变容二极管调频
- 格式:doc
- 大小:212.50 KB
- 文档页数:7
实验四变容二极管调频一.实验目的1、掌握变容二极管调频的工作原理。
2、学会测量静态特性曲线,理解动态特性的含义。
3、学会测量调频信号的频偏及调制灵敏度。
4、观察寄生调幅现象。
二.实验原理1、变容二极管调频原理所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡)的瞬时频率,使其按调制信息的规律变化。
设调制信号:υΩ(t)= VΩcosΩt,载波振荡电压为:a ( t ) = A o cosωo t根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即ω(t)= ωo + K f VΩcosΩt =ωo + ΔωcosΩt (4-1) 则调频波的数字表达式如下:a f (t) = A o cos(ωo t+ΩΩVKf sinΩt)或a f (t) = A o cos(ωo t+ m f sinΩt) (4-2) 式中:Δω= K f VΩ是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。
比例常数K f亦称调制灵敏度,代表单位调制电压所产生的频偏。
式中:m f = K f VΩ/Ω= Δω/Ω =Δf / F 称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。
如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4-1所示。
图4-1 变容二极管调频原理电路变容二极管C j通过耦合电容C1并接在LC N回路的两端,形成振荡回路总电容的一部分。
因而,振荡回路的总电容C为:C = C N + C j(4-3)加在变容二极管上的反向偏压为:V R = V Q(直流反偏)+υΩ(调制电压)+υo(高频振荡,可忽略)变容二极管利用PN 结的结电容制成,在反偏电压作用下呈现一定的结电容(势垒电容),而且这个结电容能灵敏地随着反偏电压在一定范围内变化,其关系曲线称C j ~υR 曲线,如图4-2所示。
图4-2 用调制信号控制变容二极管结电容由图可见:未加调制电压时,直流反偏V Q (在教材称V o 所对应的结电容为C jΩ(在教材中称C o )。
实验七变容二极管调频器—、实验准备1.做本实验时应具备的知识点:●频率调制●变容二极管调频●静态调制特性、动态调制特性2.做本实验时所用到的仪器:●变容二极管调频模块●双踪示波器●频率计●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用变容二极管调频振荡器实现FM的方法;3.理解静态调制特性、动态调制特性概念和测试方法。
三、实验内容1.用示波器观察调频器输出波形,考察各种因素对于调频器输出波形的影响;2.变容二极管调频器静态调制特性测量;3.变容二极管调频器动态调制特性测量。
四、实验原理1.调频电路变容二极管调频器实验电路如图7-1所示。
图中,12BG01本身为电容三点式振荡器,它与12D01、12D02(变容二极管)一起组成了直接调频器。
12BG03为放大器,12BG04为射极跟随器。
12W01用来调节变容二极管偏压。
由图7-1可见,加到变容二极管上的直流偏置就是+12V经由12R02、12W01和12R03分压后,从12R03得到的电压,因而调节12W01即可调整偏压。
由图可见,该调频器本质上是一个电容三点式振荡器(共基接法),由于电容12C05对高频短路,因此变容二极管实际上与12L02相并。
调整电位器12W01,可改变变容二极管的偏压,也即改变了变容二极管的容量,从而改变其振荡频率。
因此变容二极管起着可变电容的作用。
对输入音频信号而言,12L01短路,12C05开路,从而音频信号可加到变容二极管12D01、 12D01上。
当变容二极管加有音频信号时,其等效电容按音频规律变化,因而振荡频率也按音频规律变化,从而达到了调频的目的。
121图7-1 变容二极管调频器实验电路本实验电路为西勒振荡器,高频等效电路如图7-2所示。
电路的频率为:∑=LC t f π21)(式中: j 1C C 11112C0312C0412C06∑=+++在调制信号Ωu 控制下实现频率调制。
12C062CC1F图7-2 变容二极管调频器高频等效电路2.调频电路的特性(1)调频电路的静态调制特性静态调制特性是指,振荡频率f 随变容二极管直流偏置电压B V 的变化特性。
变容二极管直接调频实验预习报告
学号--------------------姓名实验台号
一、实验目的
1、进一步掌握实现调频的方法及其电路组成。
2、了解变容二极管调频电路的组成和基本工作原理。
二、实验仪器
数字万用表、数字频率计、数字示波器、直流稳压电源
三、实验原理
三、实验任务
1,准备
(1)熟悉电路中各个元器件的作用和位置,断开k4,k5,检查无误后接通电源。
用示波器测量输出波形及频率。
(2)闭合k5,调节DW3,使VQ=4V左右,适当调节DW1,C6,使输出波形较好,振荡频率4MHz左右
2,测量Cj-v特性
(1)逐渐改变DW3的大小,测量笔记录VQ大小(用数字万用表测量)以及VQ 对应的频率fj,绘制fj-VQ曲线,该曲线即为静态频率调制特性。
VQ(v) 2 3 4 5 6 7 8 9
fj(MHz)
Cj(pF)
(2)断开k5(即去掉变容二极管及其偏执电路),测量并记录测试的振荡频率fosc (3)闭合K4(记载回路电容C6两端并联已知电容Ck),记录此时的振荡频率fk。
(4)计算C总、Cj,填入表中,绘制变容二极管的Cj-v特性曲线。
(5)有Cj-v特性曲线计算VQ=4V时的休旅Sc,计算调制灵敏度Sf。
3,观察调频信号波形
(1)闭合K4K5,调整DW3,使VQ=4V,调整DW1,使输出波形正常。
(2)介入调制信号,并调整音频信号输出电压Vpp<2V,观察输出的调频信号波形;
适当调整调制信号的幅度,观察调频信号波形的变化。
(3)观察调制信号电压幅度对调频信号中心频率的影响。
摘要调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。
调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。
由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。
在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。
目前,变容二极管直接调频电路是目前应用最广泛的直接调频电路,它是利用变容二极管反向所呈现的可变电容特性实现调频的,具有工作频率高固有损耗小等特点。
现有的对于调频电路的研究与仿真主要集中在锁相环电路,变容二极管直接调频电路研究较少,对于变容二极管静态调制特性的研究更是几乎无人涉及。
变容二极管为特殊二极管的一种。
当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。
但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。
在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。
因此,当变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。
关键词:LC振荡电路、变容二极管、调频1.设计要求(1)主振频率=8MHZ(2)频率稳定度/≤0.0005/h(3)主振级的输出电压(4)最大频偏(5)电源电压= 5V2.电路原理分析变容二极管为特殊二极管的一种。
当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。
变容二极管调频电路工作原理一、调频原理调频(Frequency Modulation)是一种使载波信号的频率随调制信号的幅度变化而变化的一种调制方式。
在通信系统中,调频广泛应用于广播、电视、无线通信等领域。
调频的基本原理是通过改变振荡器的振荡频率来实现调制。
在变容二极管调频电路中,变容二极管作为可变电容元件,用于改变振荡回路的电容,从而改变振荡频率。
二、变容二极管变容二极管(Varactor Diode)是一种特殊的半导体二极管,其结电容可随外加电压的变化而变化。
变容二极管的电容变化范围较大,通常在几个皮法拉(pF)到几十皮法拉之间。
当变容二极管用于调频电路中时,其电容值的变化会导致电路的谐振频率发生变化,从而实现频率调制。
三、调频电路调频电路主要由振荡器、变容二极管和选频回路组成。
振荡器产生高频振荡信号,变容二极管作为可变电容元件,用于改变振荡回路的电容值,选频回路则负责选择和输出所需频率的信号。
在调频过程中,调制信号(例如音频信号)通过改变变容二极管的偏置电压,使其电容值发生变化,从而改变振荡频率,实现频率调制。
四、选频回路选频回路的作用是从多个频率分量中选出所需的频率分量。
在变容二极管调频电路中,选频回路通常由LC谐振回路构成。
通过调整LC回路的参数,可以选择出所需频率的信号。
同时,选频回路还能有效地滤除谐波和杂散分量,提高输出信号的质量。
五、输出信号经过调频的输出信号具有与调制信号相同的幅度和频率变化特性。
在变容二极管调频电路中,输出信号的频率随调制信号的幅度变化而变化,从而实现了频率调制。
输出信号的幅度和频率变化范围取决于变容二极管的电容变化范围和电路的参数设置。
六、应用场景变容二极管调频电路由于其结构简单、易于集成和调节方便等特点,在无线通信、卫星通信、雷达、电子对抗等领域得到广泛应用。
此外,在广播电视、遥控遥测、仪器仪表和测量设备中也有广泛应用。
通过将变容二极管调频电路与信号处理技术相结合,可以实现高性能的频率调制和解调,满足各种通信和测量需求。
实验八 变容二极管调频实验一 实验目的1. 进一步学习掌握频率调制相关理论。
2. 掌握用变容二极管调频振荡器实现FM 的电路原理和方法。
3. 理解变容二极管静态调制特性、动态调制特性概念并掌握测试方法。
二、实验使用仪器1.变容二极管调频振荡电路实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源三、实验基本原理与电路1. 变容二极管调频原理变容二极管的调频原理可用图8-1说明。
变容二极管的电容C 和电感L 组成LC 振荡器的谐振电路,其谐振频率近似为 LCf π21=。
在变容二极管上加一固定的反向直流偏压U 偏和调制电压U Ω(图a),则变容二极管的结电容C 将随调制信号U Ω的幅度变化而变化 ,通过二极管的变容特性(图b)可以找出结电容C 随时间的变化曲线(图c)。
此电容C 由两部分组成,一部分是0C ,由反向直流偏压U 偏决定,为固定值;另一部分是变化的电容,由调制电压U Ω的幅度决定,可以表示为t C m Ωcos ,其中Ω为调制信号的频率。
m C 是电容变化部分的幅度,则有C =0C 十t C m Ωcos 将C 代入f 的公式,化简整理可得f f t C C f f f m ∆+=Ω⋅-=0000cos 21式中 f ∆=021f -t C C mΩcos 00f 是0=m C 时,由电感L 和固定电容0C 所决定的谐振频率,称为中心频率,021LC f π=。
f ∆是频率的变化部分,而21C C f m是频率变化部分的幅值,称为频偏。
式中的负号表示当回路电容增加时,频率是减小的。
我们还可通过图8-1(C )及图(D )(L 固定,f 与C 成反比曲线)找出频率和时间的关系。
比较图(a )及图(e ),可见频率f 是随调制电压Ωu 的幅度变化而变化,从而实现了调频。
f f图8-1 变容二极管调频原理3. 变容二极管调频实验电路变容二极管调频实验电路如图8-2。
变容二极管一、实验目的1.了解变容二极管调频器的电路结构与电路工作原理2.掌握调频器的调制特性及其测量方法3.观察寄生调幅现象和了解其产生的原因及其消除方法 二、实验预习要求实验前,预习“电子线路非线性部分”第5章:角度调制与解调电路;“高频电子线路”第八章:角度调制与解调;“高频电子技术”第9章:角度调制与解调—非线性频率变换电路等有关章节的内容。
三、实验原理1.变容二极管直接调频电路:变容二极管实际上是一个电压控制的可变电容元件。
当外加反向偏置电压变化时,变容二极管PN 结的结电容会随之改变,其变化规律如图3-1所示。
图3-1变化规律直接调频的基本原理是用调制信号直接控制振荡回路的参数,使振荡器的输出频率随调制信号的变化规律呈线性改变,以生成调频信号的目的。
若载波信号是由LC 自激振荡器产生,则振荡频率主要由振荡回路的电感和电容元件决定。
因而,只要用调制信号去控制振荡回路的电感和电容,就能达到控制振荡频率的目的。
¿¿¿¿¿¿若在LC 振荡回路上并联一个变容二极管,如图3-2所示,并用调制信号电压来控制变容二极管的电容值,则振荡器的输出频率将随调制信号的变化而改变,从而实现了直接调频的目的。
2.电容耦合双调谐回路相位鉴频器:相位鉴频器的组成方框图如3-3示。
图中的线性移相网络就是频—相变换网络,它将输入调频信 号u1 的瞬时频率变化转换为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。
图3-4的耦合回路相位鉴频器是常用的一种鉴频器。
这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。
为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。
图3-4 耦合回路相位鉴频器图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调频—调相变换器和相位检波器两部分所组成。
变容二极管调频原理一、变容二极管调频原理简介变容二极管(又称肖特基二极管)是一种特殊的二极管,其主要特性是在反向偏置下具有可变的电容值。
这种特殊的二极管可用于调频(Frequency Modulation,FM)电路中,实现信号的调制与解调。
二、调频方式的基本原理在调频电路中,信号的频率起着关键的作用。
调频的基本原理是通过改变信号的频率来携带信息。
变容二极管通过改变电容值来调制信号的频率。
三、变容二极管调频的原理及过程1. 调制过程:- 步骤1:将待调制的信号输入到变容二极管的输入端,在电路中形成一个振荡器。
- 步骤2:控制变容二极管的电压,使其在频率调制范围内的电容值随时间变化。
- 步骤3:根据信号的幅度和方向为变容二极管施加不同的电压,使其电容值相应地改变。
2. 解调过程:- 步骤1:将调频信号输入到变容二极管的输入端。
- 步骤2:将变容二极管的电容值传递到解调器电路中。
- 步骤3:通过解调器电路的处理,提取出原始的调制信号。
四、变容二极管调频的优势- 变容二极管调频的优势在于其频率范围广泛,可实现高精度的频率调制和解调。
- 由于变容二极管可以在微秒级别内响应电压变化,因此调频速度快,可满足高要求的调频应用。
五、变容二极管调频的应用领域- 广播电台:使用变容二极管调频技术可以实现音乐、语音等信号的传输和接收。
- 通信系统:调频技术可用于无线通信系统,实现高质量的语音和数据传输。
- 遥控设备:变容二极管调频可用于遥控设备中,如遥控器、汽车智能钥匙等。
六、结论变容二极管调频原理是一种重要的调频技术,通过改变变容二极管的电容值来实现信号的调制与解调。
在广播、通信和遥控等领域有着广泛的应用前景。
实验十二 变容二极管调频实验一、实验目的1.掌握变容二极管调频电路的原理。
2.了解调频调制特性及测量方法。
3.观察寄生调幅现象,了解其产生及消除的方法。
二、实验内容1.观察测试变容二极管的静态调制特性。
2.观察调频波波形。
3.观察调制信号振幅时对频偏的影响。
4.观察寄生调幅现象。
三、实验原理1.变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
)(2121j N C C L LCf +==ππC-u 曲线可表示为n Bu C -=2222)2(1-==Bu u LA C π在1到10V 的区间内,变容二极管的容值可由35P 到8P 左右的变化调频灵敏度调频灵敏度定义为每单位调制电压所产生的频偏,以Sf 表示,单位为kHz/V 。
LBnu u f S nfπ412-=∂∂= 0U f S f =S f =|Δf| /m u Ωm u Ω为调制信号的幅度(峰值)2.电路原理图)14(1210CC C L f +=π设调制信号:υΩ(t)= V Ωcos Ωt , 载波振荡电压为:a ( t ) = A ocos ωot根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即 ω(t)= ωo + KfV Ωcos Ωt =ωo + Δωcos Ωt 则调频波的数字表达式如下: af (t) = Aocos(ωot + sin Ωt)或 af (t) = Aocos(ωot + mf sin Ωt)四、实验步骤1、静态调制特性测量将3号板SW1拨置“LC ”,P3端先不接音频信号,将频率计接于P2处。
调节电位器W2,记下变容二极管测试点TP6电压和对应输出频率,并记于下表中。
2.动态测试将电位器W2置于某一中值位置,将峰-峰值为4V ,频率为1kHz 的音频信号(正弦波)从P2输入。
在TP6用示波器观察,可以看到调频信号特有的疏密波。
实验八变容二极管频率调制电路实验一、实验目的:1. 了解变容二极管调频器电路原理和测试方法;2. 了解调频器调制特性及主要性能参数的测量方法;3. 观察寄生调幅现象,了解其产生原因及消除方法。
二、预习要求:1. 复习变容二极管的非线性特性,及变容二极管调频振荡器调制特性;2. 复习角度调制的原理和变容二极管调频电路的组成形式.三、实验电路说明:本实验电路如图8-1所示。
图8-1本电路由LC正弦波振荡器与变容二极管调频电路两部分组成。
图中晶体三极管组成电容三点式振荡器。
C1为基极耦合电容,Q的静态工作点由W1、R1、R2及R4共同决定。
L1、C5与C2、C3组成并联谐振回路。
调频电路由变容二极管D1及耦合电容C6组成,W2、R6与R7为变容二极管提供静态时的反向直流偏置电压,R5为隔离电阻。
C7与高频扼流圈L2给调制信号提供通路,C8起高频滤波作用。
四、实验仪器:1. 双踪示波器2. 万用表3. 频率计4. 实验箱及频率调制、解调模块五、实验内容及步骤:1. 静态调制特性测量1)接通电源;2)输入端不接调制信号,将频率计接到TP1端,示波器接至TP2观察波形;3)调节W1使振荡器起振,且波形不失真,振荡器频率约为5.6MHz左右;4)调节W2使TP3处的电压变化(Ud—二极管电压),将对应的频率填入表5-1。
表8-12. 动态测试:调节频率调制电路的f0 =6.5MHz,从P1端输入F=2KHz的调制信号Um,,在输出TP1端观察Um与调频波上下频偏的关系(用频率分析仪测量⊿f(MHz)),将对应的频率填入表5-2。
表8-2六、实验报告要求:1. 整理各项实验所得的数据和波形,绘制静态调制特性曲线;2. 求出调制灵敏度S。
通信电路设计变容二极管调频电路设计
变容二极管调频电路是一种用于实现快速可调调频的电路,它可以快速变化调频信号
的输出频率而不影响调频信号的波形、幅度和相位。
这种电路由于具有调节脉宽和调节频
率容易操作的优点,已广泛应用于微波信号处理、无线连接、语音处理等领域。
变容二极管调频电路由二极管、变容电容器、滤波元件和稳压电路组成,其结构如下
图所示:
图1 变容二极管调频电路示意图
二极管主要起“开关式”放大作用,根据反馈电路的不同情况,其工作的仿真模型和
电路结构可以极大的改变,其在调频方面有很大的作用。
变容电容器可以实现电容的变化,从而调节电流的充放电量,调节输出信号的频率。
滤波元件可以把调制信号从信号源中提取出来,有效地打消其他低频信号,使得其输
出信号更加清晰,从而更好地实现变频效果。
稳压电路将产生固定电压,它可以保护二极管和变容电容不受外部电压波动的影响,
以提高调频电路的稳定性。
通过以上四部分的调制电路可以实现变容二极管调频电路,可以有效控制信号的频率,提高电路的可靠性和鲁棒性。
此外,变容二极管调频电路还具有低功耗和体积小的优点,
使得它在实际应用中受到广泛的欢迎,在微波、通信等领域发挥着重要的作用。
实验八 变容二极管调频电路一、实验目的1. 进一步学习掌握频率调制相关理论。
2. 掌握用变容二极管调频振荡器实现FM 的方法。
3. 理解静态调制特性、动态调制特性概念和测试方法。
二、实验使用仪器1.变容二极管调频电路实验板2.谱分析仪、低频信号源、100MHz 双踪示波器、万用表 三、实验基本原理与电路1. 变容二极管调频原理变容二极管的调频原理可用图8-1所示。
在变容二极管上加一固定的反向直流偏压UR和调制电压Ωu (图a),则变容二极管电容量j C 将随Ωu 改变,通过二极管的变容特性(图b)可以找出电容C随时间的变化曲线(图c)。
此电容C由两部分组成,一部分是0C 为固定值;另一部分近似为t C m Ωcos ,为变化值,m C 是变化部分的幅度,则有t C C C m j j Ω+=cos 0 (8-1)将变容二极管接入振荡器的谐振回路,若调制信号的幅度不大,即在窄带调制时,可实现线性调频。
ff图8-1 变容二极管调频原理3. 变容二极管调频实验电路变容二极管调频实验电路如图8-2,置于本实验讲义末。
实验电路的交流谐振回路如图8-3(a )。
若65C C <<、75C C <<、2C C j <<,则图8-3(a )可近似为图7-4(b )。
四、实验内容1.变容二极管调频静态调制特性测试。
2.变容二极管调频动态调制特性测试。
3.变容二极管的Cj ~V 特性曲线的测量。
五、实验步骤1.变容二极管调频静态调制特性测试在实验箱主板上插上变容二极管调频实验电路模块。
接通实验箱上电源开关,电源指标灯点亮。
断开J2,连接J1。
调整电位器RW1,在测试点TP2测电压为+5V ,即变容二极管的反向偏压为-5V 。
连接J1、J2。
调整微调电容CV1、电位器RW2、RW3在TP3得到频率为10.7MHz 的最大不失真正弦信号(频率由OUT 端测试)。
调整RW1,改变变容二极管两端的反向电压V D ,测量变容二极管调频实验电路的输出频率,得到变容二极管调频静态调制特性。
变容二极管调频振荡器动态调制波形特点
变容二极管调频振荡器是一种基于变容二极管的电子振荡器,其动态调制波形的特点如下:
1. 频率调制:变容二极管调频振荡器的频率会随着输入信号的变化而变化。
当输入信号的幅度上升时,电容器的有效电容将减小,从而导致振荡频率增加。
因此,输入信号的变化将导致输出信号的频率偏移。
2. 波形畸变:由于变容二极管调频振荡器的电容器的电压变化率有限,所以在高频调制时,输出波形的上升和下降时间会变长,从而导致波形畸变。
3. 带宽扩展:动态调制可以扩展变容二极管调频振荡器的带宽,使其产生比静态调制更宽的频谱。
这意味着其可以在更广泛的频率范围内工作。
4. 信噪比改善:动态调制可以改善变容二极管调频振荡器的信噪比。
由于输入信号的变化会调制输出信号的幅度,从而增加输出信号的幅度和信噪比。
总之,动态调制可以使变容二极管调频振荡器产生符合要求的波形,并扩展其在频域和幅度范围上的应用。
实验四 变容二极管调频
一、实验目的
1、掌握变容二极管调频电路的原理。
2、掌握变容二极管调频的工作原理;
3、学会测量变容二极管的C j ~V 特性曲线;
4、学会测量调频信号的频偏及调制灵敏度。
二、实验内容
1、调节电路,观察调频信号输出波形。
2、观察并测量LC 调频电路输出波形。
3、观察频偏与接入系数的关系。
4、测量变容二极管的C j ~V 特性曲线;测量调频信号的频偏及调制灵敏度。
5、
二、实验原理
(1)变容二极管调频原理
所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载
波(高频振荡信号)的瞬时频率,使其按调制信号的规律变化。
设调制信号: ()t V t Ω=ΩΩcos υ,载波振荡电压为:()t A t a o o ωcos =
根据定义,调频时载波的瞬时频率()t ω随()t Ωυ成线性变化,即
()t t V K t o f o Ω∆+=Ω+=Ωcos cos ωωωω (4-1)
则调频波的数字表达式如下:
()⎪⎪⎭
⎫ ⎝⎛ΩΩ+=Ωt V K t A t a f o o f sin cos ω 或 ()()t m t A t a f o o f Ω+=sin cos ω (4-2)
式中: Ω=∆V K f ω是调频波瞬时频率的最大偏移,简称频偏,它与调制信
号的振幅成正比。
比例常数K f 亦称调制灵敏度,代表单位调制电压所产生的频
偏。
式中:F f V K m f f ∆=Ω∆=Ω=Ωω称为调频指数,是调频瞬时相位的最大
偏移,它的大小反映了调制深度。
由上公式可见,调频波是一等幅的疏密波,可
以用示波器观察其波形。
如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产
生调频波,其原理电路如图4-6—1所示。
图4-1 变容二极管调频原理电路
变容二极管j C 通过耦合电容1C 并接在N LC 回路的两端,形成振荡回路总电
容的一部分。
因而,振荡回路的总电容C 为:
j N C C C += (4-3)
振荡频率为:
)(21
21
j N C C L LC f +==ππ (4-4)
加在变容二极管上的反向偏压为:
()()()高频振荡,可忽略调制电压直流反偏O Q R V V υυ++=Ω
变容二极管利用PN 结的结电容制成,在反偏电压作用下呈现一定的结电容
(势垒电容),而且这个结电容能灵敏地随着反偏电压在一定范围内变化,其关系曲线称j C ~R υ曲线,如图4-6—2所示。
由图可见:未加调制电压时,直流反偏Q V (在教材称0V )所对应的结电容
为Ωj C (在教材中称0C )。
当反偏增加时,j C 减小;反偏减小时,j C 增大,其变化具有一定的非线性,当调制电压较小时,近似为工作在j C ~R υ曲线的线性段,j C 将随调制电压线性变化,当调制电压较大时,曲线的非线性不可忽略,它将
给调频带来一定的非线性失真。
图4-2 用调制信号控制变容二极管结电容
回到图4-6—1,并设调制电压很小,工作在j C ~R υ曲线的线性段,暂不考
虑高频电压对变容二极管作用。
设 t V V Q Q R Ω+=cos υ (4-5)
由图4-6—2(c )可见:变容二极的电容随υR 变化。
即: t C C C m jQ j Ω-=cos (4-6-4-6)
由公式(3)可得出此时振荡回路的总电容为
t C C C C C C m jQ N j N Ω-+=+='cos
由此可得出振荡回路总电容的变化量为:
()t C C C C C C m j jQ N Ω-=∆=+-'=∆cos
(4-4-7)
由式可见:它随调制信号的变化规律而变化,式中m C 是变容二极管结电容
变化的最大幅值。
我们知道:当回路电容有微量变化C ∆时,振荡频率也会产生f ∆的变化,其关系如下:
图4-3 Cj 部分接入回路 C C f f ∆•≈∆210 (4-4-8)
式中,是0f 未调制时的载波频率;0C 是调制信号为零时的回路总电容,显
然
jQ N o C C C +=
由公式(4-4)可计算出0f (调频中又称为中心频率)。
即: )(210jQ N C C L f +=
π
将(4-4-7)式代入(4-4-8)式,可得: t f t C C f t f m Ω∆=Ω=∆cos cos )/(21)(00
(4-4-9)
频偏: m C C f f )/(2100=∆ (4-10)
振荡频率: ()()t f f t f f t f o o Ω∆+=∆+=cos (4-11)
由此可见:振荡频率随调制电压线性变化,从而实现了调频。
其频偏f ∆与
回路的中心频率0f 成正比,与结电容变化的最大值m C 成正比,与回路的总电容0C 成反比。
为了减小高频电压对变容二极管的作用,减小中心频率的漂移,常将图4-6
—1中的耦合电容1C 的容量选得较小(与j C 同数量级),这时变容二极管部分接入振荡回路,即振荡回路的等效电路如图4-6—3所示。
理论分析将证明这时回
路的总电容为
)/(11'0j j N C C C C C C +•+= (4-12)
回路总电容的变化量为:
)/(11'0j j N C C C C C C +•+= (4-12)
回路总电容的变化量为:
j
C P C ∆≈∆2' (4-13)
频偏: f P C C f P f m ∆=•≈∆2002')/(21 (4-14)
式中,()jQ C C C P +=11称为接入系数。
变容二极管(Varactor Diodes)为特殊二极管的一种。
当外加顺向偏压
时,有大量电流产生,PN (正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。
但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。
极管的瞬时反向偏置电压子啊静态反向偏置电压的基础上按调制信号的规律变化,从而是振荡频率岁调制电压的规律变化,输出为调频波(FM )。
2、 FM 调制原理:
FM 调制是靠信号使频率发生变化,振幅可保持一定,所以噪声成分易消除。
设载波t w Vcm Vc c cos =,调制波t w Vsm Vs s cos =。
t w w w w s c m cos ∆+=或t f f f f s c m π2cos ∆+=,此时的频率偏移量△f 为最大频率偏移。
最后得到的被调制波m cm m V V θsin = , V m 随V s 的变化而变化。
⎰∆+==t
s s c m m t w w w t w dt w 0sin )/(θ )
sin sin(]sin )/(sin[sin t w m t w V t w w w t w V V V s c cm s s c cm m
cm m +=∆+==θ
s s f f w w m ∆=∆=为调制系数 三、实验仿真
电路图:
仿真分析:
1)示波器输出:
实验过程中发现,波形是逐渐由小变大乃至稳定下来的。
且在其中其频率不稳定,在1.07M~10.638M之间波动。
理论上,输出的调制波因随输入电压的正负而区别,如果电压为正,那么波形应该密一些,若为负,则应该疏一些,但是实验过程中这一现象不明显,可能是参数设置问题,没调试出来。
频率计显示:
稳定在10.638MHz,可见频率基本接近于10.7MHz,结果正确
五、实验总结
通过本次实验,基本掌握了便容二极管调频工作原理,理解了动态特性的概念,同时加强了自己调试及分析问题的能力。