四种填料泛点气速计算比较
- 格式:doc
- 大小:337.50 KB
- 文档页数:2
第四章 填料精馏塔的工艺计算4.1 低压塔塔径、泛点气速、空塔气速、填料高度及压降计算由第一章PROII 模拟出的说明书可以得到数据表4.1塔顶蒸汽量G 2 塔中蒸汽量G 14 塔中蒸汽量G 15 塔底蒸汽量G 27 4368Kg/HR 4383Kg/HR 4445Kg/HR 4886Kg/HR 塔顶液体量L 1 塔中液体量L 13 塔中液体量L 14 塔底液体量L 26 3140Kg/HR 3155Kg/HR 7784Kg/HR 8224Kg/HR 汽相密度ρG2 汽相密度ρG14汽相密度ρG15汽相密度ρG272.874369Kg/m 33.03973Kg/m 33.06215Kg/m 33.34082Kg/m 3液相密度ρL1 液想密度ρL13液相密度ρL14液相密度ρL26816.676Kg/m 3 796.028Kg/m 3793.248Kg/m 3777.496Kg/m 3汽相粘度μG2 汽相粘度μG14汽相粘度μG15汽相粘度μG278.9907E-06Pa ·s 9.1563E-06Pa ·s9.1528E-06Pa ·s9.0660E-06Pa ·s液相粘度μL1液想粘度μL13液相粘度μL14液相粘度μL263.1054E-04Pa ·s 2.6658E-04Pa ·s 2.6165E-04Pa ·s 2.2445E-04Pa ·s根据表4.1求平均值可得下表4.2表4.2低压塔精馏段 提馏段 液体量L Kg/HR 3147.5 8004 液相密度ρ Kg/m 3 806.352785.372 液相粘度μ Pa ·s 2.8856 E-04 2.4305 E-04 蒸汽量G Kg/HR 4375.5 4665.5 汽相密度ρ Kg/m 3 2.9570453.2014854.1.1 塔经的计算L G GL FP ρρ=式中:L ——塔内液相流率,Kg/h ; G ——塔内气相流率,Kg/h ; ρG ——塔内气相密度,Kg/m 3; ρL ——塔内液体密度,Kg/m 3。
吸收与解吸实验一、实验目的及任务:1、熟悉填料塔的构造与操作。
2、观察填料塔流体力学状况,测定压降与气速的关系曲线。
3、掌握总传质系数K x a的测定方法并分析影响因素。
4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
二、基本原理:本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。
1、填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa线)。
当有喷淋量时,在低气速下(c点以前)压降也正比于气速的 1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。
随气速的增加,出现载点(图图1 填料层压降–空1中c点),持液量开始增大,压降气速线向上弯,斜率变陡(图中cd到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。
2、传质实验:填料塔与板式塔气液两相接触情况不同。
在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。
本实验是对富氧水进行解吸。
由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。
整理得到相应的传质速率方式为:m p x A x V a K G ∆∙∙=m p A x x V G a K ∆∙=其中 22112211ln )()(e e e e m x x x x x x x x x -----=∆()21x x L G A -= Ω∙=Z V p相关的填料层高度的基本计算式为:OL OL x x e x N H xx dx a K L Z ∙=-Ω∙=⎰12 即 OL OL N Z H /=其中 m x x e OL x x x x x dx N ∆-=-=⎰2112 , Ω∙=a K L H x OL式中:G A —单位时间内氧的解吸量[Kmol/h] K x a —总体积传质系数[Kmol/m 3•h •Δx]V P —填料层体积[m 3]Δx m —液相对数平均浓度差x 1 —液相进塔时的摩尔分率(塔顶)x e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶) x 2 —液相出塔的摩尔分率(塔底)x e2 —与进塔气相y2平衡的液相摩尔分率(塔底)Z—填料层高度[m]Ω—塔截面积[m2]L—解吸液流量[Kmol/h]H OL—以液相为推动力的传质单元高度N OL—以液相为推动力的传质单元数由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即K x=k x, 由于属液膜控制过程,所以要提高总传质系数K x a,应增大液相的湍动程度。
填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段塔径的计算1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~贝恩(Bain )—霍根(Hougen )关联式 ,即:2213lg V F L L u a gρμερ⎡⎤⎛⎫⎛⎫⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 1418V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ (3-1) 即:112480.23100 1.18363202.59 1.1836lg[()1]0.0942 1.759.810.917998.24734.4998.2Fu ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以:2F u /(100/3)()=UF=3.974574742m/s其中:f u ——泛点气速,m/s;g ——重力加速度,9.81m/s 2 23t m /m α--填料总比表面积,33m /m ε--填料层空隙率33V 998.2/1.1836kg /m l kg m ρρ==液相密度。
气相密度W L =㎏/h W V =7056.6kg/h A=; K=;取u= F u =2.78220m/s0.7631D === (3-2)圆整塔径后 D=0.8m 1. 泛点速率校核:260003.31740.7850.83600u ==⨯⨯ m/s3.31740.83463.9746F u u ==则Fuu 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核:(1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。
(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。
对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ⋅为。
()32min min 0.081008/w t U L m m h α==⨯=⋅ (3-3)225358.895710.6858min 0.75998.20.7850.8L L w U D ρ===>=⨯⨯⨯⨯ (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。
填料塔液泛速度计算公式
流体塔是将储罐里的液体提升到高处或将高处的液体降落到较低处的一种装置。
它由支承桶、截流板、填料塔、支撑框架、液体流量调节器等组成。
填料塔的优势在于能以较低的能量消耗实现流量的调节,对多种液体介质进行混合、沉淀、过滤、干燥和蒸馏等工艺作业。
实际生产中,对填料塔的液体流量的控制是一项重要的任务。
若不控制好液体的流速,可能会造成安全事故,甚至可能造成严重的损害。
在实际应用中,可以使用填料塔液体流量计算公式来对流量进行精确控制。
填料塔液体流量计算公式如下:Q=P•S,其中,Q表示流速,P表示压差,S表示液体流量系数。
压差可以通过取水位运算获得,而液体流量系数则要按照水柱塔、填料塔等不同装置的不同设计参数计算而定。
例如,当以水为液体介质的填料塔要进行流量计算时,根据填料塔液体流量计算公式,若压差为3.5mH2O,液体流量系数为1.2,则Q=P•S=3.5•1.2=4.2m/s。
从以上可以看出,利用填料塔液体流量计算公式来计算流速,可以较为准确地取得液体流速,从而进行实时精确控制液体流量,确保生产安全及效率。
GBL-T5102丝网波纹填料塔内件设计说明书2.1设计方案的确定根据用户要求,本设计采用BX(500)丝网波纹填料塔进行分离。
BX(500)的相关参数见第4节。
2.2水力性能的计算2.2.1填料塔上段(1)喷淋密度322484543.0168/3.1410431.4S L m m h S L⨯===⨯⨯(2)泛点气速118420.213lg ()()()F l l v A K l g v l w u a w νρρμρρε⎡⎤=-⎢⎥⎦⎢⎣112840.23403353785000.3044lg ()()0.30 1.759.811024.50.90.30440.451042.5()F u ⎡⎤=-⎢⎦⎢⎣⨯ u F =5.44m/s(3)空塔气速3.62/u m s === (4) 液泛率3.6266.5%5.44F uu == (5)持液量质量 m=4033×0.042=169.386Kg体积3169.3960.162481042.5V m == 填料体积2'34.154224V H m D π== 持液量 V/V ’=0.16248/4.15422=0.039112 m 3/ m 3(6)压降△P=2.7×5×10=135Pa(7)操作弹性由所选液体分布器:308个小孔直径为2mm ,布液管直径为20mm ,分配管及液位管直径130mm当分配管内液流速最大0.3m/s 时,求得最大允许流量2max 1042.5360014936.250.3Kg/h 40.13Q π⨯==⨯⨯⨯ 而填料允许最小喷淋密度为1 m 3/(m 2h)时2min 1042.536001604.761Kg/h 4 1.4Q π⨯⨯==⨯⨯液相负荷上限 4845×1.2=5814 Kg/h <Qmax液相负荷下限 4845×0.5=2422.5 Kg/h >Qmin操作弹性为 14936.75/1604.76=9.3所以设计合理。
空塔气速的计算1、先确定液泛气速=C×[(ρL-ρG)/ρG]0.5(m/s)(0.5为上标)C:气体负荷因子C20/C=(20/σ)0.2C20—表面张力为20mN/m时的C值,可查表得到。
σ—物系的液体表面张力,据物料的性质可得,mN/mρL、ρG—气相、液相的密度2、确定空塔气速u—一般取(0.6-0.8)uf填料塔4.1.3 填料塔工艺尺寸的计算填料塔工艺尺寸的计算包括塔径的计算、填料层高度的计算及分段等。
4.1.3.1塔径的计算填料塔直径仍采用式4-1计算,即(4-1)式中气体体积流量Vs由设计任务给定。
由上式可见,计算塔径的核心问题是确定空塔气速u。
(1) 空塔气速的确定①泛点气速法泛点气速是填料塔操作气速的上限,填料塔的操作空塔气速必须小于泛点气速,操作空塔气速与泛点气速之比称为泛点率。
对于散装填料,其泛点率的经验值为u/uF=0.5~0.85对于规整填料,其泛点率的经验值为u/uF=0.6~0.95泛点率的选择主要考虑填料塔的操作压力和物系的发泡程度两方面的因素。
设计中,对于加压操作的塔,应取较高的泛点率;对于减压操作的塔,应取较低的泛点率;对易起泡沫的物系,泛点率应取低限值;而无泡沫的物系,可取较高的泛点率。
泛点气速可用经验方程式计算,亦可用关联图求取。
a .贝恩(Bain)—霍根(Hougen)关联式填料的泛点气速可由贝恩—霍根关联式计算,即(4-2)式中uF——泛点气速,m/sg——重力加速度,9.81 m/s2 ;at——填料总比表面积,m2/m3;ε——填料层空隙率,m3/m3;ρV、ρL——气相、液相密度,kg/m3;μL——液体粘度,mPa·s;wL、wV——液相、气相质量流量,kg/h;A、K——关联常数。
常数A和K与填料的形状及材质有关,不同类型填料的A、K值列于表4-3中。
由式4-2计算泛点气速,误差在15%以内。
表4-3 式3-34中的A、K值散装填料类型 A K规整填料类型AK塑料鲍尔环0.09421.75金属丝网波纹填料0.301.75金属鲍尔环0.11.75塑料丝网波纹填料0.42011.75塑料阶梯环0.2041.75金属网孔波纹填料0.1551.47金属阶梯环0.1061.75金属孔板波纹填料0.2911.75瓷矩鞍0.1761.75塑料孔板波纹填料0.2911.563金属环矩鞍0.062251.75b.埃克特(Eckert)通用关联图散装填料的泛点气速可用埃克特关联图计算,如图4-5所示。