知识点:高中化学反应热分析
- 格式:pdf
- 大小:354.27 KB
- 文档页数:4
化学高二反应热焓变知识点在高中化学中,我们经常会遇到有关反应热焓变的概念和计算。
反应热焓变是指在化学反应中,反应物与生成物之间的能量差异。
了解反应热焓变的概念和计算方法对于理解化学反应的热力学过程非常重要。
一、反应热焓变的定义反应热焓变是指在常压条件下,单位摩尔反应物与生成物之间能量的差异。
反应热焓变可以表示为ΔH。
当反应热焓变为正值时,表示反应是吸热反应,能量被系统吸收;当反应热焓变为负值时,表示反应是放热反应,能量被系统释放。
二、反应热焓变的计算方法1. 反应热焓变的计算方法主要有两种:通过实验测量和利用反应热焓变的标准生成焓值进行计算。
2. 实验测量法:通过实验测量反应物与生成物的温度变化,结合热容量等参数,可计算得到反应热焓变。
例如,利用反应热量计测量方法可以测定一定量反应物反应后的温度变化,结合恒温条件和热容量的知识,可以计算得到反应热焓变。
3. 利用标准生成焓值计算法:通过已知物质的标准生成焓值,可以根据反应平衡态的生成物与反应物的物质量之比,计算得到反应热焓变。
标准生成焓值是指在标准状态下,1摩尔物质生成的焓变化值。
利用标准生成焓值进行计算的常用公式为:ΔH =ΣnΔHf(生成物) - ΣmΔHf(反应物),其中Σn和Σm分别表示生成物和反应物的物质量之比。
4. 反应热焓变的计算方法还可以结合热力学第一定律,利用反应物与生成物的化学键能与键能的变化来计算反应热焓变。
三、常见反应热焓变的特点1. 反应热焓变与反应性质的关系:通常情况下,反应热焓变与反应物的物质结构和化学键能有关。
化学键能越高,反应热焓变越大,说明反应热生成较强的化学键。
2. 反应热焓变与反应速率的关系:通常情况下,反应热焓变的绝对值越大,反应速率越快。
反应热焓变越大,说明反应物到生成物的能量转化程度更高,反应速率更快。
3. 反应热焓变与反应方程式的关系:反应热焓变可以通过热化学方程式来表示。
在热化学方程式中,反应物的系数表示摩尔比,反应热焓变的绝对值可以根据反应热焓变的计算方法进行计算。
化学反应与热能辅导讲义一.焓变概念化学反应过程中所释放或吸收的能量,都可以用热量(或换算成相应的热量)来表述,叫做反应热,在恒压条件下又称为焓变。
1.符号:H V 单位:kJ /mol 或1 k J mol -⋅ 2.反应热描述的是化学反应前后的热量变化 3.反应热描述的是一定温度下的热量变化4.任何化学反应都有反应热,表现为吸热反应或者放热反应 二.反应热产生的原因旧健断裂(分子原子)吸收能量,新健形成(原子分子)释放能量若E (放出)>E (吸收)——释放能量;若E (放出)<E (吸收)——吸收能量 三.化学键与化学反应中的能量变化知识图谱错题回顾化学反应与热能知识精讲1.反应物的能量(1E )>生成物的能量(2E ) 反应释放能量,为放热的反应 2.反应物的能量(1E )<生成物的能量(E 2) 反应吸收能量 ,为吸热的反应 3.旧键断裂吸收的能量(E 3)> 新键形成释放的能量E 4 反应吸收能量 ,为吸热反应4.旧键断裂吸收的能量(E 3)< 新键形成释放的能量E 4 反应释放能量 ,为放量反应四.吸热反应与放热反应的比较化学反应中的能量变化与键能变化及反应热的关系:反应物 (E 1)旧键断裂(吸吸能量E 3) 新键形成(释放能量E 4)生成物(E 2)反应热: H V ==生成物的总能量-反应物的总能量。
H V ==反应物的总键能-生成物的总键能五.热化学方程式1.定义:表示化学反应中放出或吸收的热量的化学方程式。
2.意义:既能表示化学反应中的物质变化,又能表示化学反应中的能量变化.。
3.书写热化学方程式的要求:(1)要注明反应温度和压强(如不注明,则一般是指101kPa 25和℃)放热反应吸热反应表现形式或或为“+”能量变化 生成物的总能量低于反应物的总能量生成物的总能量高于反应物的总能量键能变化生成物总键能高于反应物总键能生成物总键能低于反应物总键能联系键能越大,物质能量越低,越稳定;反之 键能越小,物质能量越高,越不稳定。
高中化学反应原理知识点化学反应与能量考点1:吸热反应与放热反应1、吸热反应与放热反应的区别特别注意:反应是吸热还是放热与反应的条件没有必然的联系,而决定于反应物和生成物具有的总能量(或焓)的相对大小。
2、常见的放热反应①一切燃烧反应;②活泼金属与酸或水的反应;③酸碱中和反应;④铝热反应;⑤大多数化合反应(但有些化合反应是吸热反应,如:N2+O2=2NO,CO2+C=2CO等均为吸热反应)。
3、常见的吸热反应①Ba(OH)2·8H2O与NH4Cl反应;②大多数分解反应是吸热反应③等也是吸热反应;④水解反应考点2:反应热计算的依据1.根据热化学方程式计算反应热与反应物各物质的物质的量成正比。
2.根据反应物和生成物的总能量计算ΔH=E生成物-E反应物。
3.根据键能计算ΔH=反应物的键能总和-生成物的键能总和。
4.根据盖斯定律计算化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。
即如果一个反应可以分步进行,则各分步反应的反应热之和与该反应一步完成时的反应热是相同的。
温馨提示:①盖斯定律的主要用途是用已知反应的反应热来推知相关反应的反应热。
②热化学方程式之间的“+”“-”等数学运算,对应ΔH也进行“+”“-”等数学计算。
5.根据物质燃烧放热数值计算:Q(放)=n(可燃物)×|ΔH|。
二化学反应速率与化学平衡考点1:化学反应速率1、化学反应速率的表示方法___________。
化学反应速率通常用单位时间内反应物浓度和生成物浓度的变化来表示。
表达式:___________ 。
其常用的单位是__________ 、或__________ 。
2、影响化学反应速率的因素1)内因(主要因素)反应物本身的性质。
2)外因(其他条件不变,只改变一个条件)3、理论解释——有效碰撞理论(1)活化分子、活化能、有效碰撞①活化分子:能够发生有效碰撞的分子。
②活化能:如图图中:E1为正反应的活化能,使用催化剂时的活化能为E3,反应热为E1-E2。
第一章化学反应与能量一、化学反应与能量的变化1、焓变与反应热(1)化学反应的外观特征化学反应的实质是旧化学键断裂和新化学键生成,从外观上看,所有的化学反应都伴随着能量的释放或吸收、发光、变色、放出气体、生成沉淀等现象的发生。
能量的变化通常表现为热量的变化,但是化学反应的能量变化还可以以其他形式的能量变化体现出来,如光能、电能等。
(2)反应热的定义当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为反应在此温度下的热效应,简称为反应热。
通常用符号Q表示。
反应热产生的原因:由于在化学反应过程中,当反应物分子内的化学键断裂时,需要克服原子间的相互作用,这需要吸收能量;当原子重新结合成生成物分子,即新化学键形成时,又要释放能量。
生成物分子形成时所释放的总能量与反应物分子化学键断裂时所吸收的总能量的差即为该反应的反应热。
(3)焓变的定义对于在等压条件下进行的化学反应,如果反应中物质的能量变化全部转化为热能(同时可能伴随着反应体系体积的改变),而没有转化为电能、光能等其他形式的能,则该反应的反应热就等于反应前后物质的焓的改变,称为焓变,符号ΔΗ。
ΔΗ=Η(反应产物)—Η(反应物)为反应产物的总焓与反应物总焓之差,称为反应焓变。
如果生成物的焓大于反应物的焓,说明反应物具有的总能量小于产物具有的总能量,需要吸收外界的能量才能生成生成物,反应必须吸热才能进行。
即当Η(生成物)>Η(反应物),ΔΗ>0,反应为吸热反应。
如果生成物的焓小于反应物的焓,说明反应物具有的总能量大于产物具有的总能量,需要释放一部分的能量给外界才能生成生成物,反应必须放热才能进行。
即当Η(生成物)<Η(反应物),ΔΗ<0,反应为放热反应。
(4)反应热和焓变的区别与联系2、热化学方程式(1)定义把一个化学反应中物质的变和能量的变化同时表示出来的学方程式,叫热化学方程式。
(2)表示意义不仅表明了化学反应中的物质化,也表明了化学反应中的焓变。
第15讲化学反应的热效应【学科核心素养】变化观念与平衡思想:认识化学变化的本质是有新物质生成,并伴有能量的转化;能多角度、动态地分析热化学方程式,运用热化学反应原理解决实际问题。
证据推理与模型认知:通过分析、推理等方法认识研究反应热的本质,建立盖斯定律模型。
科学态度与社会责任:赞赏化学对社会发展的重大贡献,具有可持续发展意识和绿色化学观念,能对与化学有关的社会热点问题做出正确的价值判断。
【核心素养发展目标】1.了解化学反应中能量转化的原因及常见的能量转化形式。
2.了解化学能与热能的相互转化,了解吸热反应、放热反应、反应热等概念。
3.了解热化学方程式的含义,能正确书写热化学方程式。
4.了解焓变(ΔH)与反应热的含义。
5.理解盖斯定律,并能运用盖斯定律进行有关反应焓变的计算。
6.了解能源是人类生存和社会发展的重要基础,了解化学在解决能源危机中的重要作用。
【知识点解读】知识点一焓变、热化学方程式1.反应热(焓变)(1)概念:在恒压条件下进行的反应的热效应。
符号:ΔH。
单位:kJ·mol-1或kJ/mol。
(2)表示方法吸热反应:ΔH>0;放热反应:ΔH<0。
2.放热反应和吸热反应的判断(1)从反应物和生成物的总能量相对大小的角度分析,如图所示。
(2)从反应热的量化参数——键能的角度分析(3)记忆常见的放热反应和吸热反应放热反应:①可燃物的燃烧;①酸碱中和反应;①大多数化合反应;①金属跟酸的置换反应;①物质的缓慢氧化等。
吸热反应:①大多数分解反应;①盐的水解;①Ba(OH)2·8H2O与NH4Cl反应;①碳和水蒸气、C和CO2的反应等。
3.理解反应历程与反应热的关系4.热化学方程式(1)概念表示参加反应物质的量和反应热的关系的化学方程式。
(2)意义表明了化学反应中的物质变化和能量变化。
如:2H2(g)+O2(g)===2H2O(l) ΔH=-571.6 kJ·mol-1表示:2 mol氢气和1 mol氧气反应生成2 mol液态水时放出571.6 kJ的热量。
高二化学知识点:化学反应原理复习下面是我给大家整理的一份(高二化学)学问点:化学反应原理复习资料,盼望能够关心大家学习化学这门功课,考出一个好成果。
高二化学学问点:化学反应原理复习【学问讲解】第1章、化学反应与能量转化化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或汲取。
一、化学反应的热效应1、化学反应的反应热(1)反应热的概念:当化学反应在肯定的温度下进行时,反应所释放或汲取的热量称为该反应在此温度下的热效应,简称反应热。
用符号Q表示。
(2)反应热与吸热反应、放热反应的关系。
Q0时,反应为吸热反应;Q0时,反应为放热反应。
(3)反应热的测定测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,依据体系的热容可计算出反应热,计算公式如下:Q=-C(T2-T1)式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。
试验室常常测定中和反应的反应热。
2、化学反应的焓变(1)反应焓变物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJmol-1。
反应产物的总焓与反应物的总焓之差称为反应焓变,用H表示。
(2)反应焓变H与反应热Q的关系。
对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=H=H(反应产物)-H(反应物)。
(3)反应焓变与吸热反应,放热反应的关系:H0,反应汲取能量,为吸热反应。
H0,反应释放能量,为放热反应。
(4)反应焓变与热化学方程式:把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);H(298K)=-285.8kJmol-1书写热化学方程式应留意以下几点:①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。
①化学方程式后面写上反应焓变H,H的单位是Jmol-1或kJmol-1,且H后注明反应温度。
化学反应中的热效应与热反应知识点总结热效应是指化学反应过程中伴随着的能量变化。
热反应则指能量在化学反应中的传递和转化过程。
理解热效应和热反应对于理解和预测化学反应的性质、速率和平衡态具有重要意义。
本文将对热效应和热反应的基本概念、计算方法以及其在化学反应中的应用进行总结。
一、热效应的定义与分类1.1 热效应的定义:热效应是化学反应过程中伴随能量变化的量度,常用单位是焦耳(J)或千焦(kJ)。
1.2 热效应的分类:(1) 焓变(ΔH):表示在恒定压力下,反应物到生成物之间的能量差异。
热效应可以是吸热反应(ΔH>0)或放热反应(ΔH<0)。
(2) 熵变(ΔS):表示反应发生时体系的无序程度变化。
熵变可正可负,正表示反应使体系的无序度增加,负表示反应使体系的无序度减少。
(3) 自由能变(ΔG):表示在恒定温度下,反应发生时体系可用能的变化。
自由能变可正可负,负表示反应可以自发进行,正表示反应不可逆进行。
二、热反应的计算方法2.1 基于热效应的热反应计算热反应计算需要用到反应热效应(ΔH)的数值。
根据热反应的平衡方程式,可以通过以下方法计算热反应的热效应:(1) 热量平衡法:通过多个反应方程的热效应关系,将所需反应的热效应与已知反应的热效应相连,进行热量平衡计算。
(2) 反应焓和法:根据反应物和生成物的热反应焓,通过反应物和生成物之间的热效应相加减,计算所需反应的热效应。
2.2 基于热反应的热平衡计算在化学反应中,热反应也可以用于热平衡的计算。
根据热反应的热效应和温度变化,可以计算热平衡条件下的反应物和生成物的物质转化量。
三、热效应与化学反应性质的关系3.1 热效应与化学反应速率热效应对化学反应速率有重要影响。
通常情况下,放热反应速率较快,而吸热反应速率较慢。
放热反应速率较快是因为反应放出的热能可以提供激活能,促进反应的进行;吸热反应速率较慢是因为反应需要吸收热能来克服吸附、解离等过程的能垒。
化学反应中的热效应知识点讲解知识点1. 化学变化中的物质变化与能量变化.物质变化的实质:旧化学键的断裂和新化学键的生成.能量变化的实质:破坏旧化学键需要吸收能量,形成新化学键需要放出能量,化学反应过成中,在发生物质变化的同时必然伴随着能量变化.如下图:也可以从物质能量的角度来理解:概念:1. 反应热: 化学反应过程中所释放或吸收的能量,都可以用热量(或换算成相应的热量)来表示,叫反应热.2. 放热反应: 化学反应过程中释放能量的反应叫放热反应.3. 吸热反应: 化学反应过程中吸收能量的反应叫吸热反应.4. 燃烧热:25°C、101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量叫做该物质的燃烧热.单位:kJ/mol或J/mol.提示: (1)规定要在25°C,101kPa下测出热量,因为温度、压强不定反应热的数值也不相同.(2)规定可燃物的物质的量为1mol.(3)规定可燃物完全燃烧生成稳定的化合物所放出的热量为标准.所谓完全燃烧,是指物质中下列元素完全转化成对应的物质:C----CO2 ,H----H2O ,S----SO2 ,等.5. 中和热:在稀溶液中,酸和碱发生反应时生成1molH2O,这时的反应热叫做中和热.提示: (1)必须是酸和碱的稀溶液,因为浓酸和浓碱在相互稀释的时候会放热;(2)强酸和强碱的稀溶液反应才能保证中和热是57.3kJ/mol,而弱酸或弱碱在中和反应中电离吸收热量,其中和热小于57.3kJ/mol;(3)以1mol水为基准,所以在写化学方程式的时候应该以生成1mol水为标准来配平其余物质的化学计量数.即H2O的系数为1.常见的吸热反应和放热反应:吸热反应:其特征是大多数反应过程需要持续加热,如CaCO3分解等大多数分解反应,H2和I2、S、P等不活泼的非金属化合,Ba(OH)2·8H2O和NH4Cl固体反应,CO2和C的反应。
高一化学焓变的归纳知识点化学焓变是指化学反应过程中发生的能量变化。
了解和掌握化学焓变的知识对于高中化学学习和理解化学反应具有重要意义。
下面将就高一化学焓变的归纳知识点进行详细介绍。
一、化学焓变的定义和表示方法化学焓变可以定义为化学反应过程中实际发生的能量变化。
通常表示为ΔH,其中Δ表示变化量,H表示焓(enthalpy)。
ΔH 的正负和数值大小可以用来描述反应的放热或吸热性质,以及反应的强弱。
焓变的单位通常使用焦耳(J)或千焦(kJ)。
二、化学反应的热效应化学反应的热效应是指化学反应中释放或吸收的热量。
根据反应的热效应,可以将化学反应分为放热反应和吸热反应。
1. 放热反应:放热反应指的是在反应过程中,系统向周围释放能量,使得周围温度升高。
放热反应的焓变ΔH为负值,表示反应释放热量。
2. 吸热反应:吸热反应指的是在反应过程中,系统从周围吸收能量,使得周围温度降低。
吸热反应的焓变ΔH为正值,表示反应吸收热量。
三、焓变与反应热的关系焓变与反应热之间存在着密切的关系。
反应热指的是化学反应在标准状态下的焓变。
通常情况下,反应热可以通过实验测量得到。
反应热可以分为标准反应热和反应热。
1. 标准反应热:标准反应热指的是在标准状态下,单位摩尔物质参与反应时的焓变。
标准反应热的单位通常为kJ/mol。
2. 反应热:反应热是指化学反应在任意条件下的焓变。
反应热可以根据标准反应热和反应条件来计算或推算得到。
四、焓变与反应物质的量之间的关系焓变与反应物质的量之间存在着一定的比例关系。
这个关系可以通过化学方程式中的反应系数来表示。
1. 焓变与反应物质的量成正比:当化学方程式中的反应系数成比例变化时,焓变也相应成比例变化。
2. 焓变与反应物质的量成反比:当化学方程式中的反应系数互换位置时,焓变的符号发生改变。
五、焓变的热化学平衡焓变与热化学平衡之间存在着密切的关系。
热化学平衡是指在恒温恒压下,化学反应前后的焓变能够达到平衡。
高三化学热化学知识点热化学是化学的一个重要分支,研究化学反应中涉及到的热量变化以及热能的转化关系。
在高三化学考试中,热化学是一个重要的考点之一,下面将介绍高三化学热化学知识点。
一、热量的定义和测定方法热量是指物质内部微观粒子的热运动所具有的能量。
测定热量的方法主要有绝热法、焓计法和直接测定法。
1. 绝热法:绝热条件下,不发生热量交换,根据能量守恒定律,可以测定化学反应的热量变化。
2. 焓计法:利用焓计测定化学反应过程中的热量变化,通过测量反应物和生成物温度的变化,计算得到热量。
3. 直接测定法:通过测量反应过程中放出或吸收的热量,直接得到热量变化。
二、热力学第一定律热力学第一定律是能量守恒定律的具体应用,它指出:在一个系统中,所有能量的总增量等于从外界传递到系统中的热量与做功之和。
1. 热力学第一定律的数学表达式为:ΔE = q + w,其中ΔE表示系统内能量的变化,q表示从外界传递到系统中的热量,w表示系统外界对系统所做的功。
2. 热力学第一定律的应用:通过热力学第一定律可以计算化学反应的焓变、判断反应的放热性或吸热性等。
三、焓的概念与焓变焓是物质的一个基本性质,表示为H,焓变ΔH是指化学反应中反应物到生成物之间焓的差值。
1. 焓的表示方式:焓的单位为焦耳/摩尔(J/mol),在化学计量中常用ΔH表示焓变,可以是正值或者负值。
2. 焓变的计算:焓变可以通过热量计测定、热力学计算方法和Hess定律进行计算。
四、热化学方程式和热化学方程式的应用热化学方程式是化学反应方程式与它对应的热化学方程式之间的关系。
热化学方程式的应用主要有热化学计算和热化学方程式的解析应用。
1. 热化学计算:通过热化学方程式可以计算化学反应的热变量,如焓变、熵变和自由能变等。
2. 热化学方程式的解析应用:可以通过热化学方程式解释反应的放热性或吸热性、进一步分析反应的热动力学性质。
五、热容和摩尔热容热容是指物质单位温度变化时所吸收或释放的热量。
高中化学知识点详解化学热力学化学热力学是研究化学反应中能量转化和热效应的科学,它涉及到物质的内能、焓、熵以及化学反应的热力学方程等内容。
本文将详细介绍高中化学中与化学热力学相关的重要知识点。
一、内能内能是指物体所包含的微观粒子(原子、离子、分子等)的动能和势能之和。
化学反应中的内能变化可以通过测量反应物和产物之间的焓变求得。
内能变化(ΔU)等于反应物的内能(U1)与产物的内能(U2)之差,即ΔU = U2 - U1。
根据内能和焓的关系,我们可以得到下式:ΔH = ΔU + PΔV其中,ΔH表示焓变,ΔU表示内能变化,P表示压强,ΔV表示体积变化。
二、焓焓是热力学重要的物理量,表示系统的热能。
在化学反应中,焓变(ΔH)等于反应物的焓(H1)与产物的焓(H2)之差,即ΔH = H2 - H1。
焓变反映了反应过程中释放或吸收的热量。
三、熵熵是描述系统无序程度的物理量,在化学热力学中有着重要的意义。
熵变(ΔS)表示在化学反应中系统熵的变化,反映了反应过程中产生的混乱程度的变化。
熵变可以通过下式计算:ΔS = ΣnSf(产物) - ΣmSf(反应物)其中,ΔS表示熵变,Sf表示不同物质的摩尔熵,n和m表示产物和反应物的摩尔数。
四、化学反应的热力学方程在化学热力学中,熵变、焓变和内能变化之间存在着一系列的定量关系。
根据物质在不同状态之间的热力学性质的变化,可以推导出各种化学反应的热力学方程。
1. 等温过程中的焓变在等温过程中,焓变等于内能变化,即ΔH = ΔU。
2. 等压过程中的焓变在等压过程中,焓变等于反应物与产物的焓之差,即ΔH = H2 - H1。
3. 等容过程中的焓变在等容过程中,体积不变,因此焓变为0,即ΔH = 0。
根据以上的热力学方程,我们可以进一步计算化学反应的熵变和内能变化,从而了解反应的热效应和热力学性质。
五、热力学定律化学热力学中,还存在着一些重要的热力学定律,如下所示:1. 热力学第一定律热力学第一定律是能量守恒定律,它指出能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。