空气动力学知识点总结
- 格式:docx
- 大小:37.39 KB
- 文档页数:5
空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形能力上的不同。
2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为流体的易流性。
3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗压缩变形的能力和特性称为弹性。
4、当马赫数小于0.3时,气体的压缩性影响可以忽略不计。
5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性,相对错动流层间的一对摩擦力即粘性剪切力。
6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力。
流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。
在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。
例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。
8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。
由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强的量纲是[力]/[长度]210、标准大气规定在海平面上,大气温度为15℃或T0=288.15K ,压强p0 = 760 毫米汞柱= 101325牛/米2,密度ρ0 =1.225千克/米311、从基准面到11 km 的高空称为对流层,在对流层内大气密度和温度随高度有明显变化,温度随高度增加而下降,高度每增加1km,温度下降6.5 K。
从11 km 到21km 的高空大气温度基本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。
空气动力学基础前六章总结第一章 空气动力学一些引述1、 空气动力学涉及到的物理量的定义及相应的单位①压强:是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,具有点属性。
0,lim →⎪⎭⎫ ⎝⎛=dA dA dF p 单位:Pa, kPa, MPa 一个标准大气压:101kPa②密度:定义为单位体积内的质量,具有点属性。
0,lim →=dv dvdm ρ 单位:kg/㎡ 空气密度:1.225Kg/㎡③温度:反应平均分子动能,在高速空气动力学中有重要作用。
单位:℃ ④流速:当一个非常小的流体微元通过空间某任意一点的速度。
单位:m/s ⑤剪切应力:dy dv μτ= μ:黏性系数 ⑥动压:212q v ρ∞∞∞= 2、 空气动力及力矩的定义、来源及计算方法空气动力及力矩的来源只有两个:①物体表面的压力分布 ②物体表面的剪应力分布。
气动力的描述有两种坐标系:风轴系(L,D )和体轴系(A,N)。
力矩与所选的点有关系,抬头为正,低头为负。
cos sin L N A αα=- , s i n c o s D N A αα=+3、 气动力系数的定义及其作用气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与二维中有差别,如:升力系数S q L C L ∞=(3D ),cq L c l ∞='(2D )L L C q S ∞≡,D D C q S ∞≡,N N C q S ∞≡,A A C q S ∞≡,M M C q Sl ∞≡,p p p C q ∞∞-≡,f C q τ∞≡ 二维:S=C(1)=C4、 压力中心的定义压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D 或法向力N ,轴向力A 及绕该点的力矩M 。
如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点,气动力矩为0。
第一章空气动力学一些引述1、空气动力学涉及到的物理量的定义及相应的单位;2、空气动力及力矩的定义、来源及计算方法;3、气动力系数的定义及其作用;4、压力中心的定义5、什么是量纲分析,为什么要进行量纲分析,其理论依据,具体方法;6、流动相似;7、流动问题的分类,判断标准,各有什么样的特点;(连续介质与自由分子;有粘无粘;可压不可压;根据马赫数的分类)8、粘性及流动分离对气动力的影响(特别是典型构型);9、飞行器及其部件(特别是翼型)升、阻力、力矩气动特性。
第二章空气动力学基本原理和控制方程1、梯度,散度,斯托克斯定理;2、描述流体的模型;3、速度散度的数学描述及物理含义。
4、流动的基本控制方程的理论依据(三大守恒定律),推导过程要了解,特别是要掌握方程中每一项数学表达式中的物理含义;5、实质导数,定义及所描述的物理含义;6、迹线,流线,染色线的定义,区别与联系;7、流体微元(团)的旋转角速度,旋度(涡量),变形(应变率)的定义及描述;8、环量、流函数、速度势的定义。
流函数与速度势的区别与联系。
第三章无粘不可压缩流动1、伯努利方程的推导,成立的条件及应用;2、压强系数定义及应用3、无旋不可压流动的控制方程--拉普拉斯方程,主要是推导依据和成立条件;(1)针对速度要满足的条件:一是散度为零(怎么来的?在什么样的条件下,速度散度才能为零),二是旋度为零。
(2)速度所要满足的边界条件。
4、四个基本流动;包括公式中出现的每一项的指代含义,例如偶极子中的强度是怎么定义的,具有什么样的量纲,第四章、第五章还出现了源面、涡面,也给出了强度定义,又指代的是什么,。
5、流动叠加的原理及叠加后的流动分析方法;6、几种有基本流动叠加合成的典型流动;7、库塔茹克夫斯基定理。
第四章绕翼型的不可压流动1、机翼气动特性研究两步走的策略;2、翼型的几何描述,常见翼型的升阻力及力矩气动特性;3、低速无粘绕流的理论求解体系;4、针对薄翼型的薄翼理论;5、压力中心,气动中心,零升迎角;6、粘性对翼型阻力的影响,层流、湍流、转捩等的不同影响;7、真实的翼型绕流现象,重点掌握翼型失速,定义,产生的原因,分类,对气动特性的影响;8、影响翼型最大升力系数的因素。
空气动力学基础(教学重点)绪论(1学时)第一章,,,,,,,,,,流体静力学(5学时)1、掌握连续介质假设的概念、意义和条件;2、了解掌握流体的基本物理属性,尤其是易流性、粘性、压缩性等属性的物理本质和数学表达;3、掌握流体力学中作用力的分类和表达、静止流体中压强的定义及其特性;4、初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义;5、在流体平衡微分方程的应用方面,掌握重力场静止液体中的压强分布规律,重点掌握标准大气问题。
第二章,,,,,流体运动学与动力学基础(12学时)1、了解两种描述流场的方法的区别与特点,重点掌握欧拉法下加速度的表达和意义2、掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的运动分解与刚体运动的异同;3、了解系统分析方法与控制体分析方法的区别与联系,了解雷诺输运方程的表达及意义;4、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、欧拉方程和能量方程的表达和意义;掌握微元控制体分析方法;掌握伯努利方程的表达、意义、条件和应用;5、重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系;第3章,,,,,,,,,,低速平面位流(6学时)3.1,,,,,,,,,,平面不可压位流的基本方程及其边界条件二维流动不可压无旋流动的基本方程是位函数满足的拉普拉斯方程不穿透条件(可滑移条件)拉普拉斯方程的叠加原理,速度也可叠加,压强不可叠加流函数也满足拉普拉斯方程3.2,,,,,,,,,,几种简单的二维位流各基本解的速度、位函数、流函数直匀流源,汇偶极子,偶极子的形成,轴线,方向点涡点涡的环量3.3,,,,,,,,,,一些简单的迭加举例直匀流加点源压强系数直匀流加偶极子达朗培尔疑题直匀流加偶极子加点涡儒可夫斯基升力定理了解二维对称物体绕流的数值解粘性流体动力学基础(4学时)流体粘性及其对流动的影响(流体的粘滞性,粘性流体运动特点)粘性流体的应力状态(理想流体与粘性流体作用面的受力特点,粘性流体的应力状态)广义牛顿内摩擦定理粘性流体动力学方程N-S方程粘性流体运动的基本性质(了解Re实验)边界层理论及其近似(6学时)边界层近似及其特征平面不可压缩流体层流边界层方程平板层流边界层相似解边界层动量积分方程(应用例子)边界层的分离现象第6,,,,,章,,,,,,,,,,高速可压流(12)6.1,,,,,,,,,,热力学基础知识(掌握)热力学的物系;平衡过程和可逆过程热力学一定律:内能和焓热力学第二定律,熵气体的状态方程完全气体等熵过程关系式6.2,,,,,,,,,,音速和马赫数(重点)现象微弱扰动传播过程与传播速度——音速音速公式马赫数6.3,,,,,,,,,,高速一维定常流(重点)一维定常绝热流的能量方程一维定常绝热流参数间的基本关系式总温T0,,总焓,临界点,,,,,,速度系数使用驻点参考量的参数关系式使用临界参考量的参数关系式等熵管流的速度与截面积关系,拉瓦尔管喷管的设计压强比,,,,,,M(λ)及流量的计算6.4,,,,,,,,,,微弱扰动的传播区,马赫锥(重点)马赫角6.5 ,,,,,,,,,,膨胀波(介绍)壁面外折dδ外折δ诸参数的变化趋势超音速流绕外钝角膨胀的计算6·6,,,,,,,,,,激波正激波(重点)正激波的形成,计算弱激波可以看作等熵波斜激波(介绍)波前波后气流参数的关系激波图线及应用压强决定激波圆锥激波(介绍)收敛—扩张喷管在非设计状态下的工作(介绍)。
空气动力学总结第一章流体的基本属性和流体静力学基础1.连续介质假设:根据空气微团的概念,就可以把空气看做是由空气微团组成的没有间隙的连续体。
2.一般情况下,流体只承受压力,而不承受拉力,在一定的剪切力的作用下,流体会产生连续的变形,因此静止的流体不能承受剪切力。
3.空气微团:指含有很多空气分子的很微小的一团空气,它与飞行器特征尺寸大小相比微不足道的,同时它还要包含足够多的空气分子数目,要使空气密度的平均特征值有确切的含义。
4.在研究飞行器在任何高度飞行所受的空气动力时都可以应用连续介质假设。
(X)原因:只有在对流和平流层可以5.描述流体的主要物理量有密度、温度、压强密度的物理意义:反映流体的稠密程度温度的物理意义:反映分子无规则运动平均动能的大小压强的物理意义:流体单位面积上作用力的大小三者之间的关系:P=ρRT (R 为气体常数)6.理想气体状态方程:P v =RT(对1kg 气体)P V m =R m T(对1kmol 气体)(标准状态下V m =22.414)P v=mRT =nR m T(对mkg 或nkmol 气体)R m 为摩尔气体常数,不仅与气体所处的状态无关,而且还与气体种类无关,又叫通用气体常数。
R 为气体常数,大小为287.06或287,它与所处状态无关,但随气体种类的不同而不同,气体常数和通用气体常数的关系是R m =M·R(M 为物质的摩尔质量)**上述方程中应该使用绝对压力,不能使用直接测量得出的表压****上述方程中的温度应该使用绝对温度(开氏温度)****其中P 的单位是pa 而不是hpa,标准大气压是1013.25hpa**7.不同温度单位、压强单位的换算关系:T F =9/5T+32或T=5/9(T F -32)T K =T C +273.150℃100℃32(华)212(华)273.15K 373.15K **atm 指的是大气压,标准海平面时为1atm**8.流体的压缩性:我们将流体随着压强增大而体积缩小的特性。
空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。
空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。
空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。
根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。
在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。
空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。
这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。
空气动力学复习一、基本概念1 粘性施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。
以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。
若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。
2 压缩性流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。
其物理意义是:单位体积流体的体积对压强的变化率。
气体流速变化时,会引起气体的压强和密度发生变化。
在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。
一般0.3Ma作为气体是否可压的分界点。
3 理想气体忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。
这种气体称为理想气体。
严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。
)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。
4 焓热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。
5理想流体不可压缩、不计粘性(粘度为零)的流体。
欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。
理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。
6 音速音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。
在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。
空气动力学知识点空气动力学是研究空气在机体表面运动时产生的力学效应的学科。
空气动力学知识点涵盖了各种与空气流动有关的原理和现象,对于飞机、汽车、火箭等交通工具的设计和性能优化发挥着至关重要的作用。
下面将介绍一些关键的空气动力学知识点。
1. 升力和阻力在空气动力学中,升力和阻力是两个最基本的概念。
升力是指机翼等物体在飞行或运动时受到的垂直向上的力,使得物体能够获得提升力以保持飞行。
阻力则是运动物体在空气中受到的阻碍力,是飞机、汽车等移动物体必须克服的力量。
升力和阻力的大小和方向取决于空气流动的速度、密度、物体的形状等因素。
2. 卡门涡街卡门涡街是指当流体经过物体时,流体两侧产生的交错的涡流。
这些涡流会在物体后部形成一串被称为卡门涡街的旋涡,对物体的性能和稳定性产生重要影响。
减小或控制卡门涡街可以提高交通工具的效率和性能。
3. 翼型翼型是用于生产升力的构件,通常指飞机机翼的截面。
不同的翼型设计会影响飞机的飞行稳定性、速度、升力和阻力等性能。
常见的翼型包括对称翼型、半对称翼型和非对称翼型,每种翼型都有其独特的特点和应用场景。
4. 涡流涡流是液体或气体在流动中形成的旋涡状结构。
在空气动力学中,涡流是产生升力和阻力的重要因素,也是风洞模拟实验和流场仿真计算的关键对象。
通过研究和控制涡流的生成和演变,可以改善飞机、汽车等交通工具的性能。
5. 马赫数马赫数是描述物体相对于音速运动速度的无量纲指标。
当飞机等物体的速度达到音速时,其马赫数为1,称为音速。
超音速则指马赫数大于1的速度范围,而亚音速则指马赫数小于1的速度范围。
马赫数的变化会对空气动力学效应和物体性能产生显著影响。
以上是关于空气动力学的一些基本知识点,这些知识点涵盖了空气流动、升力产生、阻力控制等领域的重要内容。
深入理解和掌握空气动力学知识,对于设计和优化交通工具的性能至关重要。
希望以上内容能为您对空气动力学有更深入的了解提供帮助。
汽车空气动力学总结第一章绪言一、何谓汽车空气动力学:以流体力学和空气动力学的基本原理、基本方法,分析汽车绕流汽车时的速度场、压强场,来研究作用在汽车上的气动力、气动力矩及其对汽车造型和性能影响的一门学科。
二、研究内容:1•气动力和气动力矩2.流场3.内部设备的冷却4. 散热通风和空调三、促使汽车空气动力学迅速发展的几个重要原因1.实用车速的提高2.石油危机价格暴涨3.市场竞争日趋激烈,促使各汽车厂家注重汽车性能。
四、汽车设计外形的要素1.机械工程要素:满足构件的布局,易于制造,方便维修。
2.人体工程要素:保证乘员乘坐舒适,上下方便,视野广阔,安全。
3.流体力学要素:满足流体力学方面的要求。
4.商品学要素。
五、小轿车外形的演变1、箱型汽车2、甲虫型汽车3、船型汽车4、鱼型汽车5、楔型汽车6 、未来型汽车各种型号汽车的特点六、货车和客车的造型问题第二章空气动力学基本原理大多数问题在流体力学中都有所设计,不在作详细论述,重要问题:从空气动力学的观点考察作用在汽车上的气动力和气动力矩1、摩擦阻力以边界层反映出的摩擦阻力2、压差阻力形成的原因3、诱导阻力分析诱导阻力形成的原因4、汽车坐标系的建立第三章空气动力对汽车性能的影响一、牵引力必须克服的各种阻力1、气动阻力X二C x 1W2A22、滚动阻力X R=(G -Y)f R忽略Y则X R=Gf3、爬行阻力X c G sin -4、加速阻力X A」ag汽车在水平无风的路面上等速行驶时,总阻力只有滚动阻力和气动阻力12A Gf由前述知,气动阻力系数下降,燃油消耗率下降。
第四章小轿车的气动造型一、 小轿车表面气流的流动情况1、 以阶梯背为例进行分析各部位的流动情况阻力总阻力气动阻力滚动阻力― vN e总阻力气动阻力二、 功率和车速的关系1、 气动阻力消耗的功率和车速的三次方成正比2、滚动阻力近似和速度的一次方成正比 三、气动力和最大车速的关系r T max 一Gf R 行 書 ]TA(C x -C y f R )由上式知:气动阻力系数下降,最大速度增大。
空气动力学知识点总结
一、概述
空气动力学是涉及空气对物体运动产生的力学现象的学科,是研究空气的流动和物体在空气中运动时所产生的力及其相互作用的学科。
空气动力学在现代工程设计、航空航天、交通运输、建筑设计、气象学等领域都有广泛的应用。
二、基本概念
1.空气动力学基础学科:空气动力学是理论力学、气体力学、热力学、流体力学等多个领域交叉的学科。
2.气动力学:指空气运动对物体所产生的力学效应和物体所受的力学反作用。
3.机翼:是创造升力的部分,承受飞行器全部重量的部分。
4.升力:是指在流体中飞行的物体所受的上升力。
5.阻力:是指在流体中移动的物体所受的阻碍力。
三、空气动力学的应用
1.飞行器
在飞行器方面的应用,空气动力学的重要性相当突出。
要使飞机的设计、制造、试验及飞行达到令人安全放心的水平,必须依靠空气动力学的理论和方法。
2.轮船
船的航行速度直接受到水流的阻力,而气体在飞行器上产生的阻力同样发生在船身上,空气动力学理论可用于轮船的设计和制造。
3.高速列车
在铁路运输领域,高速列车的瞬息万变的空气动力学作用是影响其行驶稳定性和运输安全的重要因素。
4.建筑设计
在建筑领域中,从设计建筑物的表面阻力与表面空气动力学特征,到楼宇的空气流体力学设计以及可持续建筑的改进,空气动力学在建筑设计上的作用愈发重要。
5.运动器材设计
在运动器材设计方面,空气动力学可用于设计高尔夫球头、拉力器、船桨、滑翔机等不同型号和用途的器材。
四、空气动力学知识点总结
1.空气动力学的研究对象,包括流体的流动状态、物体的运动状态以及流体和物体之间的相互作用。
2.气体的运动状态与流速、压力、温度和密度等相关。
3.常用的空气动力学运动模型,包括旋转圆盘模型、圆柱模型、球模型、机翼模型等。
4.空气动力学方程主要有牛顿运动定律、伯努利定理、连续性
方程、动量守恒方程、热力学第一定律等。
5.空气动力学实验包含风洞实验,飞行器模型的地面试验,飞
行器在空中的试飞试验等。
6.空气动力学的应用包括飞行器、轮船、高速列车、建筑设计、运动器材设计等领域。
7.空气动力学在现代工程设计、航空航天、交通运输、建筑设计、气象学等领域都有广泛的应用。
五、总结
空气动力学是涉及空气对物体运动产生的力学现象的学科,为
现代工程设计、航空航天、交通运输、建筑设计、气象学等领域
提供了支持。
空气动力学可用于设计高速列车、轮船、建筑物、
运动器材等不同型号和用途的物品。
空气动力学的应用在建筑领
域中的作用也在日益突出。
空气动力学是研究流体力学、热力学、力学等多个领域交叉的学科。
空气动力学的方程包括牛顿运动定律、伯努利定理、连续性方程、动量守恒方程、热力学第一定律等。
空气动力学的研究对象包括流体的流动状态、物体的运动状
态以及流体和物体之间的相互作用。
最后,空气动力学的应用将
会在更多的领域中得到发展和应用。