触摸屏的主要类型
- 格式:doc
- 大小:58.51 KB
- 文档页数:9
触摸屏解密方法触摸屏是一种广泛应用于交互式电子设备上的输入技术,例如智能手机、平板电脑、电子游戏等等。
用户使用手指或者特殊笔来触摸屏幕并触发相应的操作。
本文将为您介绍十条关于触摸屏解密方法,并展开详细描述。
一、触摸屏的类型触摸屏主要有四种类型:电阻式、电容式、表面声波式和光学式。
其中电阻式和电容式是最常见的,电阻式比较老旧但比较耐用,适用于在恶劣环境下使用;而电容式则更加灵敏,适用于大部分手持设备上。
二、触摸屏的使用注意事项使用触摸屏需要注意手指应该干净、干燥、温暖,同时要轻触屏幕不要用力按压,避免损坏设备。
三、解决屏幕偏移问题在使用触摸屏时,有时候会出现屏幕偏移的问题。
此时可以尝试在设备设置中进行校准,或者在安卓系统中通过打开开发者选项,进行指针位置校准。
四、解决触摸屏灵敏度问题有时候触摸屏灵敏度过高或者过低,导致使用不便。
此时可以在设备设置中调整灵敏度,或者进入开发者选项进行调整。
五、解决触摸屏失灵问题如果触摸屏失灵了,可以尝试重新启动设备、插拔电源或者检查屏幕是否有损坏等方法。
六、解决触摸屏反应慢问题有时候触摸屏反应慢,需要在设备设置中进行调整或者更新系统软件。
设备内存过低也会影响触摸屏反应速度,此时可以手动清理内存。
七、使用专用触摸笔对于一些工作需要精细操作的场合,可以使用专用触摸笔,提升操作精度和舒适度。
八、清洁屏幕经常清洁触摸屏可以保持其敏锐度和长期使用寿命。
使用干净柔软的布擦拭即可,注意不要使用酒精或其它化学物品。
九、加装保护膜在屏幕上加装保护膜可以起到保护屏幕,减少划痕和损坏的作用,同时保持屏幕敏锐度不受影响。
十、调整触控模式在特定场合下,可以在设备设置中调整触控模式,例如手套模式、手写模式等,以适应不同的操作场合。
以上就是十条关于触摸屏解密方法的详细描述。
在日常使用触摸屏设备中,我们需要注意保养和调整,以保持其良好的使用效果和寿命。
触摸屏技术的原理及应用一、概述1. 触摸屏技术的发展历程触摸屏技术,作为一种直观、便捷的人机交互方式,已逐渐渗透到我们生活的各个角落。
其发展历程可谓是一部科技创新的史诗,从最初的电阻式触摸屏到现代的电容式、光学式以及声波式触摸屏,每一步的进展都极大地推动了人机交互方式的进步。
早在20世纪70年代,电阻式触摸屏就已出现。
这种触摸屏由两层导电材料组成,中间以隔离物隔开。
当用户触摸屏幕时,两层导电材料在触摸点处接触,形成电流,从而确定触摸位置。
电阻式触摸屏具有成本低、寿命长等优点,但触摸反应速度较慢,且不支持多点触控,限制了其在高端设备上的应用。
随着科技的进步,电容式触摸屏在20世纪90年代开始崭露头角。
电容式触摸屏通过在屏幕表面形成一个电场,当手指触摸屏幕时,会改变电场分布,从而确定触摸位置。
电容式触摸屏具有反应速度快、支持多点触控等优点,因此在智能手机、平板电脑等设备上得到了广泛应用。
进入21世纪,光学式触摸屏开始受到关注。
光学式触摸屏利用摄像头捕捉屏幕表面的光线变化,从而确定触摸位置。
这种触摸屏具有分辨率高、触摸体验好等优点,但由于其成本较高、易受环境光干扰等因素,目前在市场上的应用相对较少。
近年来,声波式触摸屏作为一种新型技术开始崭露头角。
这种触摸屏通过在屏幕表面产生声波,当手指触摸屏幕时,会改变声波的传播路径,从而确定触摸位置。
声波式触摸屏具有抗干扰能力强、使用寿命长等优点,未来有望在更多领域得到应用。
触摸屏技术的发展历程是一部不断创新、不断突破的历史。
从电阻式到电容式,再到光学式和声波式,每一种新技术的出现都为我们带来了更便捷、更高效的人机交互体验。
随着科技的不断发展,我们有理由相信,未来的触摸屏技术将会更加先进、更加普及,为我们的生活带来更多可能。
2. 触摸屏技术在现代生活中的重要性在现代生活中,触摸屏技术的重要性日益凸显。
随着智能手机、平板电脑、智能电视等设备的普及,触摸屏已经成为我们日常互动的主要界面。
触摸屏类型来源:Yesky产品库频道作者:宋世民责任编辑:宋世民发表时间:2010-10-29 16:58评论() 触控屏(Touch panel)又称为触控面板,是个可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。
技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。
目前手机触摸屏主要分为两类:电容触摸屏和电阻触摸屏。
简单来说,支持手写笔的是电阻触摸屏;不使用手写笔的为电容触摸屏。
电阻触摸屏电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。
很多LCD模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。
电阻式触摸屏基本上是薄膜加上玻璃的结构,薄膜和玻璃相邻的一面上均涂有ITO(纳米铟锡金属氧化物)涂层,ITO具有很好的导电性和透明性。
当触摸操作时,薄膜下层的ITO会接触到玻璃上层的ITO,经由感应器传出相应的电信号,经过转换电路送到处理器,通过运算转化为屏幕上的X、Y值,而完成点选的动作,并呈现在屏幕上。
电阻式触摸屏的优点是它的屏和控制系统都比较便宜,反应灵敏度也很好,而且不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,能适应各种恶劣的环境。
它可以用任何物体来触摸,稳定性能较好。
缺点是电阻触摸屏的外层薄膜容易被划伤导致触摸屏不可用,多层结构会导致很大的光损失,对于手持设备通常需要加大背光源来弥补透光性不好的问题,但这样也会增加电池的消耗。
电容触摸屏电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。
华为触摸屏的原理和应用1. 触摸屏的原理触摸屏是一种输入设备,它允许用户通过触摸屏幕来与计算机进行交互。
华为触摸屏的原理主要基于电容触摸和压电触摸两种技术。
1.1 电容触摸技术电容触摸屏利用玻璃或者塑料表面贴附的电容层来实现触摸输入,主要有以下两种类型:•电阻式电容触摸屏:通过感应人体带电时的电容变化,实现手指位置的检测。
它可以准确地检测到触摸点的坐标,但对于多点触摸的支持性较差。
•投影式电容触摸屏:使用电容屏幕背后的传感器来实现触摸输入。
它支持多点触控,提供更好的用户体验和操作效率。
1.2 压电触摸技术压电触摸屏利用压电材料的特性来实现触摸输入,主要有以下两种类型:•表面声波触摸屏:利用表面声波将机械压力转化为电信号,通过检测信号的变化来定位触摸点。
它可以实现高精度的触摸检测,并具有较好的耐久性。
•压力感应触摸屏:利用内部电流和电压的变化来感知触摸输入。
它对压力和面积的检测非常敏感,能够追踪触摸点的压力变化,常见于绘图板等需要细致操作的场景。
2. 触摸屏的应用华为触摸屏在各个领域都有广泛的应用,包括但不限于手机、平板电脑、智能手表等消费电子产品,以及工业控制、医疗设备等专业领域。
2.1 消费电子产品华为触摸屏在手机、平板电脑等消费电子产品中得到广泛应用。
触摸屏的高精度和快速响应时间,使得用户可以通过简单的手指操作进行各种操作,如滑动、点击、缩放等。
同时,华为还利用多点触摸技术,实现了更多的手势操作,提供更友好的用户体验。
2.2 工业控制华为触摸屏在工业控制领域的应用越来越广泛。
工业触摸屏可以与PLC或者其他控制器连接,实现对工业设备的监控和控制。
它具备耐磨、防水、防尘等特性,适应各种复杂的工业环境。
同时,触摸屏还可以通过编程实现定制化的界面设计,提升工业系统的用户友好性和操作效率。
2.3 医疗设备在医疗领域,华为触摸屏的应用也日益增多。
触摸屏的灵敏度和快速响应时间使得医生和护士可以通过触摸屏轻松输入病人信息、查看医疗记录、监控病人状态等。
触摸屏的基本原理及应用1 触摸屏原理和主要结构:触摸屏技术方便了人们对计算机的操作使用,是一种极有发展前途的交互式输入技术,触摸屏通常与显示器相结合,通过触摸屏上的传感元件(可以是电学的,光学的,声学的)来感应出触摸物在触摸屏上或显示器上的位置,从而达到无需键盘,鼠标即可直观地对设备或机器进行信息输入或操作的目的。
触摸屏根据不同的原理而制作的触摸屏可分为以下几类:1.1电阻触摸屏电阻触摸屏由上下两片ITO相向组成一个盒,盒中间有很小的间隔点将两片基板隔开,上板ITO是由很薄的PET ITO薄膜或很薄的ITO 基板构成,当触摸其上板时形成其变形,形成其电学上的变化,即可到触摸位置。
电阻式触摸屏又可分为数字式电阻式触摸屏和模拟式电阻触摸屏:数字式电阻触摸屏将上下板的ITO分为X及Y方向的电极条,当在某一个方向的电极上施加电压时,则在另一方向某条位置上电极可探测到的电压变化。
由于数字式电阻触摸屏是在一个方向输入信号,在另一个方向检测信号,理论上可以实现多点触摸的检测。
数字式电阻触摸屏最常见用于机器设备控制面板,自动售票机的人机输入界面。
其优点为:成本低,适合应用于低分辨率的场合。
单点控制IC成熟,商品化高。
其缺点为:耐用性不好(PET不够耐磨)光学透过率不高(有15%-20%的光损失)模拟式电阻触摸屏是由上下两面ITO相向组成盒,上下两面的ITO 分别在X及Y方向引出长条电极,在一个方向的电极上施加一个电压,用另一面的ITO检测其电压,所测得的电压与触摸点的位置有关。
模拟式电阻式触摸屏只能进行单点触摸,尤其适合用笔尖进行触摸,可进行书写输入。
由于测量值是模拟值,其精度可以很高,主要取决于ITO的线性度。
模拟式电阻式触摸屏应用范围为中小尺寸2"-26"其优点为:成本低,应用范围广。
控制IC成熟,商品化高。
其缺点为:耐用性不好(PET不够耐磨)光学透过率不高(有15%-20%的光损失)需校准,不能实现多点触摸1.2 电容式触摸屏电容式触摸屏分为表面电容式和投射电容式。
触摸屏行业市场分析报告目录核心观点3一、触摸屏概况4(一)触摸屏的概念4(二)触摸屏基本原理4(三)触摸屏主要种类5(四)触摸屏制造工艺6(五)触摸屏核心技术7(六)触摸屏应用领域7(七)触摸屏发展历程8二、全球触摸屏产业发展状况9(一)市场容量与增长趋势9(二)细分行业市场表现11(三)技术发展最新进展12(四)全球触摸屏制造地区分布12(五)全球触摸屏不同尺寸出货量12(五)全球主要厂商与市场份额13三、中国触摸屏产业发展状况15(一)国触摸屏产业发展现状15(二)国涉足触摸屏产业厂商15四、触摸屏上游原材料供应状况17(一)触摸屏主要原材料构成17(二)ITO导电薄膜市场供应情况17(三)ITO导电玻璃市场供应情况17五、触摸屏下游市场需求分析19(一)触摸屏手机19(二)触摸屏电脑20(三)触摸屏MP421(四)触摸屏数码相机21(五)其他应用产品22六、触摸屏行业发展前景展望23(一)国家相关产业政策23(二)影响行业发展的因素23核心观点1.触摸屏是一种特殊的传感器,可以广泛应用于几乎所有需要人机对话的显示器,如手机、mp3、mp4、数码相机、游戏机、个人电子导航仪、家用电器、信息查询系统等。
2.触摸屏可分为四种:红外、电阻式、声表面波和电容式触摸屏。
不同通用类型的触摸屏各有优缺点,应用领域也有所不同。
3.触摸屏技术起源于美国,日本实现产业化,然后中国发展壮大。
目前,触摸屏制造中心开始从日本转移到中国大陆。
4.根据iSuppli发布的报告,2008年全球触摸屏模组出货量将达到3.41亿片,2013年将增至8.33亿片,年复合增长率为19.5%。
预计触摸屏模组的全球销售额将从2008年的34亿美元增长到2013年的64亿美元,年复合增长率为13.7%。
5.从子行业来看,电阻式触摸屏最为常见,占全球触摸屏出货量的91%,但销售比例仅为52%,未来市场份额还会下降;由于苹果iPhone的巨大成功,电容式触摸屏的销量大增。
触摸屏的主要类型优点和缺点触摸屏的主要类型:从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。
其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。
按照触摸屏的工作原理和传输信息的介质把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式,按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。
每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。
下面对上述的各种类型的触摸屏进行简要介绍一下:1、电阻式触摸屏(电阻式触摸屏工作原理图)这种触摸屏利用压力感应进行控制。
电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。
当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。
控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。
这就是电阻技术触摸屏的最基本的原理。
电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。
按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。
每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。
下面对上述的各种类型的触摸屏进行简要介绍一下:1、电阻式触摸屏(电阻式触摸屏工作原理图)这种触摸屏利用压力感应进行控制。
电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。
当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。
控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。
这就是电阻技术触摸屏的最基本的原理。
电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:??A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。
ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。
??B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。
镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。
1.1四线电阻屏四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。
总共需四根电缆。
特点:高解析度,高速传输反应。
表面硬度处理,减少擦伤、刮伤及防化学处理。
具有光面及雾面处理。
一次校正,稳定性高,永不漂移。
1.2五线电阻屏五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。
五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。
特点:解析度高,高速传输反应。
表面硬度高,减少擦伤、刮伤及防化学处理。
同点接触3000万次尚可使用。
导电玻璃为基材的介质。
一次校正,稳定性高,永不漂移。
五线电阻触摸屏有高价位和对环境要求高的缺点1. 3电阻屏的局限不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。
电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。
不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。
2.1电容技术触摸屏是利用人体的电流感应进行工作的。
电容式触摸屏是是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。
当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。
这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。
2.2电容触摸屏的缺陷电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。
电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。
电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。
我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。
因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。
电容屏的另一个缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。
电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。
例如:开机后显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大的物体搬移后回漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。
此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。
由于没有原点,电容屏的漂移是累积的,在工作现场也经常需要校准。
电容触摸屏最外面的矽土保护玻璃防刮擦性很好,但是怕指甲或硬物的敲击,敲出一个小洞就会伤及夹层ITO,不管是伤及夹层ITO还是安装运输过程中伤及内表面ITO层,电容屏就不能正常工作了。
3、红外线式触摸屏(红外线式触摸屏工作原理图)红外触摸屏是利用X、Y方向上密布的红外线矩阵来检测并定位用户的触摸。
红外触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。
用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。
任何触摸物体都可改变触点上的红外线而实现触摸屏操作。
早期观念上,红外触摸屏存在分辨率低、触摸方式受限制和易受环境干扰而误动作等技术上的局限,因而一度淡出过市场。
此后第二代红外屏部分解决了抗光干扰的问题,第三代和第四代在提升分辨率和稳定性能上亦有所改进,但都没有在关键指标或综合性能上有质的飞跃。
但是,了解触摸屏技术的人都知道,红外触摸屏不受电流、电压和静电干扰,适宜恶劣的环境条件,红外线技术是触摸屏产品最终的发展趋势。
采用声学和其它材料学技术的触屏都有其难以逾越的屏障,如单一传感器的受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。
红外线触摸屏只要真正实现了高稳定性能和高分辨率,必将替代其它技术产品而成为触摸屏市场主流。
过去的红外触摸屏的分辨率由框架中的红外对管数目决定,因此分辨率较低,市场上主要国内产品为32x32、40X32,另外还有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。
这些正是国外非红外触摸屏的国内代理商销售宣传的红外屏的弱点。
而最新的技术第五代红外屏的分辨率取决于红外对管数目、扫描频率以及差值算法,分辨率已经达到了1000X720,至于说红外屏在光照条件下不稳定,从第二代红外触摸屏开始,就已经较好的克服了抗光干扰这个弱点。
第五代红外线触摸屏是全新一代的智能技术产品,它实现了1000*720高分辨率、多层次自调节和自恢复的硬件适应能力和高度智能化的判别识别,可长时间在各种恶劣环境下任意使用。
并且可针对用户定制扩充功能,如网络控制、声感应、人体接近感应、用户软件加密保护、红外数据传输等。
原来媒体宣传的红外触摸屏另外一个主要缺点是抗暴性差,其实红外屏完全可以选用任何客户认为满意的防暴玻璃而不会增加太多的成本和影响使用性能,这是其他的触摸屏所无法效仿的。
4、表面声波触摸屏(表面声波触摸屏工作原理图)4.1 表面声波表面声波,超声波的一种,在介质(例如玻璃或金属等刚性材料)表面浅层传播的机械能量波。
通过楔形三角基座(根据表面波的波长严格设计),可以做到定向、小角度的表面声波能量发射。
表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,近年来在无损探伤、造影和退波器方向上应用发展很快,表面声波相关的理论研究、半导体材料、声导材料、检测技术等技术都已经相当成熟。
表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。
玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。
玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。
4.2 表面声波触摸屏工作原理以右下角的X-轴发射换能器为例:发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。
当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。
因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。
发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。
当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。
接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标控制器分析到接收信号的衰减并由缺口的位置判定X坐标。
之后Y轴同样的过程判定出触摸点的Y坐标。
除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。