三角形知识点归纳总结八年级
- 格式:docx
- 大小:37.32 KB
- 文档页数:5
全等三角形一、知识要点:〔一〕全等变换:只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
全等变换包括以下三种:1、平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
2、对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
3、旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
〔二〕全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动〔或称变换〕使之与另一个重合,这两个三角形称为全等三角形。
〔三〕全等三角形的性质: 全等三角形的对应角相等、对应边相等。
二、题型分析:题型一: 考察全等三角形的定义例题:以下说法正确的选项是〔 〕A 、全等三角形是指形状相同的两个三角形 C 、全等三角形的周长和面积分别相等 C 、全等三角形是指面积相等的两个三角形 D 、所有的等边三角形都是全等三角题型二:考察全等三角形之间的关系——传递性例题:如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,那么△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,那么△ABC 和△GHI ______全等.〔填“一定〞或“不一定〞或“一定不〞〕题型三:根据三角形全等求角例1:△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,那么∠DEF =______. 例2:如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,那么∠MAC 的度数等于〔 〕A 、120°B 、70°C 、60°D 、50°第二节 三角形全等的判定一、知识要点:〔一〕三角形全等的判定公理及推论有:1、“边角边〞简称“SAS 〞2、“角边角〞简称“ASA 〞3、“边边边〞简称“SSS 〞4、“角角边〞简称“AAS 〞5、斜边和直角边相等的两直角三角形〔HL 〕。
八年级数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰与底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边与腰不等的等腰三角形等边三角形7、三角形两边之与大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之与大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之与3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A与它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角与定理:三角形三个内角的与等于180度。
证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的与4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角与为360度6、等腰三角形两个底角相等三、多边形及其内角与1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角与:n边形内角与等于(n-2)*1808、多边形的外角与:360度注:有些题,利用外角与,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n 边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。
最新人教版八年级数学上册知识点总结归纳【最新整理】复资料、知识分享】新人教版八年级上册数学知识点总结归纳第十一章三角形1.三角形的概念三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形。
组成三角形的线段称为三角形的边,相邻两边的公共端点称为三角形的顶点,相邻两边所组成的角称为三角形的内角,简称三角形的角。
2.三角形中的主要线段1) 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段称为三角形的角平分线。
2) 在三角形中,连接一个顶点和它对边的中点的线段称为三角形的中线。
3) 从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段称为三角形的高线,简称三角形的高。
3.三角形的稳定性三角形的形状是固定的,这个性质称为三角形的稳定性。
在生产生活中,需要稳定的东西一般都制成三角形的形状。
4.三角形的特性与表示三角形有下面三个特性:三角形有三条线段,三条线段不在同一直线上,三角形是封闭图形,首尾顺次相接。
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
5.三角形的分类按边的关系分类:不等边三角形、三角形底和腰不相等的等腰三角形、等腰三角形、等边三角形。
按角的关系分类:直角三角形、锐角三角形、斜三角形、钝角三角形。
特殊的三角形:等腰直角三角形,两条直角边相等的直角三角形。
6.三角形的三边关系定理及推论1) 三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。
第十一章三角形11.1 与三角形有关的线段第1课时三角形的边1. 三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2.三角形按边分类①三角形的任意两边之和大于第三边。
②三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
**已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b要求会的题型:①数三角形的个数方法:分类,不要重复或者多余。
②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。
④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。
第2课时三角形的高、中线与角平分线1. 三角形的高:从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD 叫做△ABC的边BC上的高。
三角形的三条高的交于一点,这一点叫做“三角形的垂心”。
122. 三角形的中线:连接△ABC 的顶点A 和它所对的对边BC 的中点D ,所得的线段AD 叫做△ABC 的边BC 上的中线。
三角形三条中线的交于一点,这一点叫做“三角形的重心”。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线:∠A 的平分线与对边BC 交于点D ,那么线段AD 叫做三角形的角平分线。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
-按角分类:锐角三角形、直角三角形、钝角三角形。
-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的内角和与外角和-三角形内角和为180°。
-三角形的外角等于与它不相邻的两个内角之和。
三角形外角和为360°。
4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。
-全等三角形的对应边相等、对应角相等。
2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。
- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。
- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
-线段垂直平分线上的点与这条线段两个端点的距离相等。
八年级上册数学知识点归纳总结一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的边:组成三角形的三条线段叫做三角形的边。
3、三角形的顶点:三角形相邻两边的公共端点叫做三角形的顶点。
4、三角形的内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。
(二)三角形的分类1、按角分类:(1)锐角三角形:三个角都是锐角的三角形。
(2)直角三角形:有一个角是直角的三角形。
(3)钝角三角形:有一个角是钝角的三角形。
2、按边分类:(1)不等边三角形:三条边都不相等的三角形。
(2)等腰三角形:有两条边相等的三角形。
其中,相等的两条边叫做腰,另一条边叫做底边。
两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
(3)等边三角形:三条边都相等的三角形,也叫正三角形。
(三)三角形的三边关系1、三角形任意两边之和大于第三边。
2、三角形任意两边之差小于第三边。
(四)三角形的内角和定理三角形三个内角的和等于 180°。
(五)三角形的外角1、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
2、三角形的一个外角等于与它不相邻的两个内角的和。
3、三角形的一个外角大于与它不相邻的任何一个内角。
二、全等三角形(一)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
(二)全等三角形的性质1、全等三角形的对应边相等。
2、全等三角形的对应角相等。
(三)全等三角形的判定1、三边分别相等的两个三角形全等(SSS)。
2、两边和它们的夹角分别相等的两个三角形全等(SAS)。
3、两角和它们的夹边分别相等的两个三角形全等(ASA)。
4、两角和其中一个角的对边分别相等的两个三角形全等(AAS)。
5、斜边和一条直角边分别相等的两个直角三角形全等(HL)。
三、轴对称(一)轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS 、SAS 、ASA 、AAS 、HL (R t △≌R t △)2、等腰三角形的判定及性质 性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等")③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高【即:DE+DF=CP ,(D 为BC 上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合") ④等边三角形是轴对称图形,有3条对称轴。
判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角形。
③有一个角是60度的等腰三角形是等边三角形。
结论总结:① 高=23边【即:AB AD 23=】 ② 面积=243边【即:243AB S ABC =∆】 4、直角三角形的性质及判定性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。
④斜边中线等于斜边一半 判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
")③一边中线等于这边一半的三角形是直角三角形 结论总结:直角三角形斜边上的高=斜边直角边的乘积【即:ABBCAC CD ⋅=】AB CDABD ABCDABCDE PF B5、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点A 、B 为圆心,以大于AB 的一半长为半径作弧,两弧交于点M 、N;作直线MN ,则直线MN 就是线段AB 的垂直平分线。
第十一章三角形单元总结【思维导图】【知识要点】知识点一三角形的概念三角形的概念 :由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
三角形特性三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
三角形按边分类等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
等边三角形:底边与腰相等的等腰三角形叫做等边三角形,即三边都相等。
三角形三边的关系(重点)(1)三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b三角形的分类三角形按边的关系分类如下:三角形按角的关系分类如下:三角形的稳定性三角形具有稳定性四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。
考查题型一三角形的分类典例1(2020·朔州市期末)已知△ABC的一个外角为70°,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形【答案】C【详解】∵△ABC的一个外角为70°,∴与它相邻的内角的度数为110°,∴该三角形一定是钝角三角形,故选:C.变式1-1(2020·温州市期中)在△ABC中,若∠A:∠B:∠C=1:3:5,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定【答案】C【分析】根据∠A:∠B:∠C=1:3:5,可设∠A=x°,∠B=3x°,∠C=5x°,再根据三角形内角和为180°可得方程x+3x+5x=180,解方程算出x的值,即可判断出△ABC的形状.【详解】解:∵∠A:∠B:∠C=1:3:5,∴设∠A=x°,∠B=3x°,∠C=5x°,∴x+3x+5x=180,解得:x=20,∴∠C=5×20°=100°,∴△ABC是钝角三角形.故选:C.变式1-2(2019·定西市期中)若△ABC中,A:B:C1:2:4∠∠∠=,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形【答案】B【分析】根据三角形内角和180︒,求出最大角∠C,直接判断即可.【详解】解:∵∠A:∠B:∠C=1:2:4.∴设∠A=x°,则∠B=2x°,∠C=4x°,根据三角形内角和定理得到:x+2x+4x=180,解得:x=1807.则∠C=4×1807= 7207°,则△ABC 是钝角三角形. 故选B. 考查题型二 三角形的稳定性典例2(2019·唐山市期中)下列图形具有稳定性的是( )A .B .C .D .【答案】A【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A 、具有稳定性,符合题意;B 、不具有稳定性,故不符合题意;C 、不具有稳定性,故不符合题意;D 、不具有稳定性,故不符合题意,故选A .变式2-1(2020·安阳市期末)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( ).A .0根B .1根C .2根D .3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B变式2-2(2020·乌鲁木齐市期末)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是( )A .两点之间,线段最短B .垂线段最短C .三角形具有稳定性D .两直线平行,内错角相等 【答案】C【解析】试题分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解:这样做的道理是三角形具有稳定性.故选:C考查题型三 三角形的三边关系典例3(2019·宜兴市期中)下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm【答案】B【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误; B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确; C 、,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误. 故选:B .变式3-1(2019·邯郸市期中)已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .0 【答案】D【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >0,c-a-b <0,∴原式=a+b-c+(c-a-b )=0.故选D .变式3-2(2019·平顶山市期末)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1B .2C .8D .11【答案】C【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x ,则有7-3<x<7+3,即4<x<10,观察只有C 选项符合,故选C.变式3-3(2020·驻马店市期末)已知x ,y 满足40x -+=,则以x ,y 的值为两边长的等腰三角形的周长是( )A .20或16B .20C .16D .以上答案都不对 【答案】B【分析】先根据非负数的性质列式求出x 、y 的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,4-x=0,y-8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故选B.知识点二 与三角形有关的线段三角形的高:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
三角形知识点总结知识点1:三角形三边关系:1、两边之和大于第三边 2、两边之差小于第三边 知识点2、三角形的高线性质:1、三角形的高线垂直于三角形一边。
2、三角形高线与所在边所成角为903、三角形面积=½底1×高1= ½底2×高2知识点3、三角形的中线定义:三角形中,连接一个顶点和它的对边中点线段叫做三角形的中线。
中线性质:1、平分三角形一边,2、平分三角形的面积知识点4、三角形的角平分线定义:三角形一个角的平分线与三角形的一边相交,这个角的顶点与交点之间的线段叫三角形的角平分线。
性质:1、三角形的角平分线平分三角形一角。
知识点5、三角形具有稳定性。
知识点6、与三角形有关的角(1)三角形三个内角的和等于180(2)直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形。
(3)三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和。
知识点7、多边形(1)n 边形的对角线条数:n(n-3)/2。
(2)n 边形内角和为(n-2)180⨯ 180⨯(3)多边形外角和为360 。
知识点8、全等的概念:能够完全重合的两个图形叫做全等形。
全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
知识点9、常见的全等三角形的基本图形有平移型、旋转型和翻折型。
知识点10、三角形全等的判定方法:(1)三边分别相等的两个三角全等(边边边,SSS )(2)两边和它们的夹角分别相等的两个三角形全等(边角边,SAS )(3)两角和它们的夹边分别相等的两个三角形全等(角边角,ASA )(4)两个角和其中一个角的对边分别相等的两个三角形全等(角角边,AAS )(5)斜边和一条直角边分别相等的两个直角三角形全等(斜边、直角边,HL ) 知识点11、等腰三角形(1)等腰三角形的两个底角相等 (即等边对等角)(2) 等腰三角形顶角的平分线平分底边并且垂直于底边(3)等腰三角形顶角平分线、底边上的中线和底边上的高互相重合(三线合一) 知识点12、等边三角形(1)等边三角形的各角都相等,并且每一个角都等于60°(2) 三个角都相等的三角形是等边三角形(3)有一个角等于60°的等腰三角形是等边三角形(4)等边三角形也具有三线合一的性质知识点13、直角三角形(1)在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半(2)直角三角形斜边上的中线等于斜边上的一半知识点14、线段垂直平分线与角平分线(1)定理:线段垂直平分线上的点和这条线段两个端点的距离相等(2)逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上(3)线段的垂直平分线可看作和线段两端点距离相等的所有点的集合(4)角的平分线上的点到这个角的两边的距离相等知识点15、勾股定理(1)勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即2a+2b=2c(2)逆定理:如果三角形的三边长a、b、c有关系2a+2b=2c,那么这个三角形是直角三角形知识点16、三角形的中位线(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半知识点17、相似(1)平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例(2)定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边(3)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例(4)相似三角形判定定理1 两角对应相等,两三角形相似(ASA)(5)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似(6)判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)(7)判定定理3 三边对应成比例,两三角形相似(SSS)(8)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(9)性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比(10)性质定理2 相似三角形周长的比等于相似比(11)性质定理3 相似三角形面积的比等于相似比的平方。
八年级数学《全等三角形》知识点八年级数学《全等三角形》知识点一、全等三角形的定义全等三角形是指能够完全重合的两个三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边所夹的角是对应角;有公共边的,公共边一定是对应边;有公共角的,角一定是对应角;有对顶角的,对顶角一定是对应角。
全等”的图形必须满足形状相同且大小相等。
即能够完全重合的两个图形叫全等形。
全等三角形的性质包括对应边相等、对应角相等、对应边上的高对应相等、对应角平分线相等、对应中线相等、面积相等和周长相等。
二、三角形全等的判定定理判定三角形全等有五种定理:SSS或“边边边”、SAS或“边角边”、ASA或“角边角”、AAS或“角角边”和HL或“斜边,直角边”。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
判定两个三角形全等必须有一组边对应相等。
其中,A是英文“角”的缩写(angle),S是英文“边”的缩写(side)。
三、全等三角形的性质全等三角形的性质包括对应角相等、对应边相等、对应边上的高对应相等、对应角平分线相等、对应中线相等、面积相等和周长相等。
另外,角平分线上的点到这个角的两边的距离相等,线段垂直平分线上的点到这条线段两个端点的距离相等。
四、证题的思路证题的思路可以通过找夹角(SAS)来解决。
已知两边可以找直角(HL)定理,找第三边可以用SSS 定理。
如果已知一边为角的对边,则可以用AAS定理。
如果已知一个角和一边,则可以用SAS定理。
如果已知一边和一个角,则可以用ASA定理。
如果已知两个角,则可以用AAS 定理或者任意一边的SSS定理。
灵活运用定理需要注意全等三角形的条件和判定方法。
找出两个全等三角形中的对应边和对应角是关键。
在写两个三角形全等时,要注意对应的顶点、角和边的顺序。
三角形知识点归纳总结八年级在初中数学中,三角形是一个重要的部分,掌握好三角形的知识点对于初中阶段的学生来说至关重要。
本文将从几何意义、分类、性质和计算公式几个方面归纳总结八年级三角形知识点。
一、几何意义
三角形是由三条不在一条直线上的线段所组成的,其几何意义是一个平面内由三个点(这三个点不在同一条直线上)和它们之间连线所组成的图形。
二、分类
三角形可以根据三边的边长、三个角度的大小以及两者的组合进行分类。
1.根据边长可以分为等边三角形、等腰三角形和普通三角形。
等边三角形:三个边长相等的三角形。
等腰三角形:两个边相等的三角形。
普通三角形:三边都不相等的三角形。
2.根据角度大小可以分为钝角三角形、直角三角形和锐角三角形。
钝角三角形:其中一个角的大小大于90度的三角形。
直角三角形:其中一个角的大小等于90度。
锐角三角形:三个角都小于90度的三角形。
3.根据边长和角度的组合可以分为等腰直角三角形、等腰钝角三角形、等腰锐角三角形、直角等腰三角形、直角普通三角形、钝角普通三角形、锐角普通三角形等。
三、性质
三角形的一些性质可以用来判断其种类以及解题。
1.三角形内角和等于180度。
三角形的三个角之和始终为180度,即:
$\alpha+\beta+\gamma=180^{\circ}$。
2.等边三角形的三个角均为60度。
等边三角形的三边长度相等,而三个60度的角可以将其三等分。
3.等腰三角形的两个底角相等。
等腰三角形的两个边长相等,而两个底角恒定相等。
4.直角三角形的斜边平方等于两腰边平方和。
直角三角形的斜边是直角三角形的最长边,在解题中经常使用到勾股定理:$c^2=a^2+b^2$。
四、计算公式
解题需要用到许多与三边、三角形内角和、勾股定理相关的计算公式。
1.三角形内角和计算公式。
三角形的三个角之和始终为180度,可以通过以下公式计算:$\alpha+\beta+\gamma=180^{\circ}$。
2.勾股定理。
勾股定理指的是直角三角形中,两直角边平方和等于斜边平方。
可以表达为以下公式:
$c^2=a^2+b^2$
3.海伦公式。
海伦公式用于计算任意三角形的面积,可以表示为以下公式:$S=\sqrt{p(p-a)(p-b)(p-c)}$,其中$p=\frac{a+b+c}{2}$是三角形
半周长。
4.正弦定理。
正弦定理指的是用于计算任意三角形中一个角的正弦值,可以
表示为以下公式:
$\frac{a}{sin\alpha}=\frac{b}{sin\beta}=\frac{c}{sin\gamma}$。
5.余弦定理。
余弦定理可以用于求解三角形中一个角的余弦值,可以表示为
以下公式:
$a^2=b^2+c^2-2bc cos\alpha$。
总结:
三角形是初中数学中非常重要的一部分,理解好三角形的有关性质和计算公式对于初中生在学习和考试中都有很大的帮助。
本文从几何意义、分类、性质和计算公式等方面进行了总结,相信可以帮助读者更好地掌握三角形的知识。