多组分宽带掺铒玻璃光谱性质及光纤放大特性研究解析
- 格式:doc
- 大小:29.50 KB
- 文档页数:3
温度对掺铒光纤光谱特性影响研究齐翊;陈伟民;雷小华;张伟;李竞飞;许亨艺;刘显明【摘要】不断提高以掺铒光纤为核心的光纤器件功率是研究与应用领域中的一个重要课题。
高功率光纤器件内能量聚集会发热升温,造成器件光谱参数性能显著变化,进而造成以掺铒光纤为核心的光学器件的性能发生显著变化。
因此对掺铒光纤在大温度范围下的光谱性能进行研究具有重要意义。
利用斯塔克能级展宽理论建立了掺铒光纤吸收系数与温度的关系模型,在此基础上结合McCumber理论仿真计算了掺铒光纤荧光寿命与温度的关系。
以O FS‐M P980型掺铒光纤为实验对象,测量了掺铒光纤在常温至900℃范围内的吸收光谱、发射光谱。
结果表明,温度升高造成980 nm波段吸收系数整体下降,且吸收系数的峰值波长增加,平均增加率0.625 nm/100℃。
1530 nm波段吸收系数整体展宽,且峰值吸收系数下降,平均下降率为-0.19 dB/100℃。
600℃以内荧光寿命随温度呈近似线性下降,下降率为-0.23 m s/100℃。
600℃以内理论模型能够反应温度造成峰值吸收系数、荧光寿命近似线性变化的趋势。
%In scientific research and engineering application ,improving the power of fiber device is an importanttopic ,which leads to observably rise of temperature in fiber core at the same time .In this paper ,Thermal effect and its influence on absorp‐tion spectrum and lifetime of Erb ium‐doped fiber are studied with numerical modeling .Lorentz broadening of sub‐levels is used to build the mathematical relationship between temperature and absorption spectrum .The McCumber Theory is applied to de‐duce the lifetime of Erbium‐doped fiber i n different temperature .Temperature experiments of absorption and emission spectrum from 25 to 900 ℃ are carried out ,whichshow that the wavelength of absorption peak near 980nm increase at rate of 0.625 nm/100 ℃ ,the ratio of absorption peak near 1 530 nm declines at a rate of 0.001 9 dB · (m℃)-1 and the broadband of absorption spectrum near 1 530 nm increase with rising temperature .The linear variation of lifetime and peak absorption in experiment proves that the theoretical model is reasonable when th e temperature is below 600 ℃ .【期刊名称】《光谱学与光谱分析》【年(卷),期】2016(036)007【总页数】5页(P2006-2010)【关键词】掺铒光纤;温度;吸收光谱;发射光谱;荧光寿命【作者】齐翊;陈伟民;雷小华;张伟;李竞飞;许亨艺;刘显明【作者单位】重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044;重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044;重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044;重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044;重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044;重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044;重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044【正文语种】中文【中图分类】TN253掺铒光纤已被广泛应用在光纤放大器、光纤激光器、光纤光源等光器件上。
北京交通大学硕士学位论文高浓度掺铒光纤特性研究姓名:石丰琦申请学位级别:硕士专业:光通信与移动通信指导教师:延凤平;傅永军20080501中文摘要摘要:掺铒光纤放大器、激光器是光纤通信中极其重要的器件。
目前既能抑制铒离子浓度猝灭,又能极大提高铒离子浓度的多种元素共掺的高浓度掺铒光纤成为了研究的热点。
由于磷酸盐、碲酸盐玻璃等与目前光纤通信系统中的石英基光纤熔接困难,本论文主要对掺杂石英基光纤的性能进行了测试与分析。
主要工作成果有:1、设计了荧光寿命测试系统,分析了初始阶段的高浓度掺铒光纤的荧光寿命测试系统的弊端所在,使用修正后的高浓度掺铒光纤荧光寿命测试系统,对几种光纤荧光寿命随铒离子浓度变化进行了测试、仿真、比较、分析并得出结论:在铒离子浓度进一步提高的情况下,铋镓铒铝共掺光纤H477的荧光寿命比其他共掺的掺铒光纤的荧光寿命长,效果更好。
2、利用温控箱控制高浓度掺铒光纤的温度,使用修正后的高浓度掺铒光纤的荧光寿命测试系统,对同一光纤在零下20度至U160度期间的荧光寿命进行了测试、仿真、分析。
但由于误差存在的原因,实验结果并不理想。
3、搭建了掺铒光纤荧光强度随温度变化的实验测试系统,利用温控箱改变掺铒光纤的温度,对同一光纤在零下30度到150度期间的荧光强度进行了测试、分析并得出掺铒光纤的荧光强度比随温度变化的规律:荧光强度比随温度是单调变化,因此可以用作温度传感领域。
4、利用谱损耗分析仪,采用截断法,精确测试出各种光纤的吸收系数,由所得吸收系数并根据McCumber理论求出其发射系数,利用发射系数,分析不同光纤的FWHM(半高全宽),分析了不同的光纤基质材料对于掺铒光纤增益谱的影响。
5、成功的搭建了掺铒光纤发射系数的测试系统,利用实验测试得到铝共掺、镁共掺、铅共掺、镓共掺、锂共掺的掺铒光纤的发射系数;并利用实验测试得到的发射系数,与根据吸收系数和McCumber理论得到的发射系数进行比较,分析掺铒光纤的浓度猝灭程度,并进行比较分析这几种不同的光纤,得出铋镓铝共掺的高浓度掺铒光纤比其他离子共掺的高浓度掺铒光纤的猝灭程度低。
掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。
此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。
关键词:掺铒光纤放大器;光纤拉曼放大器0、综述20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。
在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。
但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。
传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。
在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。
20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。
此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。
又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。
1、光放大器分类及原理光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。
πws s掺镱光纤放大器 ( YD FA ) 特性的研究张立文 郑 义(郑州大学河南省激光应用技术重点实验室 ,郑州 450052)提要 :根据二能级近似模型 ,在忽略光纤损耗和放大自发辐射(ASE ) 的条件 ,引入光场与掺杂分布的重叠因子 ,得到掺镱光纤放大器 ( Y D 2FA ) 中速率 、传输方程的解析解 ,在此基础上得到了放大器增益的解析表达式 、阈值泵浦功率表达式和小信号下最佳光纤长度表达式 ,并利用 数值模拟结果对放大器的增益 、泵浦阈值 、最佳光纤长度进行分析和讨论 。
关键词 :掺镱光纤放大器 ,速率方程 ,增益 ,最佳光纤长度Studies of ytterbium - doped f iber amplif iersZhang LiwenZheng yi( Henan K e y Laboratory of Laser Te c hnology And A pplica tion ,Zhe ngz hou University ,Zhe ngz hou 450052)Abstract :Based on tw o - level mode l ,analytical solutions have been derived f or rate and light propa gation equa tions af ter introducing the over lapping f actors between the light intensities and the ytterbium dopant distr ibutions inside the f iber core and excluding the ef f ects of f iber spoilage and A SE process. The gain ana lyt 2 ical expression 、p u m p t hreshold expression and the optimum f iber length e xpression of a small signa l are deduced. U sing the numer ical simulations ,gain 、p u m p threshold power and the optimum f iber length of the amplif iers ha ve been analysed and discussed.Ke y w or ds :YD FA ,Rate equations , G a in ,the optimum f iber length1 引言 Ξ光纤放大器中除了掺铒光纤放大器 ( EDFA ) 在光纤的低 积 ,即I p ( r ,θ, z ) = I p ( z ) Φp ( r ,θ)(1)I s ( r ,θ, z ) = I s ( z ) Φs ( r ,θ)(2) 损耗窗口 850nm ,1310nm ,1550nm 等〔1 ,2〕波段因光纤通信的发 式中 ,Φ ( r ,θ) 、Φ ( r ,θ) 分别为泵浦光 、信号光的归一展而受到人们的普遍重视外 ,在其他的激光波长处 (如 : 800 ~850nm ,960~1200nm 等) 的掺杂光纤放大器作为短脉冲放p化模场分布 :s2π∞大器正引起人们极大关注 ,掺镱光纤放大器( YDFA ) 便是其 中重要的一种〔3 ,4 ,5 ,6〕,它在 1. 0μm 波段的放大带宽比掺 Nd光纤放大器还要宽 。
一、实验目的1. 了解掺铒光纤的基本特性和工作原理。
2. 掌握掺铒光纤放大器的基本原理和实验方法。
3. 研究掺铒光纤放大器的增益特性、噪声特性以及稳定性。
二、实验原理掺铒光纤放大器(EDFA)是一种利用掺铒光纤作为放大介质的宽带光放大器。
其工作原理是:当泵浦光(通常为980nm的激光)注入掺铒光纤时,光纤中的铒离子会吸收泵浦光能量,实现能级跃迁。
随后,铒离子会自发辐射出光子,产生信号放大。
三、实验仪器与设备1. 掺铒光纤放大器实验装置2. 激光器3. 光功率计4. 光纤连接器5. 光纤测试仪6. 计算机及数据采集软件四、实验步骤1. 将实验装置连接好,确保各部件正常工作。
2. 使用激光器产生泵浦光,将其输入掺铒光纤放大器。
3. 使用光纤连接器将信号源的光信号输入掺铒光纤放大器。
4. 使用光功率计测量泵浦光和信号光的功率。
5. 通过光纤测试仪测量掺铒光纤放大器的增益特性。
6. 改变泵浦光功率,观察并记录掺铒光纤放大器的增益特性。
7. 改变信号光功率,观察并记录掺铒光纤放大器的噪声特性。
8. 改变实验条件,研究掺铒光纤放大器的稳定性。
五、实验结果与分析1. 增益特性:实验结果显示,掺铒光纤放大器的增益随着泵浦光功率的增加而增加,且增益随信号光功率的增加而降低。
在最佳泵浦光功率下,掺铒光纤放大器的增益可达20dB以上。
2. 噪声特性:实验结果显示,掺铒光纤放大器的噪声系数较低,约为3dB。
随着信号光功率的增加,噪声系数逐渐降低。
3. 稳定性:实验结果显示,掺铒光纤放大器在改变实验条件时,增益、噪声系数等参数基本保持稳定,具有良好的稳定性。
六、实验结论1. 掺铒光纤放大器具有高增益、低噪声、宽带等优点,在光通信系统中具有广泛的应用前景。
2. 通过调整泵浦光功率和信号光功率,可以实现对掺铒光纤放大器增益和噪声特性的控制。
3. 掺铒光纤放大器具有良好的稳定性,适用于实际应用。
七、实验建议1. 在实验过程中,注意泵浦光功率的调整,避免过高的泵浦光功率导致器件损坏。
掺铒光纤放大器实验报告引言掺铒光纤放大器是一种能够放大光信号的器件,利用掺杂有铒离子的光纤来实现放大功能。
本报告旨在介绍掺铒光纤放大器的实验原理、实验步骤以及实验结果分析。
实验原理掺铒光纤放大器利用了铒离子的特殊性质,当铒离子被激发时,会发射出特定波长的光子。
这些光子可以与输入的光信号发生相互作用,使信号得到放大。
掺铒光纤放大器由激发源、光纤和光探测器组成。
实验步骤1. 准备工作首先,我们需要准备实验所需的材料和设备,包括掺铒光纤、光源、光探测器、光纤连接器等。
确保实验环境光线较暗,以避免干扰。
2. 搭建实验装置将光源和光探测器与掺铒光纤分别连接起来,注意保持光纤的连接质量,以免信号损失。
可以使用光纤连接器来简化连接过程。
3. 测量初始光功率在实验开始之前,需要测量输入光源的初始光功率,并记录下来。
这可以作为后续实验结果的参考。
4. 开始实验将输入光信号通过掺铒光纤放大器,并让光信号在光纤中传输一段距离。
可以使用光纤延长器来延长传输距离。
5. 测量输出光功率在光信号通过掺铒光纤放大器后,使用光探测器测量输出光功率,并记录下来。
比较输出光功率与初始光功率的差异,可以评估掺铒光纤放大器的放大效果。
6. 数据分析根据实验结果,我们可以对掺铒光纤放大器的性能进行评估和分析。
可以计算放大倍数、增益和信噪比等指标,以判断实验的成功与否。
实验结果和讨论根据我们的实验数据,我们观察到输出光功率明显高于输入光功率,这表明掺铒光纤放大器成功地将光信号进行了放大。
通过计算,我们得到了放大倍数为X,增益为Y。
此外,我们还注意到放大过程中的信噪比有所下降,这可能是由于光纤传输过程中的损耗导致的。
在实验过程中,我们还发现了一些潜在的问题。
例如,光纤连接质量的影响、光源的稳定性和光探测器的灵敏度等。
这些因素可能会对实验结果产生一定的影响,需要进一步研究和改进。
结论通过本次实验,我们成功地搭建了一个掺铒光纤放大器实验装置,并进行了实验数据的测量和分析。
EDFA原理及特性EDFA(erbium-doped fiber amplifier)又称铒掺杂光纤放大器,是一种常用的光纤放大器。
它的工作原理是利用铒元素的特性对光信号进行增强放大。
EDFA具有很高的增益和宽带特性,广泛应用于光通信和光传感器等领域。
EDFA的工作原理是基于铒元素的激射和跃迁过程。
EDFA内的光纤芯部分掺杂了铒(Er)元素,而泵浦光源通过光纤传输波长为980nm或1480nm的泵浦光。
当泵浦光的能量被传输到掺铒光纤中时,铒元素的电子从基态跃迁到激发态,产生发射波长为1550nm左右的光子。
这些光子的部分能量与传入的光信号发生共振作用,将光信号的能量转移给它们,使其得到增强。
EDFA的特性主要包括以下几个方面:1.高增益:EDFA的增益可以达到20-30dB,远高于其他类型的光纤放大器。
这使得EDFA可以用于长距离光纤通信系统中,有效地增强信号强度,提高传输距离。
2. 宽带特性:EDFA的增益带宽通常在1525-1565nm范围内,可以涵盖整个C波段和L波段。
这使得EDFA可以同时放大多个波长的光信号,提高系统的传输容量。
3.低噪声:EDFA的噪声系数通常在4-6dB范围内,较低的噪声水平对于提高系统的信号质量非常重要。
4.线性特性:EDFA具有很好的线性放大特性,可以保持输入信号的准确性。
这使得EDFA非常适用于需要高保真度的光信号放大应用,如光传感器系统。
5.可调性:EDFA的增益可以根据需要进行调整,通过改变泵浦光的功率和频率可以控制EDFA的增益水平。
除了以上特性外,EDFA还具有一些其他优点。
首先,EDFA可以使用光纤进行远程放大,无需频繁的电光转换和光电转换,可以简化系统架构。
其次,EDFA具有较长的光纤寿命和较低的功耗,能够提高系统的可靠性和经济性。
然而,EDFA也有一些局限性。
首先,EDFA的增益带宽有限,无法覆盖整个光谱范围。
其次,EDFA对输入信号的功率有一定的限制,过高的输入功率会引起非线性效应和饱和现象。
大数值孔径多组分玻璃柔性光纤的工艺研究的开题报告一、选题背景光纤通信技术在现代通信领域中得到广泛应用,特别是在无线通信、传感控制、光学成像、激光器制造等方面有着重要的应用价值。
其中,光纤传感技术是当前国内外研究热点之一,光纤传感的基础是高质量的光纤制备工艺。
近年来,光纤传感技术在珠宝、医药、食品安全等领域获得广泛应用,工业上也有了不少的应用。
大数值孔径多组分玻璃柔性光纤(MMF)由于其优良的分光传输特性和高光学性能,在光纤传感、纳米成像和光学制造等领域中受到了广泛关注。
但是,目前在国内外的多组分玻璃柔性光纤制备研究中,仍然存在制备难度大、制备周期长、光学性能难以控制等问题,因此有必要对大数值孔径多组分玻璃柔性光纤制备工艺进行研究。
二、研究内容本次研究的主要内容是采用热拉伸技术制备大数值孔径多组分玻璃柔性光纤,并研究影响制备光纤光学性能的关键因素。
我们将通过理论模拟和实验研究的方法,探索制备大数值孔径多组分玻璃柔性光纤的最佳工艺和技术路线。
具体研究内容如下:(1)建立光纤制备数值模型,探索热拉伸参数对光学性能的影响。
(2)设计并制备大数值孔径多组分玻璃柔性光纤样品,并对其光学性能进行测试分析,包括传输率、损耗等光学参数。
(3)探究与现有工艺相比,新的大数值孔径多组分玻璃柔性光纤制备工艺的优势和不足,并提出改进方案。
(4)最终制备出加工精度高、光学性能优良的大数值孔径多组分玻璃柔性光纤。
三、研究意义本研究的成果对光学传感、光学成像和光学制造领域有重要的应用价值和推广意义。
同时,本研究的成果能够在光纤通信技术和光纤制备技术方面提供新的技术支持和科学理论,促进我国在相关领域的科技水平提高。
四、研究方法本研究采用理论模拟和实验研究相结合的方法,首先建立适合的数值模型,通过数值模拟进行初步参数优化,然后进行实验研究以验证模拟结果的准确性,并对光学性能进行精细调整,不断优化光纤制备工艺。
五、研究进度安排(1)文献调研阶段:确定研究方向,深入了解国内外研究现状和发展趋势。
掺铒(Er^(3+))光纤功率放大器中脉冲非线性放大的理
论研究
杨宝;明海;谢建平
【期刊名称】《光子学报》
【年(卷),期】1996(25)11
【摘要】本文应用稳态和非稳态激光放大理论,分析了两类脉冲信号(t_p》t_2、t_p《t_2)在980nm泵浦的掺Er^(3+)光纤功率放大器中的非线性放大特性,讨论了泵浦劝率、信号功率、泵浦能级寿命对脉冲非线性放大的影响。
两类脉冲的放大机理不同,其放大特性也大相径庭。
【总页数】5页(P965-969)
【关键词】光纤功率放大器;非线性放大;脉冲
【作者】杨宝;明海;谢建平
【作者单位】中国科学技术大学物理系
【正文语种】中文
【中图分类】TN253
【相关文献】
1.基于掺铒(Er3+)光纤飞秒光孤子脉冲的实验放大研究 [J], 李卫;王芳;党利宏
2.使用FBG及更短光纤的高效Er^(3+)Yb^(3+)共掺双包层光纤放大器(英文) [J], 董淑福;杨玲珍;程光华;陈国夫
3.掺Er^(3+)和Er^(3+)/Yb^(3+)共掺光纤激光器中抑制自脉动的效果 [J], 赵尚
弘;占生宝;董淑福;庄茂录;夏贵进
4.适用于光纤放大器的Er^(3+)-Yb^(3+)共掺双包层光纤 [J], 张强;李进延;唐仁杰
因版权原因,仅展示原文概要,查看原文内容请购买。
掺铒光纤放大器工作原理掺铒光纤放大器是一种光纤放大器,其主要作用是放大光信号。
掺铒光纤放大器是由掺铒光纤、泵浦光源等组成的。
本文将详细介绍掺铒光纤放大器的工作原理。
1. 掺铒光纤放大器的结构掺铒光纤放大器的主要结构由掺铒光纤、泵浦光源、耦合器、光学滤波器和光纤光栅等组成。
其中,掺铒光纤是放大器的核心部件,泵浦光源是掺铒光纤放大器的能量源,耦合器用于把信号光和泵浦光耦合到掺铒光纤中,光学滤波器用于过滤掉不需要的波长光,光纤光栅用于把放大器的光信号反射回放大器中,增强光信号的能量。
2. 掺铒光纤放大器的工作原理掺铒光纤放大器的工作原理是基于铒离子的荧光增益作用。
当泵浦光源把泵浦光耦合到掺铒光纤中时,铒离子被激发,处于高能级的电子会自发地向低能级跃迁,发射光子。
这些发射出来的光子与信号光子相互作用,从而使信号光子的能量增加,实现光信号的放大。
掺铒光纤放大器的放大过程可以通过下图来表示:信号光和泵浦光经过耦合器耦合到掺铒光纤中,铒离子被激发,发射出光子,从而使信号光子的能量增加,实现光信号的放大。
放大后的光信号经过滤波器过滤掉不需要的波长光,然后经过光纤光栅反射回放大器中,增强光信号的能量,实现更大程度的放大。
3. 掺铒光纤放大器的优点与其他光纤放大器相比,掺铒光纤放大器具有以下优点:(1)高增益:掺铒光纤放大器的增益高达40 dB,放大效果显著。
(2)宽带宽:掺铒光纤放大器的带宽广泛,可以放大多种波长的光信号。
(3)稳定性好:掺铒光纤放大器的放大效果稳定,不容易受到环境影响和温度变化的影响。
(4)可靠性高:掺铒光纤放大器的寿命长,性能可靠,适用于长时间工作。
4. 掺铒光纤放大器的应用掺铒光纤放大器具有广泛的应用领域,主要用于光通信、光传感、光测量等方面。
在光通信领域,掺铒光纤放大器可以扩大光信号的传输范围,提高信号传输质量和可靠性;在光传感领域,掺铒光纤放大器可以用于生物传感、环境监测等方面;在光测量领域,掺铒光纤放大器可以用于光谱分析、光学测量等方面。
多组分宽带掺铒玻璃光谱性质及光纤放大特性研究
随着现代通信技术的飞速发展,人们对光纤通信容量和系统集成化的要求大大提高,这使得掺铒光纤放大器(Erbium-doped Fiber Amplifier,EDFA)与波分复用(Wavelength Division Multiplexing,WDM)技术的联合运用成为实现多波长和超长距离传输必不可少的条件。
其中,EDFA已是提高WDM系统信道数和光纤通信容量的关键部件。
目前,主要工作在C波段(1530-1565nm)区域并得到广泛应用的传统石英基EDFA已不能满足系统的发展需求。
因此,开发具有宽带放大能力和极高单位长度增益的非石英基EDFA,直接实现C+L波段
(1530~1610nm)区域宽带无缝放大,这对于WDM系统光纤通信容量的扩展以及系统集成化具有非常重要的实际意义。
本论文结合当前光纤通信技术的发展需求,选择多组分宽带碲酸盐和铋酸盐重金属氧化物玻璃作为研究对象,基于自主实现从“宽带掺铒玻璃→宽带掺铒玻璃光纤→宽带掺铒玻璃光纤放大器”整个流程的研究考虑,围绕多组分宽带掺铒玻璃光谱性质的改性研究、多组分宽带掺铒玻璃光纤的研制和光谱性质测试、宽带掺铒玻璃光纤稳态和瞬态放大特性的理论研究三方面内容开展工作。
论文的主要研究工作如下:1.开展了单掺稀土铒离子对于碲酸盐玻璃光谱特性的影响研究WDM系统的集成化趋势,需要尽可能地提高光纤放大器增益介质中的稀土铒离子(Er~(3+))掺杂浓度以便得到高的单位长度增益,但过高的铒离子掺杂也会带来一些负面效应,影响到光纤放大器的性能指标。
因此,本文首先开展了稀土铒离子掺杂对于组分为TeO_2-ZnO-
La_2O_3(Na_2O)碲酸盐玻璃光谱特性的影响研究,深入研究了1.53μm波段荧光谱、荧光强度和荧光寿命随铒离子掺杂浓度的变化关系。
为此,论文运用Lorentz线型函数对测量到的荧光光谱进行了拟合分解,建立了一个等效四能级模型分析了各谱线成分相对强度随铒离子掺杂浓度的变化关系,剖析了1.53μm 波段荧光谱的展宽及其荧光主峰转移现象。
同时,基于Forster-Dexter能量转移理论,结合荧光俘获效应的影响,系统分析了激发态~4I_(13/2)能级上铒离子无辐射能量衰减速率与其掺杂浓度的关系,从而指出了1.53μm波段荧光强度和荧光寿命在高掺杂浓度下发生猝灭的主要影响因素,并从无辐射能量转移机理出发分析对比了玻璃中稀土铒离子溶解性问题,计算得到了稀土铒离子的临界浓度和临界相互作用距离参数,确定了最佳掺杂含量。
2.开展了多稀土离子共掺对于碲酸盐玻璃光谱特性的改性研究工作于1.53μm波段的掺铒光纤放大器通常采用1480或980nm波长进行泵浦。
采用980nm波长泵浦,光纤放大器具有低的噪声系数,同时也存在着Er~(3+)离子吸收较弱、上转换发光现象严重而引起的泵浦效率较低缺陷。
本文从提高980nm泵浦效率和Er~(3+)离子1.53μm波段荧光特性出发,开展了Er~(3+)、Yb~(3+)(镱)、Ce~(3+)(铈)多稀土离子共掺对于组分为TeO_2-ZnO-La_2O_3-Nb_2O_5碲酸盐玻璃光谱特性的影响研究。
论文通过具体分析Yb~(3+)/Er~(3+)离子间能量传递过程,研究了Yb~(3+)离子掺杂对于Er~(3+)离子1.53μm波段荧光和上转换发光的增强作用,并给予了理论模拟。
通过分析Er~(3+)/Ce~(3+)离子间的能量传递过程,研究了Ce~(3+)离子掺杂对于1.53μm波段荧光增强和上转换发光的抑制作用。
从而指出相对于
Er~(3+)/Yb~(3+)双掺形式,Er~(3+)/Yb~(3+)/Ce~(3+)三掺是提高980nm泵浦效率和1.53μm波段荧光强度一种更加有效的组合掺杂方式。
在此基础上,论文对基于声子辅助的Er~(3+)/Ce~(3+)离子间能量传递过程,首次提出了通过提高玻璃基质声子能量,减少能量传递过程中的能量失配程度,来进一步提高
Er~(3+)/Ce~(3+)离子间能量传递速率的思想,实验结果得到了很好的印证。
3.开展了单掺铒离子情形下铋酸盐玻璃荧光衰减特性研究OH-根离子不仅产生了
石英传输光纤中1385nm波长附近的“水吸收峰”,同时也是掺铒玻璃中Er~(3+)离子1.53μm波段荧光的一个主要猝灭中心。
本文从测量分析Er~(3+)离子
1.53μm波段荧光衰减行为这一角度入手,开展了Bi_2O_3-B_2O_3-GeO_2-Na2O -Er_2O_3铋酸盐玻璃中OH-根离子与Er~(3+)离子相互作用机理以及对Er~(3+)离子荧光特性的影响研究。
研究指出,Er~(3+)离子与玻璃中残留的OH-根离子
间能量转移导致低掺杂浓度下Er~(3+)离子荧光呈现出明显的非指数衰减特征,运用Inokuti-Hirayama公式拟合得到了Er~(3+)离子与OH-根离子间能量转移参数。
同时,在玻璃高温熔融过程中注入干燥氧气进行了除水处理研究,除水处理能明显减少玻璃中残留的OH-根离子含量,从而提高Er~(3+)离子1.53μm波段荧光强度以及掺铒光纤中的信号增益,而其荧光呈现出近似单一的指数衰减特征。
4.开展了低声子能量掺铒铋酸盐玻璃中激发态吸收的抑制研究激发态吸收常发生在980nm泵浦下的一类低声子能量掺铒重金属氧化物玻璃中,它的存在制约了泵浦光转换效率的提高从而影响到Er~(3+)离子1.53μm波段荧光特性。
本文通过在组分为Bi_2O_3-GeO_2-Ga_2O_3-Na+2O一类低声子能量掺铒铋酸盐氧化物玻璃中分别引入Ce~(3+)离子和B_2O_3组分,研究比较了这两种措施对
于激发态吸收的抑制效果以及对于Er~(3+)离子1.53μm波段荧光的作用。
研
究发现,适量Ce~(3+)离子或B_2O_3组分的引入,分别通过能量转移和多声子弛豫方式提高了Er~(3+):~4I_(11/2)→~4I_(13/2)能级间无辐射弛豫速率,从而
使得~4I_(11/2)能级Er~(3+)离子荧光寿命相应减小,激发态吸收得到有效抑制。
同时,Ce~(3+)离子的引入进一步提高了~4I_(13/2)能级Er~(3+)离子总量
子效率,增强了1.53μm波段荧光强度。
而B_2O_3组分的引入虽在一定程度上削弱了1.53μm波段荧光强度,但进一步展宽了其荧光发射谱。
5.开展了新型多组分宽带掺铒玻璃光纤研制和光纤光谱性质研究在对多组分掺铒玻璃光谱性质改性研究基础上,本文选择合适的玻璃组分配比开展了新型宽带掺铒玻璃光纤的研制工作。
论文利用自主的实验条件,采用旋转浇铸法和管棒组合法工艺研制了多组分宽带碲酸盐和铋酸盐玻璃光纤预制棒,拉制出了包层直径为125μm、纤
芯直径分别为5.1μm和5.6μm的多组分宽带掺铒碲酸盐和铋酸盐玻璃光纤,并对得到的掺铒光纤进行了传输损耗和放大自发辐射(ASE)谱测试,1310nm波长处的传输损耗分别达到了3.7dB/m和3.4dB/m,ASE谱覆盖了C+L波段区域。
在此基础上,论文鉴于多组分掺铒铋酸盐玻璃光纤与石英传输光纤熔化温度相差极大的特点,采用非对称熔接工艺进行了两者的熔接尝试,为下一步研制出高质量宽带掺铒玻璃光纤和光纤放大器积累了一定的工艺基础。
6.开展了多组分宽带掺铒玻璃光纤稳态和瞬态放大特性的理论研究为进一步了解多组分宽带掺铒玻璃光纤的放大特性,同时为后续设计和优化宽带掺铒光纤放大器提供理论依据,本文从稳态和瞬态放大特性两个方面展开了系统的理论研究:1)建立了一个综合考虑Er~(3+)离子能量转移和激发态吸收效应、以铋酸盐玻璃基掺铒光纤作为增
益介质的铋基掺铒光纤放大器(Bi-EDFA)理论模型,分析比较了1480和980nm波长泵浦下放大器的稳态增益和噪声特性以及随信号输入功率、光纤长度的变化关系。
同时,鉴于放大器内部存在着极大的由放大自发辐射产生的ASE噪声,论文从抑制噪声和再次利用噪声角度出发,对放大器进行了优化设计:①利用光隔离器抑制后向传输的ASE噪声,提高了放大器信号增益并降低了噪声系数。
②利用光环形器引导前级放大产生的ASE噪声光泵浦一段后级低掺杂铋酸盐掺铒光
纤,显著提高了放大器L波段信号增益;2)对于以碲酸盐玻璃基掺铒光纤作为增益介质的碲基掺铒光纤放大器(Te-EDFA),理论研究了输入状态突变时放大器输出端信号功率的瞬态响应特性以及瞬态响应随信号输入功率、泵浦功率的演变关系。
在此基础上,论文从抑制输出信号瞬态响应幅度出发,提出了调理脉冲输入信号阶跃型边沿为渐变型边沿的功率变化方式思想。
研究揭示,提出的理论方案可以有效地抑制放大器输出端信号功率的瞬态响应幅度。
最后,总结了全文研究工作和创新之处,指出了论文不足以及有待进一步深入研究的问题。
【关键词相关文档搜索】:光学工程; 光纤通信; 碲酸盐玻璃; 铋酸盐玻璃; 光谱性质; 宽带掺铒光纤放大器
【作者相关信息搜索】:重庆大学;光学工程;黄尚廉;周亚训;。