金融工程 第七章 布莱克-舒尔斯期权定价公式的扩展
- 格式:ppt
- 大小:3.40 MB
- 文档页数:45
布莱克—舒尔斯期权定价模型期权定价是现代金融学中一项非常重要的内容,同时也是一个比较复杂、难度较大的问题。
目前关于期权定价主要有两种方法:(1)二项式模式;(2)布莱克—舒尔斯期权定价模型(B-S 模型)。
较为适用的是布莱克—舒尔斯期权定价模型。
布莱克—舒尔斯期权定价模型是美国经济学家布莱克—舒尔斯于1973年提出来的。
这是现代金融学金融衍生工具研究领域的一个重大突破,布莱克—舒尔斯因此获得了1997年诺贝尔经济学奖。
1、 基本原理:(模型建立的基础)期权的完全套期保值功能,即期权具备完全消除股票投资组合中市场风险的套期保值功能。
2、 假设条件:(1) 市场是无摩擦的:即不计佣金费用,无交易成本,没有卖空限制,可以根据市场情况经常地调整套期保值的比率,调整期权与股票的比率。
(2) 在期权到期前,股票不支付股利。
(3) 在期权到期前,无风险利率r 和股票收益的方差2σ保持不变。
(4) 股票价格变化是连续的,不会发生突然及大的波动。
3、 基本公式:在上述原理及假设条件的基础上,布莱克—舒尔斯提出了这样一个公式:TTr X S T d d TTr X S d d N Xe d N S C rT σσσσσ)5.0()/ln()5.0()/ln()()(20122012100-+=-=++=-=-其中:其中:0C 为期权价格;0S 为股票当前的价格;)(d N 为服从于标准正态分布的随机变量小于d 的概率;即:}{)1,0(,N Y d y P -<X 为协定价格;e 为2.71828;r 为无风险利率(以连续复利计算) t 为距离到期日所剩的时间,单位为年 σ为股票收益率的标准差。
在这个公式中,)(1d N 、)(2d N 代表期权到期是处于实值的概率,也就是能够执行给投资者带来实质性收益的概率。
如果假定1)()(21==d N d N ,也就是看涨期权极其有可能被执行。
公式的解释:期权价值=内在价值+时间价值期权到期前处于三种状态,虚值—平价—实值时间价值虚值 协定 实值 价格(平价) 从这个图形可以看出,随着股价的进一步升高,期权到期被执行的可能性越来越大,相应地,期权的内在价值越来越大,其价格波动的可能性即时间价值越来越小。
第七章:布莱克——舒尔期期权定价公式的扩展教学目标:1、了解布莱克——舒尔期期权定价模型的缺陷;2、理解波动率微笑和波动率期限结构;3、掌握GARCH模型;4、熟悉崩盘模型。
教学重点:1、波动率微笑和波动率期限结构;2、GARCH模型。
教学难点:1、GARCH模型;2、崩盘模型。
课时建议:3课时教学主要内容:7.0引言:布莱克-舒尔斯期权定价公式是在一系列假定条件下推导获得的,在现实生活中,这些假设条件往往是无法成立的。
本章的主要目的,就是从多个方面逐一放松这些假设,对布莱克-舒尔斯期权定价公式进行扩展。
7.1布莱克——舒尔期期权定价模型的缺陷无论在学术上还是商业上,布莱克-舒尔斯期权定价模型都是非常成功的。
但是,理论模型和现实生活终究会有差异,对于大多数理论模型来说,模型假设的非现实性往往成为模型的主要缺陷所在,BS模型也不例外:1.成本的假设;2.交易波动率为常数的假设;3.不确定的参数;4.资产价格的连续变动7.2交易成本BS期权定价公式的一个重要假设就是没有交易成本,在此基础上,BS公式的分析过程要求对股票和期权组合进行连续的调整再平衡,以实现无风险定价策略。
在实际生活中,这个假设显然是难以成立的。
即使交易成本很低,连续的交易也将导致很高的交易费用;即使只进行离散的保值调整,但只要进行交易,投资者就必须承担或多或少的交易成本。
一般来说,交易成本在以下两种情形下是尤其重要的:1.在一个交易费用很高的市场中进行保值操作,比如股票市和新兴证券市场。
2.组合头寸经常需要进行调整。
其中包括处于平价状态附近的期权和即将到期的期权,这样的期权的套期比率对标的资产价格的变动最为敏感,从而导致调整频率较高。
交易成本的存在,会影响我们进行套期保值的次数和期权价格:交易成本一方面会使得调整次数受到限制,使基于连续组合调整的BS模定价成为一种近似;另一方面,交易成本也直接影响到期权价格本身型,使得合理的期权价格成为一个区间而不是单个数值,同时许多理论上值得进行的策略,一旦考虑交易成本之后,就变得不可行。