价值(1)通过预测x t或u t的变化量评估股票的风险;(2)可以预测x t随时间变化的置信区间;(3)对条件异方差进行正确估计后可以使回归参数的估计量更具有有效性。
高峰厚尾分布曲线正态分布曲线图5.5 高峰厚尾分布特征示意图图5.6 日元兑美元汇率差分序列(收益)分布直方图正态分布密度峰值上限=(最大组频数 / 观测值总个数)/ 组距=0.3989。
Garch模型Garch⼩声逼逼⼀句,学长有毒吧~~让我进⾦融的东东,我懂个锤⼦⾦融时间序列⾦融资产的波动是⼀个⾮常重要的概念,它与资产的风险直接相关,因此对资产的波动模式进⾏建模是量化投资中的⼀个重要课题。
⼀般来讲,波动建模有以下量化投资⽅向的应⽤:期权定价:波动率是影响期权价值的重要因素;风险度量和管理:在VaR的计算中波动率是主要影响因素,根据波动率决定交易策略的杠杆;资产价格预测和模拟:通过Garch簇模型对资产价格的时间序列进⾏预测和模拟;调仓:盯住波动率的调仓策略,如⼀个tracing指数的策略;作为交易标的:在VIX、ETF以及远期中波动率作为标的可以直接交易。
上⾯的⼏⾏确实没明⽩,正确性有待考证许良:股票收益率中的⽅差⼀般就是表⽰风险嗯,这个check了⼀下,债券/股票等的收益率的波动性(volatility)就是风险,就是滚动风险。
⾦融时间序列分析的核⼼是找到资产收益率序列的⾃相关性,并利⽤它。
同⽅差&&异⽅差在讲Garch模型之前,我们必须对同⽅差和异⽅差的概念进⾏回顾。
在时间序列的弱平稳条件中⼆阶矩是⼀个不变的、与时间⽆关的常数。
在理想条件下,如果这个假设是成⽴的,那么⾦融时间序列的预测将会变得⾮常简单,采⽤ARIMA等线性模型就能做不错的预测。
然⽽采⽤Ariam等模型对⾦融事件序列建模效果是⾮常差的,原因就在于⾦融事件序列的异⽅差性。
这种⾮平稳性⽆法⽤简单的差分去消除,其根本原因在于其⼆阶矩随时间t变化⽽变化。
这⾥说的⽅差是回报率(收益率)简单的理解就是说对于普通的时间序列,⼀般采⽤取n差分或者取对数或者滞后,就可以使时间序列平稳,这个的前提是⽅差不随时间变化也就是同⽅差(此时⽅差是个常数,因为是不随时间变化的),这个时候可以使⽤ARIMA进⾏预测了。
但是⾦融时间序列的⽅差是随着时间变化⽽变化的,⽅差不在是⼀个常数了。
异⽅差描述的是⾦融时间序列⼤的趋势,时间跨度相对较长。
用G A R C H模型预测股票指数波动率目录Abstract .......................................................................................................................................1.引言..........................................................................................................................................2.数据..........................................................................................................................................3.方法..........................................................................................................................................3.1.模型的条件平均 ............................................................................................................3.2. 模型的条件方差 .............................................................................................................3.3 预测方法..........................................................................................................................3.4 业绩预测评价 ..................................................................................................................4.实证结果和讨论 ......................................................................................................................5.结论.......................................................................................................................................... References...................................................................................................................................AbstractThis paper is designed to make a comparison between the daily conditional variance through seven GRACH models. Through this comparison, to test whether advanced GARCH models are outperforming the standard GARCH models in predicting the variance of stock index. The database of this paper is the statistics of 21 stock indices around the world from 1 January to 30 November 2013. By forecasting one –step-ahead conditional variance within different models, then compare the results within multiple statistical tests. Throughout the tests, it is found thatthe standard GARCH model outperforms the more advanced GARCH models, and recommends the best one-step-ahead method to forecast of the daily conditional variance. The results are to strengthen the performance evaluation criteria choices; differentiate the market condition and the data-snooping bias.This study impact the data-snooping problem by using an extensive cross-sectional data establish and the advanced predictive ability test. Furthermore, it includes a 13 years’ period sample set, which is relatively long for the unpredictabilit y forecasting studies. It is part of the earliest attempts to inspect the impact of the market condition on the forecasting performance of GARCH models. This study allows for a great choice of parameterization in the GARCH models, and it uses a broad range of performance evaluation criteria, including statistical loss function and the Mince-Zarnowitz regressions. Thus, the results are more robust and diffusely applicable as compared to the earliest studies.KEY WORDS: GARCH models; volatility, conditional variance, forecast, stock indices.1.引言波动性预测可以运用到投资组合选择,期权定价,风险管理和以波动性为基础的交易策略。
1.1.波动率波动率是用来描述证券价格、市场指数、利率等在它们均值附近上下波动幅度的术语,是标的资产投资回报率的变化程度的度量。
股票的波动率σ是用于度量股票所提供收益的不确定性。
股票通常具有15%-50%之间的波动率。
股票价格的波动率可以被定义为按连续复利时股票在1年内所提供收益率的标准差。
当∆t 很小时,2t σ∆近似的等于在∆t 时间内股票价格变化百分比的方差。
这说明σ ∆t 近似的等于在∆t 时间内股票价格变化百分比的标准差。
由标准差来表述股票价格变化不定性的增长速度大约为时间展望期长度的平方根(至少在近似意义下)。
1.2.由历史数据来估计波动率为了以实证的方式估计价格的波动率,对股票价格的观察通常是在固定的时间区间内(如每天、每星期或每个月)。
定义n+1——观测次数;S i ——第i 个时间区间结束时变量的价格,i =0,1,…n ; τ——时间区间的长度,以年为单位。
令1ln ,0,1,,;i i i S u i n S -⎛⎫== ⎪⎝⎭1.2.1u i 的标准差s 通常估计为s = 1.2.2或s =1.2.3其中u 为i u 的均值。
由于iu 的标准差为因此,变量s 是所以σ本身可以被估计σ∧,其中σ∧=可以证明以上估计式的标准差大约为/σ∧。
在计算中选择一个合适的n 值并不很容易。
一般来讲,数据越多,估计的精确度也会越高,但σ确实随时间变化,因此过老的历史数据对于预测将来波动率可能不太相干。
一个折中的方法是采用最近90~180天内每天的收盘价数据。
另外一种约定俗成成俗的方法是将n 设定为波动率所用于的天数。
因此,如果波动率是用于计算量年期的期权,在计算中我们可以采用最近两年的日收益数据。
关于估计波动率表较复杂的方法涉及GARCH 模型与EWMA 模型,在下文中将进行详细介绍。
1.3.隐含波动率首先对于一个无股息股票上看涨期权与看跌期权,它们在时间0时价格的布莱克-斯科尔斯公式为012()()rT c S N d Ke N d -=-1.3.1201()()rT p Ke N d S N d -=---1.3.2式中21d =221d d==-函数N(x)为标准正态分布变量的累积概率分布函数。