塑壳断路器
- 格式:doc
- 大小:27.00 KB
- 文档页数:8
塑壳式断路器介绍塑壳式断路器的外壳通常采用塑料材料制成,具有良好的绝缘性能和耐腐蚀性能,能够有效地防止电弧的扩散。
在外壳上还会安装显示窗口和动作指示,用于显示断路器的运行状态和故障信息,方便运维人员进行检查和维护。
此外,塑壳式断路器还具有紧急断电开关,当发生电力事故时,可以迅速切断电路,保证人身安全。
塑壳式断路器的断路器本体是决定其断电能力和运行特性的关键部件。
一般来说,其断电能力和额定电流相关,常见的额定电流有10A、16A、32A等,依据实际需要进行选择和安装。
断路器本体内部通常包含电弧消耗器、双触点结构和电路保护装置等。
电弧消耗器用于有效地限制和消除电弧,并防止电器设备受到过大的电流冲击。
双触点结构能够确保断路器的稳定接触和可靠断开。
电路保护装置则具有过载保护、短路保护以及漏电保护等功能,一旦电流异常,会迅速切断电路以达到保护的目的。
塑壳式断路器的电动机构主要用于控制断路器的开关动作。
它采用电磁力原理,通过控制电磁铁的吸合和松开,来控制断路器的闭合和断开。
电动机构的操作可以通过手动或自动方式进行,手动操作适用于紧急情况下或无电源供应的环境,而自动操作一般通过电子设备或传感器进行,可以实现自动检测和断路器的控制。
电动机构还可以配备过载保护和短路保护装置,以提高断路器的安全性和可靠性。
触发装置是塑壳式断路器的另一个重要组成部分,它用于控制断路器的动作和切断电流。
触发装置通常由电流传感器、电流变送器和断路器控制单元等多个组件组成。
电流传感器用于检测电路中的电流情况,将电流信号转换为电压信号。
电流变送器则将电压信号转换为控制信号,并通过断路器控制单元发送给断路器,以实现断路器的开关动作。
触发装置具有高灵敏度、精确度和可靠性的特点,能够快速检测到异常情况并及时触发断路器的动作。
塑壳式断路器的工作原理是利用电磁原理和触发装置的功能,当电路中发生过载或短路时,触发装置能够检测到异常的电流,然后通过断路器控制单元发送命令,驱动电动机构使断路器迅速切断电流。
塑壳式低压断路器工作原理塑壳式低压断路器是一种常见的电气保护设备,它的工作原理可以简单概括为通过热释放器和电磁释放器来实现对电路的保护和控制。
下面将从断路器的结构和工作原理两个方面来详细介绍塑壳式低压断路器的工作原理。
一、塑壳式低压断路器的结构塑壳式低压断路器通常由外壳、触点、电磁释放器、热释放器、电弧熄灭装置等部分组成。
1. 外壳:塑壳式低压断路器的外壳通常采用高强度的塑料材料制成,具有良好的绝缘性能和耐热性能,能够确保电路的安全运行。
2. 触点:塑壳式低压断路器的触点负责连接和断开电路,通常由铜制成,具有良好的导电性能和耐磨性能。
3. 电磁释放器:电磁释放器是塑壳式低压断路器的主要保护装置,它能够检测电路中的过载电流和短路电流,当电流超过额定值时,电磁释放器会迅速使触点分离,从而切断电路。
4. 热释放器:热释放器是塑壳式低压断路器的辅助保护装置,它能够检测电路中的过载电流,当电流超过额定值时,热释放器会通过热响应元件感应到电流的升高,从而使触点分离,切断电路。
5. 电弧熄灭装置:电弧熄灭装置是塑壳式低压断路器的重要组成部分,它能够在触点分离的同时,迅速将电弧熄灭,防止电弧对周围环境造成危害。
二、塑壳式低压断路器的工作原理塑壳式低压断路器的工作原理可以分为过载保护和短路保护两个方面。
1. 过载保护:当电路中的电流超过额定值时,热释放器会通过热响应元件感应到电流的升高,从而使触点分离,切断电路。
这样可以防止电路因过载电流而造成损坏或发生火灾等危险情况。
2. 短路保护:当电路发生短路时,电磁释放器会迅速使触点分离,切断电路。
短路是指电路中两个或多个导体之间发生直接的接触,导致电流瞬间增大。
通过及时切断电路,可以保护电器设备和电路不受损坏。
塑壳式低压断路器的工作原理是通过热释放器和电磁释放器的协同作用来实现对电路的保护和控制。
当电路中的电流超过额定值时,热释放器会感应到电流的升高,并使触点分离,切断电路。
塑壳断路器(mccb)技术参数塑壳断路器(MCCB)是一种用于低压电路保护和控制的开关设备。
以下是一些常见的MCCB技术参数:1. 额定电流(Rated Current):表示MCCB可以安全承载的额定电流值,通常以安培(A)为单位,如100A、200A等。
2. 额定电压(Rated Voltage):表示MCCB可以安全工作的额定电压值,通常以伏特(V)为单位,如220V、380V等。
3. 额定短路切断能力(Rated Breaking Capacity):表示MCCB在短路情况下可以安全切断电路并承受的最大短路电流值,通常以安培(A)为单位,如10kA、20kA等。
4. 极数(Number of Poles):表示MCCB的开关极数,通常有1P、2P、3P和4P等选项。
5. 使用类别(Utilization Category):表示MCCB的使用条件和应用范围,主要分为A类、B类、C类和D类等。
6. 隔离开断能力(Isolation Breaking Capacity):表示MCCB在正常工作状态下可以安全隔离的最大电流值,通常以安培(A)为单位。
7. 过载保护特性(Overload Protection Characteristics):表示MCCB 对电路过载情况的保护能力,通常根据国际电工委员会(IEC)标准划分为几个类别,如型号B、C、D等。
8. 短路保护特性(Short Circuit Protection Characteristics):表示MCCB对电路短路情况的保护能力,通常根据国际电工委员会(IEC)标准划分为几个类别,如型号B、C、D等。
这些技术参数可以根据具体的MCCB型号和规格而有所差异,用户在选择和使用MCCB时应根据实际需要和电路要求进行合理的选择。
塑壳式断路器的接线原理塑壳式断路器是一种常用的电器保护设备,用于在电路过载或短路时自动切断电流,以保护电路和设备的安全。
它的接线原理如下:首先要明确塑壳式断路器的结构,它主要由两部分组成:电磁脱扣装置和热脱扣装置。
电磁脱扣装置用于检测电路中的瞬时过载电流和短路电流,并在超过设定值时切断电流;而热脱扣装置用于检测电路中的长时间过载电流,并在超过设定时间后切断电流。
塑壳式断路器的接线原理根据电路的特点和需求来确定,一般可分为以下几种接线方式:1. 单相接线方式:在单相交流电路中,塑壳式断路器通常用来保护电路中的负荷。
其接线原理是将负载与电源连接,并在断路器的出线侧再连接负载。
在正常工作状态下,电流从电源进入断路器内的触点,在负载中流动,然后返回电源。
当负载电流超过设定值时,电磁脱扣装置会感应到过流信号,并将触点打开,切断电流,保护电路和设备的安全。
2. 三相接线方式:在三相交流电路中,塑壳式断路器可以用来保护三相负载。
其接线原理是将三个负载分别与三个电源相连接,并在断路器的出线侧再连接三相负载。
在正常工作状态下,电流从三相电源进入断路器内的触点,在负载中流动,然后返回电源。
当负载电流超过设定值时,电磁脱扣装置会感应到过流信号,并将触点打开,切断电流,保护电路和设备的安全。
除了以上两种接线方式外,塑壳式断路器还可以根据需要进行并联接线或分段接线。
并联接线方式适用于需要更大额定电流的电路,它可以将多个塑壳式断路器并联连接,以实现电流的叠加。
分段接线方式适用于需要分段保护的电路,它可以根据电路的不同部分,通过连接多个塑壳式断路器,实现对不同部分的独立保护。
总结起来,塑壳式断路器的接线原理是根据电路的特点和需求来确定的。
通过合理的接线方式,可以实现对电路中负荷的保护,确保电路和设备的安全运行。
同时,接线时还要注意选择适当的额定电流和短路容量,以及正确连接电源和负载,以确保断路器的正常工作和可靠保护。
塑壳断路器限流原理塑壳断路器是一种常用的电气保护装置,用于在电路发生过载或短路时自动切断电源,以保护电气设备的安全运行。
而限流则是塑壳断路器的一项重要功能,它可以限制电流的大小,以防止电路中的电气设备因电流过大而受损。
塑壳断路器限流原理的基础是热响应原理。
当电路中的电流超过断路器额定电流时,断路器内部的热元件会受热膨胀,引发热响应。
热响应后,断路器内部的触发机构会被释放,切断电路,起到保护电气设备的作用。
具体来说,塑壳断路器限流原理包括以下几个方面:1. 热元件:塑壳断路器内部的热元件通常是一根双金属片,由两种不同膨胀系数的金属组成。
当电流通过断路器时,热元件会受到电流的加热作用,导致其中一种金属膨胀程度大于另一种金属,使热元件产生弯曲。
2. 触发机构:热元件的弯曲会引起触发机构的动作。
触发机构通常由电磁铁和弹簧组成。
当热元件发生弯曲时,触发机构会被释放,使断路器切断电路。
3. 限流调节器:塑壳断路器还配备了一个限流调节器,用于调整断路器的限流数值。
限流调节器通常是一个可调整的旋钮,通过改变旋钮的位置,可以改变热元件的工作状态,从而调整断路器的限流值。
塑壳断路器限流原理的工作过程如下:1. 开关闭合:当电路中的电流小于断路器的额定电流时,热元件不会产生过大的热响应,触发机构保持闭合状态,电路正常通电。
2. 过载保护:当电路中的电流超过断路器的额定电流时,热元件受热膨胀,触发机构被释放,断路器切断电路,起到过载保护的作用。
3. 限流调节:通过调节限流调节器,可以改变热元件的工作状态,从而调整断路器的限流数值。
一般来说,限流数值应根据电路的额定电流和所连接设备的电流要求进行调整,以保证电气设备的正常运行。
总的来说,塑壳断路器限流原理是通过热响应原理实现的。
当电路中的电流超过断路器的额定电流时,断路器内部的热元件会受热膨胀,引发热响应,从而切断电路,保护电气设备的安全运行。
通过调节限流调节器,可以改变热元件的工作状态,以调整断路器的限流数值,满足电路和设备的要求。
塑壳断路器工作原理
塑壳断路器是一种常见的电力保护设备,用于在电路出现过载、短路或地故障时断开电路,以防止电路和设备受到损坏。
其工作原理如下:
1. 过载保护:当电路中的电流超过了设定的额定电流值时,塑壳断路器会自动感应到电流值的增加,这时会通过断路器内部的热释放元件产生瞬态热量。
当这个热量超过或接近设定的热释放元件的触发温度时,触发器会打开断路器,断开电路连接。
2. 短路保护:当电路中发生短路时,即电流在非预期路径上突增,短路电流会迅速超过断路器的额定电流。
短路保护机构会监测电流的快速变化,并引发触发器打开断路器,切断电路连接。
这样可以阻止短路电流损坏电路和设备。
3. 地故障保护:当电路中发生对地绝缘故障时,如导线与金属外壳接触或与大地接触,瞬时会形成过大的故障电流。
地故障保护机构会监测电流的异常,当故障电流超过设定值时,触发器会打开断路器,切断电路连接,以保护电路和设备免受损坏。
总的来说,塑壳断路器通过感应电流和电路状态的变化,利用内部的保护机构来实现过载、短路和地故障的自动断电保护。
这样可以有效地保护电路和设备的安全运行。
壳断路器之间的区别展开了详细谈论。
1.框架断路器组成一个固定式框架式断路器主要有:断路器本体,脱扣单元,附件组成。
组成一个抽出式框架式断路器主要有:断路器本体,移动部分,固定部分,脱扣单元,附件组成。
在民用建筑设计中低压断路器主要用于线路的过载、短路、过电流、失压、欠压、接地、漏电、双电源自动切换及电动机的不频繁起动时的保护、操作等用途,其选择原则除遵守低压电器设备的使用环境特征等基本原则外尚应考虑如下条件: 1)断路器的额定电压不应小于线路额定电压;2)断路器额定电流与过流脱扣器的额定电流不小于线路的计算电流;3)断路器的额定短路分断能力不小于线路中最大短路电流;4)选择型配电断路器需考虑短延时短路通断能力和延时保护级间配合;5)断路器欠压脱扣器额定电压等于线路额定电压;6)当用于电动机保护时,则选择断路器需考虑电动机的起动电流并使之在起时间内不动作;设计计算见“工业与民用配电设计手册”。
2.塑壳断路器塑壳断路器也被称为装置式断路器,所有的零件都密封于塑料外壳中,辅助触点,欠电压脱扣器以及分励脱扣器等多采用模块化。
由于结构非常紧凑,塑壳断路器基本无法检修。
其多采用手动操作,大容量可选择电动分合。
由于电子式过电流脱扣器的应用,塑壳断路器也可分为A类和B类两种,B类具有良好的三段保护特性,但由于价格因素,采用热磁式脱扣器的A类产品的市场占有率更高。
一般热磁式塑壳断路器为非选择性断路器,仅有过载长延时及短路瞬时两种保护方式,能。
工作原理低压断路器的主触点是靠手动操作或电动合闸的。
主触点闭合后,自由脱扣机构将主触点锁在合闸位置上。
过电流脱扣器的线圈和热脱扣器的热元件与主电路串联,欠电压脱扣器的线圈和电源并联。
当电路发生短路或严重过载时,过电流脱扣器的衔铁吸合,使自由脱扣机构动作,主触点断开主电路。
当电路过载时,热脱扣器的热元件发热使双金属片上弯曲,推动自由脱扣机构动作,主触点断开主电路。
当电路欠电压时,欠电压脱扣器的衔铁释放,也使自由脱扣机构动作,主触点断开主电路。
塑壳式断路器技术档案塑壳式断路器是在一组断路器中间用绝缘子固定在外壳上,再由外壳连接起来的电动机。
该断路器的熔断电流大、灭弧范围广;其操作机构简单,动作可靠,且可靠性高。
塑壳式断路器主要是用来保护低压电器设备,切断电路中的过载和短路电流的,从而保证电气设备以及线路中正常供电。
在设计上塑壳式断路器的灭弧方式与传统继电器相比有一定的改进。
为了使灭弧室体积减小、体积缩小和节省空间,从而提高了断路器工作时的可靠性和灵活性。
它一般采用耐高压的热继电器作为灭弧机构。
由于其具有较大的操作电流和脱扣量,使其应用范围更为广泛。
•一、分类•塑壳式断路器的断路方式有手动式、机械式和电真空式3种。
手动式断路器常在低压侧设置手动操作机构,在电力系统中,断路器常为固定位置。
电真空式断路器在高压侧设置电真空机构,使其有较大的脱扣电流和脱扣时间可供选择。
根据断路器不同的工作状态,可分为:保护型断路器以及操作型断路器两大类结构。
保护型断路器由于其采用了耐高温材料,一般适用于120℃~150℃温度区间。
(200℃)内。
操作型断路器是根据其保护作用时间来划分分为自动触发型式断路器和手动/定时型式断路器两大类。
自动触发类型断路器多采用分合状态,手动/定时类型的主要结构形式为:分断头、整合头和脱扣头。
而手动/定时型断路器分合时无分弧机构和自保装置,但在动作时灭弧电流大、脱扣速度快,故适合于有较高可靠性要求的低压配电系统使用。
••1、塑壳断路器在电气保护领域的应用•根据断路器的工作方式,可分为手动分合式断路器、电电式断路器和机械式断路器。
按是否存在机械触头和触点类型可分为接触式断路器、固定式断路器和合闸继电器式灭弧室式断路器。
这三种类型开关装置又可分成两大类:一类是手动分合型的开关装置;另一类是电电式的开关装置。
根据灭弧原理可分为:电弧灭弧室两种类型。
按灭弧室内介质可分为:空气(水)、惰性气体(二氧化碳)和水(水)5大类。
按灭弧室内介质又分为:空气、惰性气体、水、惰性气体(氨)4种;按灭弧室形式又可分为空气式、液氧式和真空式等4种;按灭弧室的灭弧原理又可分为单触点灭弧室和双触点灭弧室(无触点)灭弧装置以及空气式、气液式等3种方式。
塑壳断路器
塑壳式断路器具有过载长延时、短路瞬动的二段保护功能,还可以与漏电器、测量、电操等模块单元配合使用。
在低压配电系统中,常用它做终端开关或支路开关,取代了过去常用的熔断器和闸刀开关。
现在的配电系统要求断路器除了能通断电流实现电路控制和简单的短路、过载保护外,还要能提供隔离和安全保护功能,特别是在针对人身、设备安全与配电系统的可靠性方面都提出了新的要求。
因此,产品的开发设计与选购也都重点考虑以下3个方面:
(1)人身安全;
(2)电气线路与设备的保护;
(3)可靠的、不间断的电力供应。
断路器一般由触头系统、灭弧系统、操作机构、脱扣器、外壳等构成。
当短路时,大电流(一般10至12倍)产生的磁场克服反力弹簧,脱扣器拉动操作机构动作,开关瞬时跳闸。
当过载时,电流变大,发热量加剧,双金属片变形到一定程度推动机构动作(电流越大,动作时间越短)。
现在有电子型的,使用互感器采集各相电流大小,与设定值比较,当电流异常时微处理器发出信号,使电子脱扣器带动操作机构动作。
断路器的作用是切断和接通负荷电路,以及切断故障电路,防止事故扩大,保证安全运行。
而高压断路器要开断1500V,电流为1500-2000A的电弧,这些电弧可拉长至2m仍然继续燃烧不熄灭。
故灭弧是高压断路器必须解决的问题。
吹弧熄弧的原理主要是冷却电弧减弱热游离,另一方面通过吹弧拉长电弧加强带电粒子的复合和扩散,同时把弧隙中的带电粒子吹散,迅速恢复介质的绝缘强度。
低压断路器也称为自动空气开关,可用来接通和分断负载电路,也可用来控制不频繁起动的电动机。
它功能相当于闸刀开关、过电流继电器、失压继电器、热继电器及漏电保护器等电器部分或全部的功能总和,是低压配电网中一种重要的保护电器。
低压断路器具有多种保护功能(过载、短路、欠电压保护等)、动作值可调、分断能力高、操作方便、安全等优点,所以目前被广泛应用。
结构和工作原理低压断路器由操作机构、触点、保护装置(各种脱扣器)、灭弧系统等组成。
低压断路器的主触点是靠手动操作或电动合闸的。
主触点闭合后,自由脱扣机构将主触点锁在合闸位置上。
过电流脱扣器的线圈和热脱扣器的热元件与主电路串联,欠电压脱扣器的线圈和电源并联。
当电路发生短路或严重过载时,过电流脱扣器的衔铁吸合,使自由脱扣机构动作,主触点断开主电路。
当电路过载时,热脱扣器的热元件发热使双金属片上弯曲,推动自由脱扣机
构动作。
当电路欠电压时,欠电压脱扣器的衔铁释放。
也使自由脱扣机构动作。
分励脱扣器则作为远距离控制用,在正常工作时,其线圈是断电的,在需要距离控制时,按下起动按钮,使线圈通电,衔铁带动自由脱扣机构动作,使主触点断开。
1、塑壳式断路器的主要特点:
(1)额定极限短路分断能力Icu
断路器的分断能力指标有两种:额定极限短路分断能力Icu和额定运行短路分断能力Ics。
Ics作为一个特性参数,并非只简单考虑断路器的分断能力,而是作为一种分断指标,即分断几次短路故障后,还能保证其正常工作。
对塑壳式断路器而言,应有足够的Icu,能够分断短路电流使开关跳闸。
按规定塑壳式断路器的Ics只要大于25%Icu就算合格。
而目前市场上断路器的Ics大多数在(50%—75%)Icu之间,所以对供电要求不高的配电系统,只须考虑Icu。
(2)限流分断能力
限流分断能力是指断路器短路跳闸时限制故障电流的能力。
断路器发生短路时、触头快速打开产生电弧,相当于在线路中串入1个迅速增加的电弧电阻,从而限制了故障电流的增加。
断路器断开时间越少,Ics就越接近Icu,限流效果就越好,也可大大降低短路电流引起的电磁效应、电动效应
和热效应对断路器和用电设备的不良影响,延长断路器的使用寿命。
(3)短路保护
短路保护就是短路瞬时跳闸。
要注意在负荷变化后及时调整保护的整定值,防止整定值过小频繁跳闸影响供电质量,或整定值过大使线路和设备得不到有效保护。
(4)过载延时保护
过载延时保护是指负荷电流超过设备的限定范围有烧毁设备的危险,保护装置能在一定时间内切断电源。
过载有个热量积累的过程,保护动作不需要过于迅速。
对于短时过电流,保护不应该动作。
(5)隔离功能
隔离功能就是要求断路器断开后的泄漏电流不致对人身和设备产生危害。
多次短路跳闸后开关性能下降,泄漏电流会增大。
对人体而言30mA以下为安全漏电电流,而在恶劣的环境中,超过300mA的泄漏电流持续2小时以上,就可能使绝缘损坏发生相地短路进而引发火灾。
(6)漏电保护
漏电器有热磁式和电子式2种,相比而言电子式漏电器具有体积小、精度高、灵敏度高的优点,但其抗干扰能力较
差。
目前电子式漏电保护器占据主流,当漏电电流达到整定值时,执行电路接收零序电流互感器二次侧的感应电压信号,驱动转换触点输出漏电保护信号,使脱扣器动作切断电源。
一般终端开关的整定漏电脱扣电流为30mA、上一级支路开关的整定值为300mA。
起火危险性大的电弧性短路难以被短路保护有效切断,而漏电器可以可靠的断开接地故障,防止人身触电和相地短路故障的发生。
2、常见故障处理
低压塑壳断路器脱扣器的问题
塑壳断路器脱扣器分为瞬时脱扣和过载脱扣器,瞬时和过载脱扣器合成为复式脱扣器,不包含分励脱扣器,瞬时和过载
脱扣器在塑壳断路器内部,而分励一般是在塑壳断路器上加的附件,分励脱扣器是电动分断断路器的脱扣器,利用外电源给
分励提供电源脱扣,主要用于远程分断该断路器.
瞬时脱扣是短路脱扣器,一般为5-10倍(C型脱扣)和
10-15倍(D型脱扣)的额定电流脱扣, 过载脱扣器一般在1.13倍额定电流下1小时内不脱扣,1.45倍的额定电流下1小时内脱扣, 这是断路器在恒温40度条件下的标准
电动机配电一般选用额定电流5-10倍(D型脱扣)的瞬时脱扣器,而一般配电都选用5-10倍(C型脱扣)断路器
分励脱扣器主要看是不是需要远程操作而定, 另外分
励脱扣器只能实现远程分断,要是需要远程闭合断路器则需要电动操作机构.
运行中断路器误跳闸故障的分析、判断和处理
若系统无短路或直接接地现象,继电保护未动作,断路器自动跳闸称断路器“误跳”。
对“误跳”的分析、判断与处理一般分以下三步进行。
1、根据事故现象的以下特征,可判定为“误跳”。
(1)在跳闸前表计、信号指示正常,表示系统无短路故障。
(2)跳闸后,绿灯连续闪光,红灯熄灭,该断路器回路的电流表及有功、无功表指示为零。
2、查明原因,分别处理。
(1)若由于人员误碰、误操作,或受机械外力振动,保护盘受外力振动引起自动脱扣的“误跳”,应排除开关故障原因,立即送电。
(2)对其他电气或机械部分故障,无法立即恢复送电的则应联系调度及有关领导将“误跳”断路器停用,转为检修处理。
3、对“误跳”断路器分别进行电气和机械方面故障的检查、分析。
(1)电气方面故障原因有:
①保护误动或整定位不当,或电流、电压互感器回路故障;
②二次回路绝缘不良,直流系统发生两点接地(跳闸回路发生两点接地)。
(2)机械方面故障原因有:
①合闸维持支架和分闸锁扣维持不住,造成跳闸;
②液压机械a分闸一级阀和逆止阀处密封不良、渗漏时,本应由合闸保持孔供油到二级阀上端以维持断参器在合闸位置,但当漏的油量超过补充油量时,在二级阀上下两端造成压强不同。
当二级习上部的压力小于下部的压力时,二级阀会自动返回,而二级阀返回会使工作缸合闸腔内高压油泄掉,从而使断路器跳闸。
3断路器与连锁装置
隔离开关与断路器之间为什么要装联锁装置?联锁装置有哪些类型?
在隔离开关与断路器之间之所以要装联锁装置,要防止在断路器未切断电源以前就去拉隔离开关。
联锁装置有机械联锁和电气联锁两种类型。
工作原理是:(1)机械联锁装置一般使用钢丝绳或者杠杆机构,以机械位置的变动(也可采用多功能程序锁)来保证在断路器切断电源以前,隔离开关的操作把手不能动作。
(2)电气联锁装置电气联锁一般有两种联锁方式,一种是通过操作机构上的联动辅助接点(常开或常闭)去控制隔离开关的把手。
当断路器未断开时,隔离开关操作把手不能动作。
另一种电气联锁是利用距离开关操作机构上的联动辅助接点(常开或常闭)去控制断路器。
当拉动隔离开关的把手时,联动辅助接点(常开或常闭)使断路器动作以切断电路,从而可防止带负荷拉动距离开关的事故。
生产管理部:汪官兵
二○一一年三月二十四。