1-5 电子功能与元器件电子功能材料
- 格式:pptx
- 大小:7.21 MB
- 文档页数:53
《电子功能材料及元器件》教学大纲课程编码:07151038课程名称:电子功能材料及元器件英文名称:Electronic Functional Materials and Devices开课学期:第二学期学时/学分:48学时/3学分课程类型:专业必选课开课专业:电子科学与技术、微电子学(选修)选用教材:《电子功能材料及元器件》主要参考书:1.康昌鹤等编:《气、湿敏感材料及应用》,科学出版社,1988年。
2.周东祥等编:《半导体陶瓷及其应用》,华中理工大学出版社,1991年。
执笔人:全宝富一.课程性质、目的与任务本课程为电子科学与技术及微电子学专业的专业选修课。
通过本课的学习使学生了解和掌握各种敏感功能材料、光电材料的基本性质、制备技术及各种敏感器件和典型光电器件的基本结构、工作原理及应用等专业知识。
二.教学基本要求本课程讲授50学时,以多媒体课件为辅助手段。
每章留有一定数量的作业题,以加深学生对课堂讲授内容的理解,每周留有3-4道作业题,最后通过闭卷考试检查学生的学习效果。
此外,还设有5-6个实验题目,有粉体材料和薄膜材料制备、敏感元件制作及特性测量等内容。
三.各章节内容及学时分配第一章电子功能材料概述(9学时)第一节概述一.绪论:课程内容框架、作用二.功能材料的分类(例子)第二节形状记忆合金一.马氏体相变和形状记忆效应二.形状记忆原理三.温度变化对形状记忆合金电导的影响第三节超导材料一.超导体的主要特征二.超导机理(BCS理论)三.超导材料简介四.超导应用简介第四节半导体超晶格材料一.超晶格材料的分类二.超晶格的主要特征三.应变超晶格材料四.超晶格材料简介第五节电子功能陶瓷一.介电陶瓷(性质、类型、应用)二.压电陶瓷(压电效应、产生机制)三.铁电材料(性质、相变)四.半导体陶瓷(热、光、气、湿敏…)第二章化合物晶体的缺陷化学基础(7学时)第一节缺陷化学的表述方法一.Kroger-Vink表示法二.化合物(MX)晶体中的点缺陷反应第二节晶体(MX)中缺陷的平衡一.处理MX晶体中点缺陷的方法步骤二.满足化学计量比的MO晶体中缺陷的平衡三.非化学计量比的MO晶体中缺陷的平衡四.接近化学计量比的MO晶体中缺陷的平衡第三节杂质对氧化物晶体中缺陷平衡的影响一.氧化物晶体中杂质的形态及电性质二.杂质对满足化学计量比的氧化物中缺陷平衡的影响三.非化学计量比晶体中杂质对缺陷平衡的影响第四节晶体中点缺陷的扩散与分布一.扩散基本定律二.点缺陷的扩散机制三.缺陷平衡动力学及分布第三章热敏陶瓷及热敏元件(5学时)第一节热敏电阻一.BaTiO3的PTC效应二.PTC效应的理论分析三.NTC热敏电阻(晶体结构、机理)第二节热电偶一.热电效应二.接触电势三.温差电势四.热电偶第四章半导体气体敏感元件(8学时)第一节气敏元件概述一.气敏元件的应用二.气敏元件的特点三.气敏元件的种类第二节气敏元件的基本结构及特性一.气敏元件的基本结构二.气敏元件的基本特性第三节表面电导型气敏元件的工作原理一.常用的气敏材料(SnO2、ZnO、WO3)二.表面电导型气敏元件的工作原理第四节体电导型气敏元件的工作原理一.氧化铁的几种形态二.体电导型气敏元件的工作原理第五节气敏元件的制作工艺一.气敏材料的制备二.气敏元件的制作三.气敏元件的掺杂改性第六节离子导电型氧敏器件一.ZrO2的基本性质二.ZrO2氧敏器件工作原理三.氧敏器件的应用第五章湿度敏感器件(4学时)第一节概述一.湿度测量的意义二.湿度的表征三.湿度的测量方法第二节湿敏器件的基本特性一.感湿特性曲线二.湿滞回差三.湿度温度特性第三节陶瓷湿度敏感器件一.湿敏器件的结构二.陶瓷湿敏器件的工作原理三.实例(MgCr2O4-TiO2)第四节有机高分子湿敏器件一.高分子湿敏器件的感湿机理二.实例(聚苯乙烯磺酸锂湿敏器件)三.高分子电容式湿敏器件第六章光敏及光电器件(8学时)第一节概述一.光敏及光电器件的应用二.光敏及光电器件的基础及内涵第二节半导体中光的吸收及光电效应一.半导体中光的吸收二.光电效应第三节光电导型光敏器件一.光电导型光敏器件的工作原理二.PbS多晶光敏器件三.CdS光敏器件第四节光伏效应型光敏器件一.硅光敏二极管的基本结构二.硅光敏二极管的工作原理三.硅光敏二极管的特性第五节半导体激光器一.自发辐射与受激辐射二.半导体激光器产生条件三.半导体激光器工作原理四.激光器对材料的要求五.激光器的主要特性第七章光纤及光纤传感器(5学时)第一节光导纤维及其特性一.光纤的基本结构及类型二.光在光纤中的传播与损耗第二节光纤材料及制备一.光纤材料二.石英光纤的制备方法三.其他光纤第三节光的调制与解调一.光强调制与解调二.偏振调制与解调三.相位调制与解调第四节光纤传感器实例一.光强调制型压力传感器二.相位调制型温度传感器三.偏振调制型电流传感器第八章压力传感器(1.5学时)第一节压阻式压力传感器的工作原理一.压阻效应二.压力传感器的理论分析第二节压阻式压力传感器的基本结构及制作一.基本结构二.制作要点第九章磁敏传感器件(0.5学时)第一节半导体磁阻器件一.半导体的磁阻效应二.硅磁敏二极管的结构及工作原理四.考核方式:采取闭卷考试方式。
电阻器电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。
欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。
电阻的主要职能就是阻碍电流流过。
事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。
师傅对徒弟说:“找一个100欧的电阻来!”,指的就是一个“电阻值”为100欧姆的电阻器,欧姆常简称为欧。
表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。
一、电阻器的种类电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。
在电子产品中,以固定电阻应用最多。
而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。
型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。
在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。
而红颜色的电阻,是RJ型的。
一般老式电子产品中,以绿色的电阻居多。
为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。
电阻器当然也有功率之分。
常见的是1/8瓦的“色环碳膜电阻”,它是电子产品和电子制作中用的最多的。
当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。
再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了(做无线窃听器?)二、电阻器的标识这些直接标注的电阻,在新买来的时候,很容易识别规格。
可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。
所以在弯脚的时候,要特别注意。
在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。
电子信息材料知识点总结1. 电子元器件材料电子元器件是电子设备的核心组成部分,它用于控制电子信号的流动和转换,从而实现各种功能。
电子元器件材料是电子元器件的基础材料,它直接影响到电子元器件的性能和可靠性。
常见的电子元器件材料包括导体、绝缘体、半导体等。
(1)导体材料导体是能够允许电子自由流动的材料,它在电子元器件中用于传输电流。
常见的导体材料包括铜、铝、金等金属材料,它们具有良好的导电性能和机械性能,适合用于制造导线、电极、接线等部件。
(2)绝缘体材料绝缘体是对电子具有很强阻止作用的材料,它在电子元器件中用于隔离电路和保护电子设备。
常见的绝缘体材料包括二氧化硅、氧化铝、聚合物等,它们具有良好的绝缘性能和耐高温性能,适合用于制造绝缘层、密封件、外壳等部件。
(3)半导体材料半导体是介于导体和绝缘体之间的材料,它在电子元器件中用于制造晶体管、二极管、集成电路等部件。
常见的半导体材料包括硅、锗、砷化镓等,它们具有良好的半导体性能和光电性能,适合用于制造各种电子器件。
2. 半导体材料半导体材料是一类具有半导体性能的材料,它在电子领域中具有重要应用价值。
半导体材料的性能直接决定了电子器件的性能和功能,因此对其进行深入研究具有重要意义。
(1)硅材料硅是一种常见的半导体材料,它在电子器件制造中占据着重要地位。
硅材料具有良好的稳定性、加工性和可靠性,适合用于制造各种集成电路、光伏电池、振荡器等器件。
(2)化合物半导体材料化合物半导体材料是由两种或多种元素化合而成的半导体材料,它具有比硅更优秀的性能和应用潜力。
常见的化合物半导体材料包括砷化镓、硒化锌、氮化镓等,它们在光电子器件、微波器件、光伏器件等领域中有着广泛的应用。
(3)有机半导体材料有机半导体材料是一类新型的半导体材料,它具有良好的柔韧性、可加工性和低成本性,因此在柔性电子器件、有机光电子器件等领域中备受青睐。
常见的有机半导体材料包括聚合物、小分子有机物等,它们在柔性显示器、柔性传感器、有机太阳能电池等领域中有着广泛的应用。
电子元件、器件、元器件的分类说明电子元器件是元件和器件的总称.一、元件:工厂在加工产品是没有改变分子成分产品可称为元件,不需要能<电>源的器件。
它包括:电阻、电容、电感器。
(又可称为被动元件Passive Components)(1)电路类器件:二极管,电阻器等等(2)连接类器件:连接器,插座,连接电缆,印刷电路板(PCB) 二、器件:工厂在生产加工时改变了分子结构的器件称为器件器件分为:1.主动器件,它的主要特点是:(1)自身消耗电能(2).还需要外界电源。
2.分立器件,分为(1)双极性晶体三极管(2)场效应晶体管(3)可控硅(4)半导体电阻电容3.模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。
有许多的模拟集成电路,如集成运算放大器、比较器、对数和指数放大器、模拟乘(除)法器、锁相环、电源管理芯片等。
模拟集成电路的主要构成电路有:放大器、滤波器、反馈电路、基准源电路、开关电容电路等。
模拟集成电路设计主要是通过有经验的设计师进行手动的电路调试,模拟而得到,与此相对应的数字集成电路设计大部分是通过使用硬件描述语言在EDA软件的控制下自动的综合产生。
4.数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。
根据数字集成电路中包含的门电路或元、器件数量,可将数字集成电路分为小规模集成(SSI)电路、中规模集成MSI电路、大规模集成(LSI)电路、超大规模集成VLSI电路和特大规模集成(ULSI)电路。
小规模集成电路包含的门电路在10个以内,或元器件数不超过100个;中规模集成电路包含的门电路在10~100个之间,或元器件数在100~1000个之间;大规模集成电路包含的门电路在100个以上,或元器件数在10~10个之间;超大规模集成电路包含的门电路在1万个以上,或元器件数在10~10之间;特大规模集成电路的元器件数在10~10之间。
电⼦功能材料与元器件名词解释名词解释形状记忆合⾦:形状记忆效应是指具有⼀定形状的固体材料,在某种条件下经过⼀定的塑性变形后,加热到⼀定温度时,材料⼜完全恢复到变形前原来形状的现象。
即它能记忆母相的形状。
具有形状记忆效应的合⾦材料即称为形状记忆合⾦。
热弹性马⽒体相变:在某些合⾦材料中会出现⼀种叫做热弹性马⽒体的晶相组织,这种组织的特点是:它的相变驱动⼒很⼩,很容易发⽣相变。
它能随着温度的升⾼⽽弹性地缩⼩或长⼤,故称其为“热弹性马⽒体”。
约瑟夫逊(Josephson)效应:约瑟夫逊从理论上对于超导体-势垒-超导体的情况进⾏了认真的计算。
得出了⼀系列难以想象的结果:在势垒两边电压为零的情况下,电⼦对能够以隧道效应穿过绝缘层,产⽣直流超导电流,此现象叫直流约瑟夫逊效应(d.c. Josephson effect)。
超导隧道结这种能在直流电压作⽤下,产⽣超导交流电流,从⽽能辐射电磁波的特性,称为交流约瑟夫逊效应。
注:把右侧正常⾦属改成超导体迈斯纳效应:处于超导状态时,超导体内部磁感强度为零。
这种现象称为迈斯纳效应超晶格:超晶格材料是由两种或两种以上性质不同的薄膜相互交替⽣长并⽽形成的多层结构的晶体,在这种超晶格材料中,由于⼈们可以任意改变薄膜的厚度,控制它的周期长度。
⼀般来说,超晶格材料的周期长度⽐各薄膜单晶的晶格常数⼤⼏倍或更长,因⽽取名“超晶格”。
组分超晶格:超晶格材料的⼀个重复单元由两种不同材料组成,其电⼦亲和势、禁带宽度均不相同。
掺杂超晶格:若在同⼀半导体材料中,⽤交替改变掺杂类型的⽅法形成的超晶格称为掺杂超晶格。
应变超晶格:当两种不同材料构成超晶格时,若两种材料晶格常数相差较⼤时,会在界⾯处产⽣缺陷,得不到好的超晶格材料。
但是,当多层薄膜厚度⼗分薄时,晶体⽣长时会产⽣很少的缺陷,即是在弹性形变限度内,晶格本⾝的应变使缺陷消除,可制备好的超晶格材料--应变超晶格材料压电效应:当对某些晶体在某些特定⽅向上加⼒时,在施⼒⽅向的垂直平⾯上出现正、负束缚电荷,这种现象称为压电效应。
电子元器件知识大全,一文了解所有基本元器件!作为一名专业的电子元器件采购和销售,元器件有些基本知识是必须要懂的,这篇文章为大家整理了常见的电子元器件的知识,一文就可以了解所有哦!一、电阻器※电阻:导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。
※电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻)①主称②材料③分类④序号※电阻器的分类:①线绕电阻器②薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器③实心电阻器④敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
※电阻器阻值标示方法:1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。
2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。
符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。
表示允许误差的文字符号文字符号:DFGJKM,允许偏差分别为:±0.5%、±1%、±2%、±5%、±10%、±20%。
3、数码法:在电阻器上用三位数码表示标称值的标志方法。
数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。
偏差通常采用文字符号表示。
4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。
国外电阻大部分采用色标法。
黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20%当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。
当电阻为五环时,最後一环与前面四环距离较大。
电子功能材料与元器件习题答案第一章作业1.形状记忆合金为什么具有形状记忆的功能?答:马氏体相变过程如右图。
将形状记忆合金从高温母相(a)冷却,在低于室温附近的某一温度时,母相(a)变为马氏体相(b),这时的马氏体是由晶体结构相同,结晶方向不同的复数同系晶体构成,同母相相比,各同系晶体都发生了微小变形,但形成同系晶体时避免相互之间形变,从而保证在外形上没有改变。
马氏体相中的A面和B面在足够小的力下即能移位,所以马氏体相材料柔软,易变形,在外力作用下,马氏体向着外力择优的方向变形为变形马氏体相(c)。
此材料在加温时,又能返回母相(a),从而恢复形状,马氏体相(b)在温度高于一定程度逆相变点Af时也能返回高温母相。
一般来说,高温母相只有温度冷却到马氏体相变温度Ms以下时,才开始向马氏体相转变,但在外力作用下,即使温度高于逆相变点(Af),也能形成马氏体相,但此时仅能形成择优方向的变形马氏体,由于在温度高于(Af)时,马氏体相能量不稳定,除去电荷后立即能恢复到母相(a)。
综上可知,形状记忆合金具有形状记忆功能。
2.分析说明温度变化对高纯的Cu,Si及(Cu-Al-Ti-Ni)形状记忆合金电阻率(ρ)的影响1)Cu(金属):温度升高散射作用增大,电阻率(ρ)升高;温度下降散射作用减小,电阻率(ρ)下降;2)Si(半导体):温度升高晶格散射加剧会使μn减小,但激发产生的载流子增多,使ρ减小占优势,从而使宏观电阻率ρ减小,使Si呈现负温度特性。
3)(Cu-Al-Ti-Ni)形状记忆合金:①.母相立方晶体,晶格畸变小,散射作用弱,ρ小,马氏体相为斜方晶体,晶格畸变大,散射作用大,ρ大。
②相变过程中,混合相看哪相比例大。
③温度升高,散射作用大,ρ增大;温度下降,散射作用小,ρ减小;④实线(降温过程):母相(高温)→ Ms: T减小,ρ减小;Ms → M f:立方→斜方变化,T减小,ρ增大;M f→ 马氏体:T减小,ρ减小虚线(升温过程):马氏体→As: T升高,ρ增大。
常用电子元器件手册[精华]常用电子元器件手册f95常用电子元器件手册一、电容1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。
电容是由两片金属膜紧靠,中间用绝缘材料隔开组成的元件。
电容的特性主要是隔直流通交流。
电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。
容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。
电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。
2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。
其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、电容容量误差表符号 F G J K L M允许误差 ?1% ?2% ?5% ?10% ?15% ?20%如:一瓷片电容为104J表示容量为0. 1 uF、误差为?5%。
二、电阻电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。
电阻在电路中的主要作用为分流、限流、分压、偏置等。
1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。
换算方法是: 1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。
a、数标法主要用于贴片等小体积的电路,如:472 表示47×100Ω(即4.7K); 104则表示100Kb、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色 / x0.01 ?10金色 / x0.1 ?5黑色 0 +0 /棕色 1 x10 ?1红色 2 x100 ?2橙色 3 x1000 /黄色 4 x10000 /绿色 5 x100000 ?0.5蓝色 6 x1000000 ?0.2紫色 7 x10000000 ?0.1灰色 8 x100000000 /白色 9 x1000000000 /三、晶体二极管晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。
元器件物料名称标准化描述元器件种类:1 电阻1.1电阻品名构成:例如1:插件电阻器品名构成R T 1 4—1/4W —10KΩ—J①②③④额定功率精度电阻类别标称阻值例如2:片式电阻器品名构成RI —0805 —1/8W —100Ω—J电阻类别尺寸功率标称阻值精度1.2电阻类别:四局部组成〔不适合敏感电阻〕。
①主称:用字母R表示电阻。
②材料或功能:用字母表示,表示电阻体用什么材料或具有什么功能,T-碳膜、H-合成碳膜、J-金属膜、S-有机实心、N-无机实心、Y-金属氧化膜、I-片式、X-绕线③产品的主要特征:一般用一个数字或一个字母来表示。
1-一般、2-一般、3-超高频、4-高阻、5-高温、7-精密、8-高压、9-格外、G-功率型注:如产品的主要特征为9-格外性时,那么须在备注栏中具体说明其格外性。
★④序号:一般用数字来表示。
3表示1/6W,4表示1/4W,5表示1/2W,6表示1W,7表示2W。
1.3标称阻值:电阻器上面所标示的阻值。
用数字+电阻单位符号〔Ω、KΩ、MΩ〕表示,1 MΩ=103 KΩ=106Ω,如1.5Ω、3.3KΩ等。
1.4额定功率:用分数或整数标注,如1/4W 、2W等。
1.5封装:只在片式电阻中标注。
2 电容2.1电容器品名构成例如1:插件电解电容品名构成C D 1 1 0 — 16V — 1000UF — M — 5mm — 10*20mm①②③④⑤额定电压精度外形尺寸(直径*高度)产品类别标称容值脚间距例如2: 贴片电解电容品名构成CD50 — 50V — 0.1UF — M — 6*6.3mm产品类别标称容值外形尺寸(直径*高度)额定电压精度例如3:贴片瓷片电容的品名构成:CC41 — 0805 — 50V — 0.1UF — K额定电压精度产品类别封装标称容值例如4:安规电容品名构成CBB62 — 250V — X2 — 0.47UF — J — 25mm — 30*16*22mm额定电压标称容值脚间距安规电容器平安等级精度外形尺寸(长*宽*高) 例如5:薄膜电容品名构成CBB21 — 400V — 0.01UF — K — 7.5mm — 11*6*10mm额定电压精度外形尺寸(长*宽*高) 薄膜电容器标称容值脚间距例如6:贴片钽电容、插件钽电容及插件瓷片电容品名构成CA42— 35V — 0.1UF — K — 2.5mm — 4*7mm额定电压精度外形尺寸(直径*高度)钽电容器标称容值脚间距2.2 电容类别:由四局部组成〔不适合压敏、可变、真空电容器〕。