代数符号的简单历史
- 格式:ppt
- 大小:2.83 MB
- 文档页数:51
代数的历史与发展代数学(algebra)是数学中最重要的分支之一。
代数学的历史悠久,它随着人类生活的提高,生产技术的进步,科学和数学本身的需要而产生和发展。
在这个过程中,代数学的研究对象和研究方法发生了重大的变化。
代数学可分为初等代数学和抽象代数学两部分。
初等代数学是更古老的算术的推广和发展,而抽象代数学则是在初等代数学的基础上产生和发展起来的。
代数学的西文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要著作的名称。
该著作名为”ilm al-jabr wa’I muqabalah”,原意是“还原与对消的科学”。
这本书传到欧洲后,简译为algebra。
清初曾传入中国两卷无作者的代数书,被译为《阿尔热巴拉新法》,后改译为《代数学》(李善兰译,1853)。
初等代数学是指19世纪上半叶以前的方程理论,主要研究某一方程(组)是否可解,怎样求出方程所有的根(包括近似根)以及方程的根所具有的各种性质等。
代数之前已有算术,算术是解决日常生活中的各种计算问题,即整数与分数的四则运算。
代数与算术不同,主要区别在于代数要引入未知数,根据问题的条件列方程,然后解方程求未知数的值。
这一类数学问题,早在古埃及的数学纸草书(约公元前1800年)中就有了启示,书中将未知数称为“堆”(一堆东西),并以象形文字表示。
古巴比伦人也知道某些二次方程的解法,在汉穆拉比时代(公元前18世纪)的泥板中,就载有二次方程问题,甚至还有相当于三次方程的问题。
数学史家们曾为此发生过热烈争论:在什么意义下能把巴比伦数学看成代数?古希腊时代,几何学明显地从代数学中分离出来,并在希腊科学中占统治地位,其威力之大,以至于纯算术的或代数的问题都被转译为几何语言:量被理解为长度,两个量之积解释为矩形、面积等。
现在数学中保留的称二次幂为“平方”,三次幂为“立方”,就是来源于此。
古希腊时期流传至今的与代数有关的著作只有丢番图的《算术》。
该书中解决了某些一次、二次方程问题和不定方程问题,出现了缩写符号和应用负数之例。
数学符号的历史演变数学符号是数学领域中不可或缺的一部分,它们以简洁、准确的方式表达数学概念,帮助数学家们进行交流和研究。
随着数学的发展,数学符号也在不断演变和完善。
本文将从古代到现代,探讨数学符号的历史演变过程。
古代数学符号的起源可以追溯到古希腊和古罗马时期。
在古希腊,数学符号并不像现代那样被广泛使用,数学家们更多地采用文字和几何图形来表达数学概念。
例如,欧几里德的《几何原本》中就使用了大量的文字和图形来描述几何学知识,而没有像我们现在使用的符号那样简洁明了。
古罗马时期的数学符号也主要是一些简单的几何图形和文字符号,用来表示数字和运算关系。
随着中世纪的到来,阿拉伯数字和代数符号开始在欧洲传播,对数学符号的发展产生了深远影响。
阿拉伯数字是一种基于十进制的数字系统,包括0、1、2、3、4、5、6、7、8、9这几个数字,它们的形式简洁明了,易于书写和计算。
代数符号的引入则使代数学的发展取得了重大突破,代数符号包括加减乘除等运算符号,以及表示未知数的字母符号,如x、y、z等。
这些符号的引入极大地简化了数学表达方式,使数学问题更易于解决。
随着现代数学的发展,数学符号变得越来越丰富和多样化。
在17世纪,莱布尼兹和牛顿分别独立发明了微积分学,引入了微积分符号,如∫、d/dx等,这些符号成为微积分学的重要工具。
在19世纪,高斯引入了数论符号,如Σ、π等,用来表示数论中的重要概念,如级数、圆周率等。
20世纪以来,随着抽象代数、拓扑学、数学逻辑等新领域的发展,数学符号的种类和数量不断增加,为数学研究提供了更多的便利。
除了基本的数学运算符号和代数符号外,数学领域还涌现出许多特殊的符号和记号,用来表示特定的数学概念和关系。
例如,集合论中的集合符号∪、∩,概率论中的概率符号P,线性代数中的矩阵符号等。
这些特殊符号的引入丰富了数学表达的方式,使数学理论更加严谨和完善。
总的来说,数学符号的历史演变是数学发展的必然产物,它反映了人类对数学思想表达方式不断探索和完善的过程。
2011年第26卷第1期符号是某种事物的代号,是采用一一对应的方式,把一个复杂的事物用简便的形式表现出来。
承担这种功能的事物称为符号。
数学符号是表示数学概念、数学关系的符号和记号。
数学是一个符号化的世界,使用数学符号是数学史的一件大事,符号和公式的制定是人类的伟大成就。
数学史表明,数学符号对数学的发展产生巨大的影响。
当有一套适合表达和推理的符号体系时,数学就在方法论的作用下迅速向前发展;而缺乏一套适合的符号时,数学发展就受到阻碍。
数学符号的历史悠久,可以说数学符号是与数学同时产生的。
数学中最早的概念是自然数的概念,最早出现的符号是数字符号,但整个数学符号体系的产生却只有四百多年的历史。
本文着重论述数字符号、代数符号、微积分符号、集合论和数理逻辑的符号的发展历史。
一、数字符号的历史数字的产生是社会进步的结果,它的记载、使用和传播受到各种文化因素的影响,并不断地得到发展和改进。
世界各民族由于各地自然环境和社会环境和社会条件不同,产生了不同的记数法和不同的数字符号。
现存最早实物的数字是古代巴比伦泥版上的数目符号,大约产生于公元前三四千年。
这些泥版是在胶泥还软的时候刻上字,然后晒干制成的。
古巴比伦人用一种段面呈三角形的比斜刻泥版,在版上按不同方向刻出楔形刻痕,因此叫楔形文字。
通过对这一些楔形文字的研究揭示了一个远较古埃及人先进的巴比伦人早期数学文化,楔形符号“”示一,用“”表示十。
用大的“”表示六十他们的整数写法如下:123456789101112205060例如59记为,巴比伦数字是以60为基底,并采用进位记号。
中国古代的数字体系是十进位的位值制,甲骨文是三千多年前的殷代文字。
后来周代的金文或钟鼎文,以及汉朝的数字符号略有改变,但变化不大。
十个数目字型如下:甲骨文:汉朝文:在代文:一二三四五六七八九十古埃及人创造了一套从一到一千万的有趣的象形数字记号。
1是垂直的木棒,10是弯曲的工具,102是测量的绳子,103是莲花的叶子,104是手指头,105是一只鸟,106是坐着举起双手,表示受惊的人,107是刚出地平线的太阳。
代数式历史发展的三步曲数学与算术最显着的区别,是以字母表示数,代数式a x +,b a +22中的字母a 、b 、x 表示数,但都是可以取不同值的数。
字母代数的历史发展经历了三个阶段,这就是言语代数――简字代数(半符号代数)――符号代数。
公元三世纪以前,无论是东方还是西方,都是言语代数,即用普通语言来叙述的代数,例如:对于代数式18523-+-x x x 说成是:一个数的三次方,减去这个数平方的5倍,加上这个数的8倍,减去1。
这种方式叙述的代数式,十分繁琐,又不便计算。
首先设法简化这种语言代数的,是希腊数学家丢番图,他被后人称为『代数学之父』。
丢番图对数学有两大贡献,其一是采用缩写方式简化数学表达,人称缩写代数,推进了数学符号的采用;其二是求解不定方程,人称丢番图方程,开辟了数论研究的一个重要领域,这个领域后来被称为丢番图分析.丢番图曾写过三部书,其中13卷本的《算术》最为出色,后失传.大约在1463年雷琼蒙塔努力发现了这部书的6卷,1560年,帕茨发现了这部书原稿抄本,1621年出版了《算术》的拉丁文,希腊文版本.《算术》中大部分问题是求解不定方程的,其解法非常巧妙,很少给出一般法则,即使性质相近的题,其解法也会大不相同.著名数学家汉克尔说:"研究丢番图100道题后,去解第101道,仍然感到困难重重."这些问题曾经引起所有欧洲数学家的兴趣。
例如,法国数学家费马就曾经仔细研究过《算术》的拉丁译本,并在书中空白出写下了著名的“费马定理”,这个没有证明的定理(因此又称“费马猜想”)困惑人们达350年之久,直到1993年,才有英国数学家怀而斯予以逻辑论证。
丢番图在《算术》中的创造性成就,是用语头的字母作为缩写符号,来简化代数式。
例如,他用希腊文“幂”的头两个字母来表示未知数的平方,用希腊文“立方”的头两个字母表示未知数的立方;用希腊文“缺少”中的头一个字母表示减号等等。
于是他把前面所说的那个代数式子,写成了:∂∆∧∂ℑM K y y εη其中希腊字母εη,,∂分别表示字母1,8,5;ℑ表示未知数,M 表示常数。
等号与不等号的来历一、等号,不等号为了表示等量关系,用“=”表示“相等”,这是大家最熟悉的一个符号了.说来话长,在15、16世纪的数学书中,还用单词代表两个量的相等关系.例如在当时一些公式里,常常写着aequ或ae quali ter这种单词,其含义是“相等”的意思.1557年,英国数学家列科尔德,在其论文《智慧的磨刀石》中说:“为了避免枯燥地重复isaequa lleto(等于)这个单词,我认真地比较了许多的图形和记号,觉得世界上再也没有比两条平行而又等长的线段,意义更相同了.”于是,列科尔德有创见性地用两条平行且相等的线段“=”表示“相等”,“=”叫做等号.用“=”替换了单词表示相等是数学上的一个进步.由于受当时历史条件的限制,列科尔德发明的等号,并没有马上为大家所采用.历史上也有人用其它符号表示过相等.例如数学家笛卡儿在1637年出版的《几何学》一书中,曾用“∞”表示过“相等”.直到17世纪,德国的数学家莱布尼兹,在各种场合下大力倡导使用“=”,由于他在数学界颇负盛名,等号渐渐被世人所公认.顺便提一下,“≠”是表示“不相等”关系的符号,叫做不等号.“≠”和“=”的意义相反,在数学里也是经常用到的,例如a+1≠a +5.二、大于号,小于号现实世界中的同类量,如长度与长度,时间与时间之间,有相等关系,也有不等关系.我们知道,相等关系可以用“=”表示,不等关系用什么符号来表示呢?为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽了脑汁.1629年,法国数学家日腊尔,在他的《代数教程》中,用象征的符号“ff”表示“大于”,用符号“§”表示“小于”.例如,A大于B记作:“AffB”,A小于B记作“A§B”.1631年,英国数学家哈里奥特,首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号.例如5>3,-2<0,a>b,m<n.与哈里奥特同时代的数学家们也创造了一些表示大小关系的符号.例如,1631年,数学家奥乌列德曾采用“”代表“大于”;用“”代表“小于”.1634年,法国数学家厄里贡在他写的《数学教程》里,引用了很不简便的符号,表示不等关系,例如:a>b用符号“a3|2b”表示;b<a用符号“b2|3a”表示.因为这些不等号书写起来十分繁琐,很快就被淘汰了.只有哈里奥特创用的“>有的数学著作里也用符号“”表示“远大于”,其含义是表示“一个量比另一个量要大得多”;用符号“”表示“远小于”,其含义是表示“一个量比另一个量要小得多”.例如,a b,c d.灵活地运用>、<、、这些符号,可使某些问题的推理过程变得简单明了.三、大于或等于号,小于或等于号人们在表达不等量关系时,常把等式作为不等式的特殊情况来处理.在许多场合下,要用到一个数(或量)大于或等于另一个数(或量)的情况,可以把“>”,“=”这两个符号有机地结合起来,得到符号“≥”,读作“大于或等于”,有时也称为“不小于”.同样,把符号“≤”读作“小于或等于”,有时也称为“不大于”.例如,某天最低气温-5℃,最高气温12℃.换句话说,这一天的气温不低于-5℃,不高于12℃.如果用t代表某天的气温,上面的关系可表示为:-5℃≤t≤12℃.表面看来,两个符号≥和>好像差不多,其实是有区别的.那么,怎样理解符号“≥”的含义呢?有人认为,如果一个函数f(x)≥a,就断言f(x)的最小值一定等于a.这种看法是片面的.例如设f(x)=x2+1,因为x2和1都是非负的,所以它们之和也是非负的,即x2+1≥0.但不能说x2+1的最小值是0.其实,f(x)=x2+1的最小值是1.为什么会产生这样的错误呢?主要是对“≥”这个符号的含义认识不“≥”的意思是“>”或者“=”,即两者必居其一,不要求同时满足.比清.如给出了两个函数f(x),D(x),它们的定义域相同,如果知道不论对定义域中的那个值x0,f(x0)或者大于D(x0)或者等于D(x0),而绝不会小于D(x0),根据这种判断,自然可以写出f(x)≥D(x).但这里并没有说,一定有使f(x)=D(x)的一个点x0.上面所举的例子f(x)=x2+1≥0,正是属于这样情况.a≥b表示a>b或者a=b,这两种情况都有可能出现,但不要求同时存在.同样,“≤”也有类似的情况.因此,有人把形如a>b,b<a这样的不等式叫做严格的不等式,把形如a≥b,b≤a这样的不等式叫做不严格的不等式.现代数学中又用符号“≦”表示“不小于”,用“≧”表示“不大于”.有了这些符号,在表示不等量关系时,就非常得心应手了.。
“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。
那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。
当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。
初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。
它的研究方法是高度计算性的。
要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。
所以初等代数的一个重要内容就是代数式。
由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。
1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。
把上面分析过的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、根式方程和方程组。
初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。
代数(algebra)是由算术(arithmetic)演变来的,这是毫无疑问的。
至于什么年代产生的代数学这门学科,就很不容易说清楚了。
比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的代数方程的技巧。
这种“代数学”是在十六世纪才发展起来的。
西方人将公元前三世纪古希腊数学家丢番图看作是代数学的鼻祖,而真正创立代数的则是古阿拉伯帝国时期的伟大数学家默罕默德·伊本·穆萨(我国称为“花剌子密”,生卒约为公元780-850年)。
而在中国,用文字来表达的代数问题出现的就更早了。
“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。
那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。
数学符号的历史演变数学符号是数学表达的重要工具,它们的使用可以简化数学表达,提高数学思维的效率。
然而,这些符号并非一蹴而就,而是经历了漫长的历史演变过程。
本文将从古代到现代,探讨数学符号的历史演变。
一、古代数学符号的起源古代数学符号的起源可以追溯到古埃及和古巴比伦时期。
在古埃及,人们使用简单的图形来表示数字,比如用一根竖线表示数字1,两根竖线表示数字2,以此类推。
而在古巴比伦,人们使用楔形符号来表示数字和运算符号,这些楔形符号后来演变成了我们现在所熟悉的加减乘除符号。
二、古希腊数学符号的发展古希腊是数学符号发展的重要阶段。
在古希腊,人们开始使用字母来表示未知数和变量。
这种表示方法的出现,使得数学问题的表达更加简洁和灵活。
古希腊数学家欧几里得还发明了几何符号,比如用字母表示点、线、面等几何概念,这些符号在几何学中得到了广泛应用。
三、中世纪数学符号的发展中世纪是数学符号发展的低谷期。
在这个时期,由于教会的压制和迫害,数学研究受到了很大的限制,数学符号的发展也受到了影响。
然而,一些数学家仍然坚持研究数学,并且在他们的著作中使用了一些新的符号,比如用字母表示角度、用字母表示函数等。
四、近代数学符号的发展近代数学符号的发展可以追溯到16世纪的欧洲。
在这个时期,数学研究得到了迅速发展,数学符号的使用也得到了进一步的推广。
著名的数学家笛卡尔提出了坐标系和代数符号的概念,这些概念对于数学符号的发展起到了重要的推动作用。
此外,著名的数学家牛顿和莱布尼茨发明了微积分符号,这些符号成为了现代微积分的基础。
五、现代数学符号的应用现代数学符号的应用非常广泛,几乎涵盖了数学的各个领域。
在代数学中,人们使用字母和符号来表示未知数、变量和运算符号;在几何学中,人们使用字母和符号来表示点、线、面等几何概念;在微积分学中,人们使用字母和符号来表示函数、导数、积分等。
这些符号的使用使得数学表达更加简洁和精确,提高了数学研究的效率。
总结起来,数学符号的历史演变是一个从简单到复杂、从图形到字母的过程。
代数的起源摘要:一、代数的起源- 代数的定义- 代数的历史发展1.古代数学家对代数的研究2.代数学的重要阶段3.现代代数学的发展二、代数的基础知识- 代数的基本概念1.变量与常量2.运算与法则3.方程与解法- 代数的分支1.线性代数2.抽象代数3.代数几何三、代数的应用- 代数在数学领域中的应用1.解析几何2.微积分3.概率论与统计学- 代数在实际生活中的应用1.物理学2.工程学3.计算机科学四、代数的未来发展趋势- 代数学的研究方向- 代数与其它领域的交叉融合- 代数的实际应用前景正文:代数的起源可以追溯到古代文明,当时人们用代数方法解决实际问题。
代数作为数学的一个重要分支,主要研究数和量之间的关系以及运算规律。
在历史发展过程中,代数学经历了几个重要阶段,包括古代、中世纪、文艺复兴时期和现代。
古代数学家对代数的研究主要集中在解方程和求解几何图形。
在古希腊时期,丢番图(Diophantus)被认为是代数学的父亲,他的著作《算术》是代数学发展史上的重要里程碑。
在中世纪时期,阿拉伯数学家花拉子密(Al-Khwarizmi)将代数学与几何学分离开来,并引入了代数符号,使代数更易于理解和表达。
文艺复兴时期,代数学得到了进一步的发展,莱布尼茨(Leibniz)和牛顿(Newton)发明了微积分学,为代数学和物理学的发展奠定了基础。
现代代数学的发展始于19 世纪,当时格罗滕迪克(Grothendieck)创立了现代代数几何,从而将代数学和几何学紧密地联系在一起。
随着科学技术的不断进步,代数学在多元微积分、线性代数、抽象代数等领域取得了突破性进展,为数学和实际应用提供了强大的理论支持。
代数的基础知识包括变量、常量、运算、法则、方程和解法等。
代数分为线性代数、抽象代数和代数几何等分支。
线性代数研究向量空间、线性方程组和矩阵等概念;抽象代数研究群、环、域等代数结构;代数几何研究代数方程与几何图形之间的关系。
代数学在数学领域中的应用十分广泛,如解析几何、微积分、概率论与统计学等。
代数的发展历史简述代数是数学中最重要的分支之一,它的发展历史可以追溯到数千年前。
在这篇文章中,我将分步骤阐述代数的发展历史。
1. 古代代数古埃及和巴比伦是早期代数的发源地。
在古埃及,人们用简单的方程求解问题,如计算土地的面积和体积。
而巴比伦人则利用计算表来解决代数问题。
公元前800年,印度和伊朗的学者也开始研究代数,并发展了代数方程。
2. 亚里士多德的逻辑古希腊哲学家亚里士多德在逻辑学方面的研究对代数的发展产生了深远的影响。
他的工作帮助人们更好地理解代数方程的运作过程。
3. 伊斯兰数学在中世纪,伊斯兰数学得到了古典时期希腊数学的传承。
一些杰出的数学家如阿尔-芬巴里(Al-Khwarizmi)、伊本·卡尔丹(Ibnal-Haytham)和阿尔-哈桥德(Al-Hajjaj)等人在代数领域取得了重大的成就,他们发明了一些新的算术和代数方法,并开发了代数符号。
4. 文艺复兴时期在欧洲文艺复兴时期,代数得到了重要的发展。
意大利的斐波那契(Fibonacci)和法国的维埃特(Viète)分别在代数的发展中做出了突出的贡献。
斐波那契发现了著名的斐波那契数列,这个数列在代数的应用中具有重要的作用。
维埃特则发展了新的代数方法,提出了代数方程的新解法。
5. 近代代数在近代,代数得到了前所未有的发展。
牛顿和莱布尼茨的微积分发展对代数的发展产生了深远的影响。
数学家们开始研究代数的基本概念和结构,并将其应用于各种不同的领域。
代数的发展导致了概率论、统计学、数值分析和组合数学等其他数学领域的快速发展。
总之,代数的发展历史可以追溯到古代,并不断发展壮大。
它已经成为现代数学中不可或缺的一部分,对科学、工程、经济和其他领域都具有广泛的应用。