雷达原理-第6章目标距离的测量
- 格式:ppt
- 大小:2.40 MB
- 文档页数:49
第6章反射面天线Helmut E. SchrankGary E. EvansDaniel Davis6.1 引言天线的作用雷达天线的基本作用是实现电磁波的自由空间传播和导波传播之间的转换。
发射期间天线的特定功能是将辐射能集中到具有某种形状的定向波束内,以照射指定方向的目标。
接收期间天线收集目标反射的回波信号能量并将之送往接收机。
因此,在以发射方式和接收方式工作时,雷达天线起到互易的,然而是相互关联的作用。
在两种方式或者作用中主要的目的都是要精确确定目标的方向角。
为实现此目的,需要有高度定向的(窄的)波束,从而不仅达到所需的角精度,而且能够分辨相互靠得很近的目标。
雷达天线的这一重要特性可以定量的用波束宽度来表示,也可以表示为发射增益和有效接收孔径。
后两个参量相互成正比,并且与检测距离和角精度有直接关系。
许多雷达都设计成工作在微波频率,这时用适当物理尺寸的天线就能获得窄的波束宽度。
以上雷达天线的功能性描述意味着一副天线既用于发射,又用于接收。
虽然大多数雷达系统都是这样工作的,但是也有例外,如一些单基地雷达采用收发分离的天线,当然,双基地雷达按定义必定是收发分离的天线。
在这一章中,重点介绍较常用的单部天线,特别是广泛使用的反射面天线。
相控阵天线的内容参见第7章。
波束扫描与目标跟踪由于雷达天线一般具有定向波束,大范围的角度覆盖要求窄波束快速往复地在空域内扫描,以保证不论目标在哪个方向上都能探测到。
这就是警戒雷达或搜索雷达的功能。
有些雷达系统设计成一旦探测到目标便可进行跟踪,这种跟踪功能要求专门设计与警戒雷达天线不同的天线。
在某些雷达系统中,特别是在机载雷达中,将天线设计成既具有搜索又有跟踪的功能。
测高大多数警戒雷达都是二维坐标的,只测定目标的距离和方位坐标。
在早期的雷达系统中,另外的测高天线通过机械俯仰摆动来测量第三个坐标,即仰角,由此计算出空中目标的高度。
现在设计的3D雷达采用一副天线测量所有三个坐标,例如,一部天线在接收方式工作时在俯仰方向形成多个堆积波束,而在发射方式工作时形成宽覆盖的垂直波束。
雷达系统课后习题和答案雷达原理习题集第一章1-1.已知脉冲雷达中心频率=3000MHz,回波信号相对发射信号的延迟时间为1000μs,回波信号的频率为3000.01MHz,目标运动方向与目标所在方向的夹角60°,求目标距离、径向速度与线速度。
1-2.已知某雷达对σ= 的大型歼击机最大探测距离为100Km,a)如果该机采用隐身技术,使σ减小到,此时的最大探测距离为多少?b)在a)条件下,如果雷达仍然要保持100Km最大探测距离,并将发射功率提高到10倍,则接收机灵敏度还将提高到多少?1-3. 画出p5图1.5中同步器、调制器、发射机高放、接收机高放和混频、中放输出信号的基本波形和时间关系。
第二章2-1. 某雷达发射机峰值功率为800KW,矩形脉冲宽度为3μs,脉冲重复频率为1000Hz,求该发射机的平均功率和工作比2-2. 在什么情况下选用主振放大式发射机?在什么情况下选用单级振荡式发射机?2-3. 用带宽为10Hz的测试设备测得某发射机在距主频1KHz处的分布型寄生输出功率为10μW,信号功率为100mW,求该发射机在距主频1KHz处的频谱纯度。
2-4. 阐述p44图2.18中和p47图2.23中、的作用,在p45图2.21中若去掉后还能否正常工作?2-5. 某刚性开关调制器如图,试画出储能元件C的充放电电路和①~⑤点的时间波形2-6. 某人工长线如图,开关接通前已充电压10V,试画出该人工长线放电时(开关接通)在负载上产生的近似波形,求出其脉冲宽度L=25μh,C=100pF,=500Ω2.7. 某软性开关调制器如图,已知重复频率为2000Hz,C=1000pF,脉冲变压器匝数比为1:2,磁控管等效电阻=670Ω,试画出充放电等效电路和①~⑤点的时间波形。
若重复频率改为1000Hz,电路可做哪些修改?2.8.某放大链末级速调管采用调制阳极脉冲调制器,已知=120KV,Eg=70V,=100pF,充放电电流I=80A,试画出a,b,c三点的电压波形及电容的充电电流波形与时间关系图。
第六部分 多普勒天气雷达原理与应用(周长青)我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品第一章 我国新一代天气雷达原理一、了解新一代天气雷达的三个组成部分和功能新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。
二、了解电磁波的散射、衰减、折射散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。
折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。
2/3730/776.0T e T P N +=波束直线传播波束向上弯曲波束向下弯曲000=><dz dN dzdN dzdN三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为:()22232ln 1024K h G P c t λθϕπ=Z r c P r 2=其中Pr 表示雷达接收功率,Z 为雷达反射率,r 为目标物距雷达的距离。
Pt 表示雷达发射功率,h 为雷达照射深度,G 为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。
四、了解距离折叠最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。
距离折叠是指雷达对雷达回波位置的一种辨认错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。
雷达探测距离公式雷达是一种常用的无线电波探测技术,被广泛应用于军事、航空、导航、气象等领域。
它利用电磁波在空间中传播的特性,通过发送和接收信号来探测目标的位置和距离。
在雷达技术中,距离是一个重要的参数,而雷达探测距离公式则是计算目标与雷达之间距离的数学表达式。
雷达探测距离公式可以通过以下方式来推导,首先我们需要了解雷达的工作原理。
雷达系统通过发射脉冲信号并接收目标反射回来的信号来实现目标探测。
当脉冲信号发射后,它会以光速的速度在空间中传播,当遇到目标时,部分能量会被目标反射回来,形成回波信号。
雷达接收机会接收到这个回波信号,并进行信号处理,从而得到目标的信息。
在雷达探测过程中,距离是通过测量信号的往返时间来计算的。
假设目标与雷达之间的距离为R,发送信号的速度为c,则信号往返的时间为2R/c。
根据这个时间,我们可以计算出目标与雷达之间的距离。
雷达探测距离公式可以表示为:R = (c * Δt) / 2其中,R表示目标与雷达之间的距离,c表示信号的传播速度,Δt表示信号的往返时间。
公式中的除以2是因为往返时间是信号从雷达发射到目标反射回来的时间,而雷达探测的是往返距离。
在实际应用中,雷达探测距离公式需要考虑到许多因素的影响。
首先,信号的传播速度c通常取光速,因为雷达系统中使用的是无线电波,其传播速度非常接近光速。
其次,信号的往返时间Δt需要通过精确的时间测量来获取,因为微小的误差会导致测量结果的不准确。
此外,目标与雷达之间的距离R也会受到空气密度、反射系数等因素的影响。
在雷达探测中,除了距离,还有其他参数也需要考虑,如目标的速度、方向、角度等。
这些参数可以通过雷达系统的信号处理来获取。
雷达技术的发展使得我们能够更准确地探测目标,提高了雷达的应用领域和效果。
总结一下,雷达探测距离公式是计算目标与雷达之间距离的数学表达式。
它通过测量信号的往返时间来计算距离,公式中包含了信号的传播速度和往返时间两个参数。
第一章1、雷达的基本概念:雷达概念(Radar),雷达的任务是什么,从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息答:雷达是一种通过发射电磁波和接收回波,对目标进行探测和测定目标信息的设备。
任务:早期任务为测距和探测,现代任务为获取距离、角度、速度、形状、表面信息特性等。
回波的有用信息:距离、空间角度、目标位置变化、目标尺寸形状、目标形状对称性、表面粗糙度及介电特性。
获取方式:由雷达发射机发射电磁波,再通过接收机接收回波,提取有用信息。
2、目标距离的测量:测量原理、距离测量分辨率、最大不模糊距离 答:原理:R=Ctr/2距离分辨力:指同一方向上两个目标间最小可区别的距离 Rmax=…3、目标角度的测量:方位分辨率取决于哪些因素答:雷达性能和调整情况的好坏、目标的性质、传播条件、数据录取的性能 4、雷达的基本组成:哪几个主要部分,各部分的功能是什么 答:天线:辐射能量和接收回波发射机:产生辐射所需强度的脉冲功率 接收机:把微弱的回波信号放大回收信号处理机:消除不需要的信号及干扰,而通过加强由目标产生的回波信号 终端设备:显示雷达接收机输出的原始视频,以及处理过的信息 习题:1-1. 已知脉冲雷达中心频率f0=3000MHz ,回波信号相对发射信号的延迟时间为1000μs ,回波信号的频率为3000.01 MHz ,目标运动方向与目标所在方向的夹角60°,求目标距离、径向速度与线速度。
685100010310 1.510()15022cR m kmτ-⨯⨯⨯===⨯=m 1.010310398=⨯⨯=λKHzMHz f d 10300001.3000=-=s m f V d r /5001021.024=⨯==λsm V /100060cos 500=︒=波长:目标距离:1-2.已知某雷达对σ=5m2 的大型歼击机最大探测距离为100Km,1-3.a)如果该机采用隐身技术,使σ减小到0.1m2,此时的最大探测距离为多少?1-4.b)在a)条件下,如果雷达仍然要保持100Km 最大探测距离,并将发射功率提高到10 倍,则接收机灵敏度还将提高到多少?1-5.KmKmR6.3751.010041max=⎪⎭⎫⎝⎛⨯=dBkSkSii72.051,511.010minmin-===∴⨯=⨯b)a)第二章:1、雷达发射机的任务答:产生大功率特定调制的射频信号2、雷达发射机的主要质量指标答:工作频率和瞬时带宽、输出功率、信号形式和脉冲波形、信号的稳定度和频谱纯度、发射机的效率3、雷达发射机的分类单级震荡式、主振放大式4、单级震荡式和主振放大式发射机产生信号的原理,以及各自的优缺点答:单级震荡式原理:大功率电磁震荡产生与调制同时完成,以大功率射频振荡器做末级优点:结构简单、经济、轻便、高效缺点:频率稳定性差,难以形成复杂波形,相继射频脉冲不相参主振放大式原理:先产生小功率震荡,再分多级进行调制放大,大功率射频功率放大器做末级优点:频率稳定度高,产生相参信号,适用于频率捷变雷达,可形成复杂调制波形缺点:结构复杂,价格昂贵、笨重是非题:1、雷达发射机产生的射频脉冲功率大,频率非常高。
2023年《雷达原理》第三版(丁鹭飞耿富录著)课后答案下载《雷达原理》第三版内容简介第1章绪论1.1 雷雷达传感器雷达传感器达的任务1.2 雷达的基本组成1.3 雷达的工作频率1.4 雷达的应用和发展1.5 电子战与军用雷达的发展主要参考文献第2章雷达发射机2.1 雷达发射机的任务和基本组成2.2 雷达发射机的主要质量指标2.3 单级振荡和主振放大式发射机2.4 固态发射机2.5 脉冲调制器主要参考文献第3章雷达接收机3.1 雷达接收机的组成和主要质量指标 3.2 接收机的'噪声系数和灵敏度3.3 雷达接收机的高频部分3.4 本机振荡器和自动频率控制3.5 接收机的动态范围和增益控制3.6 滤波和接收机带宽主要参考文献第4章雷达终端显示器和录取设备4.1 雷达终端显示器4.2 距离显示器4.3 平面位置显示器4.4 计算机图形显示4.5 雷达数据的录取4.6 综合显示器简介4.7 光栅扫描雷达显示器主要参考文献第5章雷达作用距离5.1 雷达方程5.2 最小可检测信号5.3 脉冲积累对检测性能的改善 5.4 目标截面积及其起伏特性 5.5 系统损耗5.6 传播过程中各种因素的影响 5.7 雷达方程的几种形式主要参考文献第6章目标距离的测量6.1 脉冲法测距6.2 调频法测距6.3 距离跟踪原理6.4 数字式自动测距器主要参考文献第7章角度测量7.1 概述7.2 测角方法及其比较7.3 天线波束的扫描方法7.4 三坐标雷达7.5 自动测角的原理和方法主要参考文献第8章运动目标检测及测速8.1 多卜勒效应及其在雷达中的应用8.2 动目标显示雷达的工作原理及主要组成 8.3 盲速、盲相的影响及其解决途径8.4 回波和杂波的频谱及动目标显示滤波器 8.5 动目标显示雷达的工作质量及质量指标 8.6 动目标检测(MTD)8.7 自适应动目标显示系统8.8 速度测量主要参考文献第9章高分辨力雷达9.1 高距离分辨力信号及其处理9.2 合成孔径雷达(SAR)9.3 逆合成孔径雷达(ISAR)9.4 阵列天线的角度高分辨力主要参考文献《雷达原理》第三版作品目录《雷达原理(第四版)》分为雷达主要分机及测量方法两大部分。
雷达原理复习提纲大全发射机自激振荡式发射机(电真空)主振放大式发射机(电真空发射机、全固态发射机)单级振荡式发射机:简单、经济、轻便。
主振放大式发射机:频率稳定性高、发射信号相位相参、波形灵活。
雷达数据的录取方式:半自动录取和全自动录取固态发射机的优点:不需要阴极加热、寿命长;具有很高的可靠性:体积小、重量轻:工作频带宽、效率高:系统设计和运用灵活:维护方便,成本较低。
雷达原理知识点汇总第一章绪论1、雷达概念(Radar):radar的音译,“Radio Detection and Ranging ”的缩写。
原意是“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。
2、雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。
在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。
3、雷达的任务:利用目标对电磁波的反射来发现目标并对目标进行定位。
随着雷达技术的发展,雷达的任务不仅仅是测量目标的距离、方位和仰角,而且还包括测量目标的速度,以及从目标回波中获取更多有关目标的信息。
4、从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息?斜距R : 雷达到目标的直线距离OP。
方位角α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。
俯仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。
5、雷达工作方式连续波和脉冲波6、雷达测距原理R=(C∆t)/2式中,R为目标到雷达的单程距离,∆t为电磁波往返于目标与雷达之间的时间间隔,C为电磁波的传播速率(3×108米/秒)7、影响雷达性能指标脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。