2)非热熔性
最重要的特征。激光在极短的时间和极小的空间内 与物质相互作用,作用区域内的温度在瞬间内急剧 上升,并以等离子体向外喷发的形式得到去除。严 格避免了热熔化的存在,大大减弱和消除了传统加 工中热效应带来的诸多负面影响。
3)加工过程的准确性
每一个激光脉冲与物质相互作用的持续期内避免了 热扩散的存在,在根本上消除了类似于长脉冲加工过 程中的熔融区、热影响区、冲击波等多种效应对周 围材料造成的影响和热损伤,将加工过程所涉及的 空间范围大大缩小,从而提高了激光加工的准确程 度,即运用飞秒加工决不会“伤及无辜”。
长脉冲激光加工过程
飞秒脉冲激光加工过程
4)加工尺寸的亚微米特性和3D空间分辨性 飞秒加工可以突破光束衍射极限的限制,实现尺寸
小于波长的亚微米或纳米操作;
只有在材料的聚焦点才能获得较高的功率密度,从 而使得飞秒加工过程具有严格的空间定位选择能力。
5)加工能量的低耗性
脉冲持续时间非常短,能量在时间上高度集中例如,用 10 fs脉冲宽度的激光,0.3 mJ能量就可以在直径为2Lm 的焦点达到1018W/cm2的峰值强度,而用脉宽宽度为 10 ns的长脉冲激光,则要300 J的能量才能达到同样的 峰值强度。因此飞秒激光加工所需的脉冲能量阈值 一般为毫焦耳或微焦耳量级,较传统激光加工消耗的 光能量大大降低。
得非常脆弱,传统的机械切割技术已不太适用,成熟的化 学或等离子刻蚀对加工形状和结构的选择有限定,长脉冲 激光也很难实现对硅的加工。飞秒激光以其独特的除热和 消机械应力的加工特性给硅材料的切割等处理技术带来了 新的希望。
2003年加拿大科学家M.Meunier 等人采用光谱物理公司生产的重 复率为1KHz的钛宝石再生放大系 统,将输出波760~820nm 能量约 1mJ持续时间小于120fs的脉冲激 光对厚度仅为50um的硅晶片实现 了高精度切割。如图右。