数字信号处理综合设计实验指导书
- 格式:doc
- 大小:43.00 KB
- 文档页数:3
数字信号处理实验电子信息科学与技术实验室2007年7月目录实验一离散时间信号的时域表示 (3)实验二离散信号的卷积和 (6)实验三离散傅立叶变换及其特性验证 (8)实验四信号处理中FFT的应用 (11)实验五离散系统的Z域分析 (15)实验六无限冲激响应(IIR)数字滤波器的三种结构 (19)实验七冲激响应不变法IIR数字滤波器设计 (23)实验八双线性变换法IIR数字滤波器设计 (26)实验一 离散时间信号的时域表示一、实验目的1、熟悉Matlab 命令,掌握离散时间信号-序列的时域表示方法。
2、掌握用Matlab 描绘二维图像的方法。
3、掌握用Matlab 对序列进行基本的运算和时域变换的方法。
二、实验原理与计算方法(一)序列的表示方法 序列的表示方法有列举法、解析法和图形法,相应的用Matlab 也可以有这样几种表示方法,分别介绍如下:1、列举法 在Matlab 中,用一个列向量来表示一个有限长序列,由于一个列向量并不包含位置信息,因此需要用表示位置的n 和表示量值的x 两个向量来表示任意一个序列,如:例1.1:>>n=[-3,-2,-1,0,1,2,3,4]; >>x=[2,1,-1,0,1,4,3,7];如果不对向量的位置进行定义,则Matlab 默认该序列的起始位置为n=0。
由于内存有限,Matlab 不能表示一个无限序列。
2、解析法对于有解析表达式的确定信号,首先定义序列的范围即n 的值,然后直接写出该序列的表达式,如:例1.2:实现实指数序列nn x )9.0()(=,100≤≤n 的Matlab 程序为:>>n=[0:10]; >>x=(0.9).^n;例 1.3:实现正余弦序列)5.0sin(2)31.0cos(3)(n n n x πππ++=,155≤≤n 的Matlab 程序为:>>n=[5:15];>>x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n); 3、图形法在Matlab 中用图形法表示一个序列,是在前两种表示方法的基础上将序列的各个量值描绘出来,即首先对序列进行定义,然后用相应的画图语句画图,如:例1.4:绘制在例1.1中用列举法表示的序列的图形,则在向量定义之后加如下相应的绘图语句:>>stem(n,x);此时得到的图形的横坐标范围由向量n 的值决定,为-3到4,纵坐标的范围由向量x 的值决定,为-1到7。
数字信号处理实验指导书实验一离散时间系统及离散卷积一、实验目的(1)熟悉MA TLAB软件的使用方法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利用MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
(4)熟悉离散卷积的概念,并利用MATLAB计算离散卷积。
二、实验内容1、离散时间系统的单位脉冲响应(1)选择一个离散时间系统;(2)用笔进行差分方程的递推计算;(3)编制差分方程的递推计算程序;(4)在计算机上实现递推运算;(5)将程序计算结果与笔算的计算结果进行比较,验证程序运行的正确性;2、离散系统的幅频、相频的分析方法(1)给定一个系统的差分方程或单位取样响应;(2)用笔计算几个特殊的幅频、相频的值,画出示意曲线图;(3)编制离散系统的幅频、相频的分析程序;(4)在计算机上进行离散系统的幅频、相频特性计算,并画出曲线;(5)通过比较,验证程序的正确性;3、离散卷积的计算(1)选择两个有限长序列,用笔计算其线性卷积;(2)编制有限长序列线性卷积程序;(3)利用计算程序对(1)选择的有限长序列进行卷积运算;(4)比较结果验证程序的正确性。
三、实验要求a)自编并调试实验程序,并且,给实验程序加注释;b)按照实验内容完成笔算结果;c)验证计算程序的正确性,记录实验结果。
d) 至少要求一个除参考实例以外的实验结果,在实验报告中,要描述清楚实验结果对应的系统,并对实验结果进行解释说明。
实验二 离散傅立叶变换与快速傅立叶变换一、实验目的1、加深理解离散傅立叶变换及快速傅立叶变换概念;2、学会应用FFT 对典型信号进行频谱分析的方法;3、研究如何利用FFT 程序分析确定性时间连续信号;4、熟悉应用FFT 实现两个序列的线性卷积的方法。
二、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier 变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N 时,它的DFT 定义为()()[]()∑==-=10N n nk NWn x n x DFT k X 10-≤≤N k反变换为()()[]()∑==-=-101N n nk N Wk X Nk X IDFT n x 10-≤≤N n有限长序列的DFT 是其Z 变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。
信号处理综合设计指导书一、实习的目的和意义DSP课程设计是对《数字信号处理》、《DSP原理及应用》等课程的较全面练习和训练,是实践教学中的一个重要环节。
通过本次信号处理综合设计,综合运用数字信号处理、DSP技术课程以及其他有关先修课程的理论和生产实际知识去分析和解决具体问题,并使所学知识得到进一步巩固、深化和发展。
初步培养学生对工程设计的独立工作能力,掌握电子系统设计的一般方法。
同时,通过课程设计完成基本技能的训练,如查阅设计资料和手册、程序的设计、调试等,提高学生分析问题、解决问题的能力。
二、信号处理综合设计内容概述:在DSP实验板硬件平台上搭建一个实时的音频信号干扰抑制系统。
该系统包括接收从PC 机平台播放的有干扰的音频信号,经过模/数转换后送给DSP处理器,由DSP处理器完成原始信号的缓冲存储、频谱分析和滤波,再对滤波后的信号进行频谱分析和数/模转换,滤波后的信号通过耳机播放。
三、信号处理综合设计要求本综合设计通过DSP处理器控制TLV320AIC23采集音频信号(可以由上位机一个带有噪声的音源,也可以通过mic录带有噪声的声音),平台为ICETEK-VC5509-A 实验箱(或ICETEK 仿真器、ICETEK–VC5509-A系统板和相关连线及电源线)。
在CCS软件中分析音频信号的频谱图,使用Matlab设计相应的IIR数字滤波器(低通、带通或带阻等滤波器中的一种)并得到滤波器H(z)的系数,然后根据这些系数,编写DSP程序(C语言或汇编)对已采集信号进行处理,在CCS软件中得到处理后音频信号的频谱图,比较滤波前后信号的频谱图,最后将滤波后的声音信号输出至耳机,并通过声音的质量来判断滤波器的效果。
设计步骤包括:1、DSP与TLV320AIC23接口电路的原理图绘制;2、DSP控制TLV320AIC23的程序编写与调试;3、TLV320AIC23模拟量到数字信号的转换,实现声音的采集,查看并记录幅频图;4、使用Matlab对IIR滤波器的设计;5、编写IIR滤波处理的DSP程序,查看并记录处理后的信号幅频图6、用TLV320AIC23实现数字量到模拟量的转换,回放处理后的声音;7、按要求编写课程设计报告书,正确、完整的阐述设计和实验结果;8、在报告中绘制程序的流程图,并文字说明。
《数字信号处理》实验指导书通信教研室安阳工学院二零零九年三月第1章 系统响应及系统稳定性1.1 实验目的● 学会运用MATLAB 求解离散时间系统的零状态响应;● 学会运用MATLAB 求解离散时间系统的单位取样响应;● 学会运用MATLAB 求解离散时间系统的卷积和。
1.2 实验原理及实例分析1.2.1 离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1-1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。
MATLAB 中函数filter 可对式(13-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter 的语句格式为y=filter(b,a,x)其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。
【实例1-1】 已知某LTI 系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。
解:MATLAB 源程序为>>a=[3 -4 2];>>b=[1 2];>>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1-1所示。
1.2.2 离散时间系统的单位取样响应系统的单位取样响应定义为系统在)(n 激励下系统的零状态响应,用)(n h 表示。
实验一 离散时间信号分析一、实验目的1.掌握各种常用的序列,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。
4.掌握线性卷积软件实现的方法。
5.掌握计算机的使用方法和常用系统软件及应用软件的使用。
6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。
二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列来表示,其中代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。
离散时间信号可以是由模拟信号通过采样得到,例如对)(t x a 模拟信号进行等间隔采样,采样间隔为T ,得到一个{})(nT x a 有序的数字序列就是离散时间信号,简称序列。
2.常用序列常用序列有:单位脉冲序列(单位采样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。
4.序列的卷积运算∑∞∞-*=-=)()()()()(n h n x m n h m x n y上式的运算关系称为卷积运算,式中代表两个序列卷积运算。
两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。
其计算的过程包括以下4个步骤。
(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。
(2)移位:将)(m h -移位n ,得)(m n h -。
当n 为正数时,右移n 位;当n 为负数时,左移n 位。
(3)相乘:将)(m n h -和)(m x 的对应点值相乘。
(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。
《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。
实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。
实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。
4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。
5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。
(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。
《数字信号处理》实验指导书实验1 数字滤波器的设计实验序号:1 实验名称:数字滤波器的设计 适用专业:通信工程、电子信息工程 学 时 数:4学时一、实验目的1.掌握双线性变换法设计IIR 数字滤波器的具体设计方法及其原理和窗函数设计FIR 滤波器的设计原理与基本方法。
2.观察双线性变换的频域特性。
熟悉Butterworth 滤波器的频率特性。
3.了解各种不同窗函数对滤波器性能的影响。
4.熟悉Matlab 计算机编程。
二、实验原理1.用双线性变换法设计IIR 数字滤波器方法(1)设计思想:将模拟滤波器转换成数字滤波器的实质是,用一种从s 平面到z 平面的映射函数将Ha(s)转换成H(z)。
对这种映射函数的要求是:(1) 因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的。
(2)数字滤波器的频率响应模仿模拟滤波器的频响,s 平面的虚轴映射z 平面的单位圆,相应的频率之间成线性关系。
脉冲响应不变法和双线性变换法都满足如上要求。
s 平面与z 平面之间满足以下映射关系:1111--+-=zz ss 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换时一种非线性变换)/ω(tg 2=Ω,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
(2)以低通数字滤波器为例,将设计步骤归纳如下:·确定数字滤波器的性能指标:通带临界频率f p 、阻带临界频率f s ;通带内的最大衰减A p ;阻带内的最小衰减A s ;· 确定相应的数字角频率,ωp=2πfp ;ωs=2πfs ;·计算经过预畸的相应模拟低通原型的频率,)2/(ωtg =Ω;·根据Ωp 和Ωs 计算模拟低通原型滤波器的阶数N ,并求得低通原型的传递函数Ha(s); ·用上面的双线性变换公式代入Ha(s),求出所设计的传递函数H(z); ·分析滤波器特性,检查其指标是否满足要求。
实验一 采样率对信号频谱的影响一、实验目的1.理解采样定理; 2.掌握采样频率确定方法; 3.理解频谱的概念; 4.理解三种频率之间的关系。
二、实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k skT t t M )()(δ (1))()()(ˆt M t x t xa a = (2) 式中T s 为采样间隔。
因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。
显然)()()()()(ˆs k s ak s aa kT t kT xkT t t xt x-=-=∑∑∞-∞=∞-∞=δδ (3)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。
对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。
下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk ssakj j X T j X )(1)(ˆ (4)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。
只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。
根据式(4)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。
这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2hs T T ≤(5) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。
实验一 信号、系统及系统响应1、实验目的:(1)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2)熟悉时域离散系统的时域特性。
(3)利用卷积方法观察分析系统的时域特性。
(4)掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
2、实验仪器:PC 机一台 MATLAB 软件 3、实验原理:采样是连续信号数字处理的第一个关键环节。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示。
)()()(ˆt p t x t xa a = 其中)(ˆt xa 为)(t x a 的理想采样,)(t p 为周期冲激脉冲, 即 ∑∞-∞=-=n nT t t p )()(δ;由频域卷积定理,得)]([1)(ˆs a am j X Tj X Ω-Ω=Ω ※ 上式表明,)(ˆΩj X a为)(Ωj X a 的周期延拓,其延拓周期为采样角频率(T s /2π=Ω)。
采样前后的频谱示意图见课本。
只有满足采样定理时,才不会发生频率混叠失真。
在计算机上用高级语言计算)(ˆΩj X a 很不方便,下面给出用序列的傅里叶变换来计算)(ˆΩj X a的方法。
课本中(2.4.7)式∑∞-∞=-=r ajwr TT w j X T e X )]2([1)(π,表示序列的傅里叶变换)(jwe X 和模拟信号)(t x a 的傅里叶变换)(Ωj X a 之间的关系式。
与※式比较,可得T w jw a e X j X Ω==Ω|)()(ˆ,这说明两者之间只在频率度量上差一个常数因子T 。
实验过程中应注意这一差别。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jwe X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=1)()(N n n jw jw k ke n x eX其中 1,,1,02-==M k k Mw k ,π通常M 应取得大一些,以便观察谱的细节变化。
实验一:离散时间序列卷积和MATLAB实现实验学时:2实验类型:验证实验要求:必修(一)实验目的:学会用MATLAB对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。
(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-∙iikfif)(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a、f(k)= ∑∞-∞=-∙iikif)()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。
b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)= ∑∞-∞=-∙iikhif)()((三)实验内容:conv.m用来实现两个离散序列的线性卷积。
其调用格式是:y=conv(x,h)若x的长度为N,h的长度为M,则y的长度L=N+M-1。
题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。
要求用subplot和stem画出x(n),h(n),y(n)与n的离散序列图形。
题二:已知序列f1(k)=⎩⎨⎧≤≤其它0201k f2(k)=⎪⎪⎩⎪⎪⎨⎧===其它332211k k k调用conv()函数求上述两序列的卷积和题三:编写计算两离散序列卷积和f(k)=f1(k)*f2(k)的实用函数dconv().要求该程序在计算出卷积和f(k)的同时,还绘出序列f1(k),f2(k)和f(k)的时域波形图,并返回f(k)的非零样值点的对应向量。
function[f,k]=dconv(f1,f2,k1,k2)%f1(k),f2(k)及f(k)的对应序号向量分别为k1,k2和k 。
题四:试用MATLAB 计算如下所示序列f1(k)与f2(k)的卷积和f(k),绘出它们的时域波形,并说明序列f1(k)与f2(k)的时域宽度与序列f(k)的时域宽度的关系。
《数字信号处理》实验指导书实验序号:1 实验名称:利用FFT 进行谱分析和实现快速卷积 适用专业:通信工程、电子信息工程 学 时 数:4学时一、实验目的1.加深DFT 算法原理和基本性质的理解。
2.熟悉FFT 算法原理和FFT 子程序的应用。
3.学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。
4.加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。
5.掌握循环卷积和线性卷积两者之间的关系。
二、实验原理1.在工程技术的许多分支中,要掌握的基本内容之一就是正确理解时域和频域的关系。
对于数字系统来说,就是要精通离散傅立叶变换,因此离散傅立叶变换在数字信号处理中占有十分重要的地位。
在实际应用中,有限长序列有相当重要的地位,有限长序列的离散傅氏变换(DFT)的定义:[][]10)(1)()(10)()()(1010-≤≤==-≤≤==∑∑-=--=N n W k X N k X IDFT n x N k W n x n x DFT k X N k nk N N n nk N快速傅里叶变换(FFT )并不是一种新的变换,而是离散傅里叶变换(DFT )的一种快速算法。
用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N (即x(n)长度为N )有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
“数字信号处理”实验指导书(一)一、实验课程编码:105003 二、实验课程名称:数字信号处理三、实验项目名称: 应用MATLAB 分析离散信号频谱 四、实验目的掌握应用MATLAB 分析离散信号频谱的方法,即熟悉应用MATLAB 分析离散信号的函数。
五、主要设备安装有MATLAB 软件的电脑 六、实验内容编写MATLAB 程序,实现下面题目:1. 用快速卷积法计算下面两个序列的线性卷积。
)()4.0(s )(15n R n in n x =,)(9.0)(20n R n h n =2.已知序列[]()cos 0120n n N Nx n π⎧≤≤-⎪=⎨⎪⎩其它(1)计算该序列DTFT 的表达式()j X e ω,并画出N=10时的()j X e ω曲线; (2)编写MATLAB 程序,利用FFT 函数,计算N =10时,序列x [k ]的DTFT 在2m mNπω=的抽样值。
利用hold 函数,将抽样点画在()j X e ω的曲线上。
3.理解高密度频谱和高分辨率频谱的概念。
设)52.0cos()48.0(co )(n n s n x ππ+=(1) 取0≤n ≤9,求)(1k X(2) 将(1)中的)(x n 补零加长到0≤n ≤99,求)(2k X (3) 增加取样值的个数,取0≤n ≤99,求)(3k X4. 用DFT 对连续信号做谱分析。
设)50cos()100sin()200cos()(t t t t x a πππ++=,用DFT 分析)(t x a 的频谱结构,选择不同的截取长度Tp ,观察截断效应,试用加窗的方法减少谱间干扰。
选取的参数:(1) 频率s s f T Hz f /1 ,400==(2) 采样信号序列)()()(n w nT x n x a =,)(n w 是窗函数。
选取两种窗函数:矩形窗函数)()(n R n w N =和Hamming 窗,后者在程序中调用函数Hamming 产生宽度为N 的Hamming 窗函数向量。