中考数学专题复习四边形中的折叠剪切旋转与动点最值问题
- 格式:doc
- 大小:710.00 KB
- 文档页数:8
中考数学专题复习《四边形的折叠问题》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图所示 在长方形ABCD 中 610AD AB ==, 若将长方形ABCD 沿DE 折叠 使点C 落在AB 边上的点F 处 则线段CE 的长为( )A .13B .1730C .103D .102.如图 在ABCD 中 将ADC △沿AC 折叠后 点D 恰好落在DC 延长线上的点E 处.若=60B ∠︒ 1AB = 则ABCD 的周长为( )A .4B .43C .6D .33.如图 在ABC 中 已知8AB = 点DE 、分别在边AC AB 、上 现将ADE 沿直线DE 折叠 使点A 恰好落在点F 处 若将线段BC 向左平移刚好可以与线段EF 重合 连接CF 若215BC CF += 则2BC CF -的值为( )A .4B .5C .6D .74.如图 矩形ABCD 中 3AB = 4BC = 点E 是BC 边上一点 连接AE 把B ∠沿AE折叠 使点B 落在点B '处 当CEB '为直角三角形时 BE 的长为( )A .2B .3C .2或3D .3或1.55.如图 将长方形纸片ABCD 沿EF 折叠后 若170=︒∠ 则2∠的度数为( )A .110︒B .115︒C .120︒D .125︒6.如图 在平面直角坐标中 矩形ABCD 的边5,:1:4AD OA OD == 将矩形ABCD 沿直线OE 折叠到如图所示的位置 线段1OD 恰好经过点B 点C 落在y 轴的点1C 位置 点E 的坐标是( )A .()1,2B .1,2C .)1,2D .()12 7.如图 在平面直角坐标系中 已个纸片OACB 顶点10006A B (,),(,)点P 为BC 边上的动点 将OBP 沿OP 折叠得到OPD 连接CD AD 、.则下列结论中:①当45BOP ∠=︒时 四边形OBPD 为正方形 ①当30BOP ∠=︒时 OAD 的面积为15 ①当P 在运动过程中CD 的最小值为5 ①当OD AD ⊥时 2BP =.其中结论正确的有( )A .1个B .2个C .3个D .4个 8.如图 把一张长方形纸片沿对角线折叠 若30EDF ∠= 则长方形纸片的长宽比为( )A .2:1B 2:1C 31D .23二 填空题9.在平行四边形ABCD 中 点E F 在BC 边上 把ABE 沿直线AE 折叠 CDF 沿直线DF 折叠 使点B C 落在对角线AC 上的点G 处 若110AGD ∠=︒ 则B ∠的度数为 .10.如图 点O 是矩形ABCD 的中心 E 是边AB 上的点 沿CE 折叠后 点B 恰好与点O 重合 若9BC = 则折痕CE 长度为 .11.如图 将长方形ABCD 沿EF 折叠得到两个全等的小长方形 1210AB BC ==,, 点G 在AB 上运动 当点 A 关于DG 的对称点A '落在右侧长方形BCEF 内部(含边界)时 则AG 的长度 m 的取值范围为 .12.如图 菱形ABCD 的边5AB = 高4CE = F 是边CD 上一动点 将四边形AEFD 沿直线EF 折叠 A 点的对应点为P 当CP 的长度最小时 CF 的长为 .13.如图 把正方形纸片ABCD 进行如下操作:对折正方形ABCD 得折痕EF 连接CE 将CB 折叠到CE 上 点B 对应点H 得折痕CG .那么AG BG= .三 解答题14.如图1 点E 为矩形ABCD 边BC 上一点 且CE CD = 把ABE 沿着AE 折叠 点B 的对应点F 恰好落在线段DE 上.(1)求证:≌AFD DCE(2)如图2 延长CF 交AE 于点G 交AB 于点H .①求证:GE DF GF CD ⋅=⋅①求:GH GA 的值.15.如图 沿折痕AE 折叠矩形ABCD 的一边 使点D 落在BC 边上一点F 处.若6AB = 且ABF △的面积为24 则:(1)BF 的长为_______________(2)BC 的长为________________(3)求EC 的长.16.如图1 已知长方形纸片ABCD 点E 在边AD 上 F 为AB 上的一个动点 G 为DC 上的一个动点 将长方形ABCD 沿直线EF EG 、折叠 点A D 、的对应点分别是点A '和点D .(1)如图2 当点A '落在ED 上时 求FEG ∠的度数(2)如图3 若54A ED ''∠=︒ 求FEG ∠的度数(3)如图4 若10A ED ''∠=︒ 求FEG ∠的度数(4)若A ED n ''∠=︒直接写出FEG ∠的度数(用含n 的代数式表示)17.如图 在Rt ABC △中 90BAC ∠=︒ 30C ∠=︒ 点D 是ABC 外一点连接AD BD将ABD △沿DB 折叠使点A 落在边BC 上的点1A 处 连接1A D 若1A D AC ⊥.(1)求证:四边形1ABA D 是菱形(2)连接1AA DC 若2AB = 求四边形1ADCA 的面积.18.综合探究:如图 四边形ABCD 是正方形 点M 在边AD 上 直线MN AB ∥.将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 MN 与BD 交于点P 连接AP A P ' A P '交CD 与点F .(1)连接PC 猜想PC 与PA '的数量关系为________ A PC '∠=________°(2)连接B D ' CA ' 两线段交于点O 移动直线MN 若CD 平分PCA '∠ 求证:CP B D '∥(3)移动直线MN 若6=BC 2B C '= 直接写出PAD ∠的度数.参考答案:1.C2.C3.B4.D5.D6.D7.C8.C9.75︒10.11.10103m ≤≤ 12.41314.(1)解:证明:CD CE =CDE ∴为等腰直角三角形45CDE FDA ︒∴∠=∠= ABE 沿AE 折叠得到AEF △ 且四边形ABCD 是矩形 AB AF CD ∴== 90AFE AFD B ∠=∠=∠=︒ 在AFD △与ECD 中AFD ECD CDE FDA AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFD DCE ∴≌.(2)①证明:AFD DCE ≌△△AD DE ∴= AF DF DC CE ===()11804567.52DCF DFC ∴∠=∠=︒-︒=︒ 45DEC ∠=︒ 180135BED DEC167.52AEF AEB BEF ∴∠=∠=∠=︒ GEF DCF ∴∠=∠ GFE DFC ∠=∠GEF DCF ∴∽GE GF DC DF∴= GE DF GF CD ∴⋅=⋅.①在Rt CED 中 45CDE ∠=︒DE ∴=DF DC CE ==)()2121EF DE DF CD CE ∴=-== 21EF CE ∴ 由①知:67.5BEA DFC ∠=∠=︒18067.5112.5EFC GEC ∴∠=∠=︒-︒=︒ECF GCE ∠=∠CEG CFE ∴△∽△21GE EF GC CE∴==. 15.(1)由矩形的性质可得:90B C ∠=∠=︒ 6AB CD == ABF △的面积为24 ①1242ABF S AB BF =⨯⨯= ①24224286BF AB ⨯⨯=== 故答案为:8(2)在(1)中已得8BF =由矩形的性质可得:90B C ∠=∠=︒ 6AB CD == AD BC = 由折叠的性质可得:AF AD BC == 由勾股定理可得:22228610BC AF BF AB =++= 故答案为:10(3)由(1)(2)可得2CF BC BF =-=根据折叠的性质有:EF DE =设CE x = 则6EF DE x ==-在Rt CEF △中 222CE CF EF +=即()22226x x +=- 解得83x = 即83CE =.16.(1)解:由翻折得:12A EF AEA ''∠=∠ 12D EG DED ''∠=∠ ①180AEA DED ''∠+∠=︒ ①()111809022FEG A EF D EG AEA DED ''''∠=∠+∠=∠+∠=⨯︒=︒(2)解:由 (1) 知12A EF AEA ''∠=∠ 12D EG DED ''∠=∠ ①54A ED ''∠=︒①126AEA DED ''∠+∠=︒①()1632A EF D EG AEA DED ''''∠+∠=⨯∠+∠=︒ ①5463117FEG A ED A EF D EG ''''∠=∠+∠+∠=︒+︒=︒ (3)解:①10A ED ''∠=︒ ①()()11180109522A EF D EG AEA DED ''''∠+∠=∠+∠=︒+︒=︒ ①951085FEG A EF D EG A ED ''''∠=∠+∠-∠=︒-︒=︒ (4)解:如图3 ①A ED n ''∠=︒①()180180AEA DED A ED n ''''∠+∠=︒-∠=-︒ ①2A EF AEA ''∠=∠ 2D EG DED ''∠=∠ ①1802n A EF D EG ︒-︒''∠+∠= ①18018022n n FEG A EF D EG A ED n ︒-︒︒+︒''''∠=∠+∠+∠=+︒= 如图4 ①180AEA DED A ED ''''∠+∠-∠=︒ ''A ED n ∠=︒ ①180AEA DED n ''∠+∠=︒+︒①2A EF AEA ''∠=∠ 2D EG DED ''∠=∠ ①1802n A EF D EG ︒+︒''∠+∠= ①18018022n n FEG A EF D EG A ED n ︒+︒︒-︒''''∠=∠+∠-∠=-︒= 综上 FEG ∠的度数为1802n ︒+︒或 1802n ︒-︒. 17.(1)证明:如图1 连接1AA 设1A D 交AC 于点E由折叠的性质得:1AB A B = 1AD A D =90BAC ∠=︒ 30C ∠=︒903060ABC ∴∠=︒-︒=︒1ABA ∴是等边三角形1AB AA ∴= 160BAA ∠=︒11906030CAA BAC BAA ∴∠=∠-∠=︒-︒=︒1A D AC ⊥190AEA ∴∠=︒1903060AA D ∴∠=︒-︒=︒∴1AA D △是等边三角形1AD AA ∴=11AB A B AD A D ∴===∴四边形1ABA D 是菱形(2)解:如图2由(1)可知 四边形1ABA D 是菱形 12A D AB ∴==90BAC ∠=︒ 30ACB ∠=︒24BC AB ∴==22224223AC BC AB ∴--1A D AC ⊥∴四边形1ADCA 的面积=1AA C ADC S S + 111111232232222AC A E AC DE AC A D =⋅+⋅=⋅=⨯= 18.(1)解:①四边形ABCD 是正方形 ①AB BC CD DA === 90BAD ABC BCD CDA ∠∠∠∠====︒ 四边形ABCD 是轴对称图形 BD 所在直线是其一条对称轴①45ADP ∠=︒ PA PC = PAM PCF ∠∠= ①MN AB ∥①90PMD BAD ∠∠==︒①MN AD ⊥18090A DF CDA '∠=︒-∠=︒①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①MN AA '⊥①点A D A '三点共线同理:点B C B '三点共线①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①PA PA '= PA D PAM PCF '∠=∠=∠ 90CB A B A D ABC BAD ''''∠=∠=∠=∠=︒ ①PC PA '=①90A DF '∠=︒ 180A DF PA M DFA PCF PFC A PC ''''∠+∠+∠=∠+∠+∠=︒ PA M PCF '∠=∠ DFA PFC '∠=∠ ①90A D A PC F '∠=︒'∠=故答案为:PC PA '= 90(2)证明:由(1)得PC PA '= 90A PC '∠=︒ ①45PCA PA C ''∠=∠=︒①CD 平分PCA '∠①22.5OCD PCD ∠=∠=︒①90CB A B A D ''''∠=∠=︒ 90A DF '∠=︒ ①四边形A B CD ''是矩形①OA OD OB OC ''===①ODC OCD ∠∠==22.5︒①45A ODC O A OD PC CD ''∠=︒=∠+∠=∠ ①CP B D '∥(3)解:如图 在AN 上取一点N 使得AN =①四边形A B CD ''是矩形 ①2,A D B C ''=①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①MN 垂直平分AA ' ①62MA MA +'== 90PMD PMN ∠∠==︒ ①MN AM AN =-=6232662+-=①45PDM ∠=︒ ①904545MPD PDM ∠∠=︒-︒=︒= ①PM DM AD AM ==-62626+-==①在Rt PMN 中6232tan 326PM PNM MN -∠===-①30PNM ∠=︒ ①262N PN PM A === ①PAD APN ∠∠==130152⨯︒=︒.。
解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD中,点E,F分别在AB,BC上,沿EF翻折后,点B落在边CD上的G处,若EG⊥CD,BE=4,DG=3,则AE的长为.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D= 80°,则∠BCF的度数是.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD中,AB=8,∠A=120°,M是CD上,DM=3,N是点AB上一动点,四边形CMNB沿直线MN翻折,点C对应点为E,当AE最小时,AN=.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.5.(2024·云南曲靖·二模)如图,已知在△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E为AC上一点,连接BE,交CD于点G,△BFE是△BCE沿BE折叠所得,且点C的对应点F恰好落在AB上,连接FG.(1)求证:四边形CEFG为菱形;(2)若AC=8,BC=6,求DG的长.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.258.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.1929.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.2210.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD 中,∠ABC =60°,P 是直线BD 上一动点,以AP 为边向右侧作等边△APE ,(A 、P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是,BC 与CE 的位置关系是;(2)①如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE ,若AB =2,∠APD =75°,直接写出BE 的长;(3)当点P 在直线BD 上时,其他条件不变,连接BE .若AB =23,BE =219,请直接写出△APE 的面积.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O影部分的面积为cm2.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=23,则GH的最小值是.17.(23-24八年级下·安徽合肥·期末)菱形ABCD中,∠B=60°,E是BC中点,连接AE,DE,点F是DE上一动点,G为AF中点,连接CG.(1)∠BAE=;(2)若AB=2,则CG的最小值为.18.(2024八年级下·全国·专题练习)如图,菱形ABCD中,AB=4,∠ABC=60°,点P为AD边上任意一点(不包括端点),连结AC,过点P作PQ∥AC,交边CD于点Q,点R线段AC上的一点.(1)若点R为菱形ABCD对角线的交点,PQ为△ACD的中位线,求PR+QR的值;(2)当PR+QR的值最小时,请确定点R的位置,并求出PR+QR的最小值;(3)当PR+QR的值最小,且PR+QR+PQ的值最小时,在备用图中作出此时点P,Q的位置,写作法并写出PR+QR+PQ的最小值.【考点五利用菱形的性质与判定解决新定义型问题】19.(22-23八年级下·江苏苏州·期末)定义:如果三角形有两个内角的差为90°,那么称这样的三角形为“准直角三角形”.(1)已知△ABC是“准直角三角形”,∠C>90°,若∠A=40°,则∠B=°.(2)如图,在菱形ABCD中,∠B>90°,AB=5,连接AC,若△ABC正好为一个准直角三角形,求菱形ABCD的面积.【变式训练】20.(23-24九年级下·山东威海·期中)【理解新定义】若一个四边形具备一组对角互补和一组邻边相等,则称该四边形为“补等四边形”.如正方形和筝形,它们都具备这样的特征,所以称为补等四边形.【解决新问题】(1)如图Ⅰ,点E,F分别在菱形ABCD的边CD,AD上,CE=DF,∠A=60°.四边形BEDF是否为补等四边形?(填“是”或“否”)(2)如图Ⅱ,在△ABC中,∠B>90°.∠ACB的平分线和边AB的中垂线交于点D,中垂线交边AC于点G,连接DA,DB.四边形ADBC是否为补等四边形?若是,进行证明;若不是,说明理由.21.(22-23八年级下·浙江宁波·期末)我们定义:以已知菱形的对角线为边且有一条边与已知菱形的一条边共线的新菱形称为已知菱形的伴随菱形.如图1,在菱形ABCD中,连接AC,在AD的延长线上取点E 使得AC=AE,以CA、AE为边作菱形CAEF,我们称菱形CAEF是菱形ABCD的“伴随菱形”.(1)如图2,在菱形ABCD中,连接AC,在BC的延长线上作CA=CF,作∠ACF的平分线CE交AD的延长线于点E,连接FE.求证:四边形AEPC为菱形ABCD的“伴随菱形”.(2)①如图3,菱形AEFC为菱形ABCD的“伴随菱形”,过C作CH垂直AE于点H,对角线AC、BD相交于点O.连接EO若EO=2CH,试判断ED与BD的数量关系并加以证明.②在①的条件下请直接写出CHED的值.22.(22-23八年级下·安徽合肥·期末)定义:在三角形中,若有两条中线互相垂直,则称该三角形为中垂三角形.(1)如图(a),△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,且BD⊥AE于点O,若∠BAE=45°,求证:△ABC是等腰三角形.(2)如图(b),在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,求证:AC2+BC2=5AB2.(3)如图(c),四边形ABCD是菱形,对角线AC,BD交于点O,点M,N分别是OA,OD的中点,连接BM,CN并延长,交于点E.求证:△BCE是中垂三角形;解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD 中,点E ,F 分别在AB ,BC 上,沿EF 翻折后,点B 落在边CD 上的G 处,若EG ⊥CD ,BE =4,DG =3,则AE 的长为.【答案】914【分析】此题重点考查菱形的性质、轴对称的性质、平行四边形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.作BH ⊥CD 交DC 的延长线于点H ,因为EG ⊥CD ,所以BH ∥EG ,由四边形ABCD 是菱形,得AB ∥CD ,AB =BC =CD ,则四边形BEGH 是平行四边形,所以GH =BE =4,由折叠得GE =BE =4,则BH =GE =4,所以DH =DG +GH =3+4=7,由勾股定理得42+7-AB 2=AB 2,求得AB =6514,所以AE =AB -BE =6514-4=914,于是得到问题的答案.【详解】解:作BH ⊥CD 交DC 的延长线于点H ,则∠H =90°,∵EG ⊥CD ,∴BH ∥EG ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC =CD ,∴BE ∥GH ,∴四边形BEGH 是平行四边形,∴GH =BE =4,由折叠得GE =BE =4,∵DG =3,∴DH =DG +GH =3+4=7,∵BH 2+CH 2=BC 2,CH =7-CD =7-AB ,∴42+7-AB 2=AB 2,解得AB =6514,∴AE =AB -BE =6514-4=914,故答案为:914.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠BCF 的度数是.【答案】80°/80度【分析】此题考查了菱形的性质,折叠的性质,等边对等角和平行线的性质,首先根据平行的性质得到BC =CD ,由折叠得BC =CF ,然后求出CF =CD ,然后根据等边对等角和平行线的性质求解即可.【详解】∵四边形ABCD 是菱形∴BC =CD由折叠可得,BC =CF∴CF =CD∴∠CFD =∠D =80°∵四边形ABCD 是菱形∴AD ∥BC∴∠BCF =∠DFC =80°.故答案为:80°.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD 中,AB =8,∠A =120°,M 是CD 上,DM =3,N 是点AB 上一动点,四边形CMNB 沿直线MN 翻折,点C 对应点为E ,当AE 最小时,AN =.【答案】7【分析】本题考查了菱形的性质,折叠的性质,勾股定理等知识,解决本题的关键是确定点E在AM上时,AE的值最小.作AH⊥CD于H,如图,根据菱形的性质可求得AH=32AD=83,DH=CH=8,在Rt△AHM中,利用勾股定理计算出AM=7,再根据两点间线段最短得到当点E在AM上时,AE的值最小,然后证明AN=AM即可.【详解】解:作AH⊥CD于H,如图,∵菱形ABCD的边AB=8,∠A=120°,∴AD=AB=CD=8,AB∥CD,∴∠D=180°-∠BAD=60°,∴∠DAH=30°,∴DH=12AD=4,AH=AD2-DH2=43,∵DM=3,∴HM=1,MC=CD-DM=5,在Rt△AHM中,AM=AH2+HM2=7,∵四边形CMNB沿直线MN翻折,点C对应点为E,,∴ME=MC=10,∵AE+ME≥AM,∴AE≥AM-ME,∴当点E在AM上时,AE的值最小,由折叠的性质得∠AMN=∠CMN,而AB∥CD,∴∠ANM=∠CMN,∴∠AMN=∠ANM,∴AN=AM=7.故答案为:7.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.【答案】6075【分析】本题考查菱形的性质,垂直平分线的定义.(1)直接根据菱形的对角相等即可求解;(2)如图,由垂直平分线的定义得到∠1=90°,从而∠ADC =30°,由菱形的性质得到∠CDC =∠1=90°,从而由折叠有∠CDE=∠C DE=12∠CDC =45°,因此∠ADE=75°,再根据菱形的对边平行即可求解.【详解】解:(1)∵四边形ABCD是菱形,∴∠C=∠A=60°.故答案为:60(2)如图,∵C D 是AB 的垂直平分线,∴∠1=90°,∴∠ADC =90°-∠A =90°-60°=30°,∵在菱形ABCD 中,AB ∥CD ,∴∠CDC =∠1=90°,由折叠可得∠CDE =∠C DE =12∠CDC =12×90°=45°,∴∠ADE =∠ADC +∠C DE =30°+45°=75°,∵在菱形ABCD 中,AD ∥BC ,∴∠DEC =∠ADE =75°.故答案为:755.(2024·云南曲靖·二模)如图,已知在△ABC 中,∠ACB =90°,过点C 作CD ⊥AB 于点D ,点E 为AC 上一点,连接BE ,交CD 于点G ,△BFE 是△BCE 沿BE 折叠所得,且点C 的对应点F 恰好落在AB 上,连接FG .(1)求证:四边形CEFG 为菱形;(2)若AC =8,BC =6,求DG 的长.【答案】(1)见解析(2)GD =1.8.【分析】(1)推出CG =EF ,CG ∥EF ,进而推出四边形CEFG 是平行四边形,并根据EC =EF 证得四边形CEFG 是菱形;(2)首先利用勾股定理求出AB ,设CG =x ,然后用x 表示出AE 和EF ,再在Rt △AEF 中,利用勾股定理构建方程,求出x ,进一步计算即可求解.【详解】(1)证明:∵CD ⊥AB ,△BFE 是△BCE 沿BE 折叠所得,∴∠BFE =∠BCE =90°,∠CEG =∠FEG ,EC =EF ,∴CD ∥EF ,∴∠CGE =∠FEG ,∴∠CGE =∠CEG ,∴CE =CG ,∴CG =EF ,∵CG ∥EF ,∴四边形CEFG 是平行四边形,∵EC =EF ,∴平行四边形CEFG 是菱形;(2)解:∵AC =8,BC =6,∠ACB =90°,22∵四边形CEFG 是菱形,∴EF =FG =CE =CG =x ,∴AE =8-x ,∵△BFE 是△BCE 沿BE 折叠所得,∴BF =BC =6,∴AF =AB -BF =10-6=4,∵在Rt △AEF 中,EF 2+AF 2=AE 2,∴x 2+42=8-x 2,解得:x =3,即CG =3.∵CD ⊥AB ,∴S △ABC =12AC ×BC =12AB ×CD ,∴CD =4.8,∴GD =4.8-3=1.8.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,平行四边形的判定,菱形的判定和性质以及勾股定理的应用,灵活运用各性质进行推理论证是解题的关键.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【答案】C【分析】首先根据题意作图,然后由图象判断出点P 在对角线BD 上,BP =4,BP +AP =6,设AO =x ,则AB =2AO =2x ,利用勾股定理求解即可.【详解】如图所示,由图象可得,当x 从0到4时,MA MC=y =1∴MA =MC∵四边形ABCD 是菱形∴点P 在对角线BD 上∴由图象可得,BP =4,BP +AP =6∵在菱形ABCD 中,∠B =60°,∴∠ABD =30°,AC ⊥BD∴设AO =x ,则AB =2AO =2x∴PO =BP -BO =4-3x∴BO =AB 2-AO 2=3x∴在Rt △APO 中,AP 2=AO 2+PO 2∴22=x 2+4-3x 2解得x =3,负值舍去∴AB =2x =23∴菱形ABCD 的边长是23.故选:C .【点睛】此题考查了动点函数图象问题,菱形的性质,勾股定理,含30°角直角三角形的性质等知识,解题的关键是根据图象正确分析出点P 在对角线BD 上.【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.25【答案】A 【分析】根据图象可知,当x =0时,即点P 与点A 重合,此时S △ABE =12,进而求出菱形的面积,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,利用菱形的性质,求出边长,即可得出结果.本题考查菱形的性质和动点的函数图象.熟练掌握菱形的性质,从函数图象中有效的获取信息,是解题的关键.【详解】解:由图象可知:当x =0时,即点P 与点A 重合,此时S △ABE =12,∴S 菱形ABCD =2S △ABE =24,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,交AC 于点O ,则:BD ⊥AC ,OA =OC =4,OB =OD ,∴S 菱形ABCD =12AC ⋅BD =24,∴BD =6,∴OB =OD =3,∴AB =OA 2+OB 2=5,∴菱形ABCD 的边长为5;故选A .8.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.192【答案】B【分析】本题主要考查了菱形的性质,勾股定理,动点问题的函数图象,过点C 作CE ⊥AD ,根据函数图象求出菱形的边长为a ,再根据图像的三角形的面积可得CE =8,再利用菱形的性质和勾股定理列方程可求a 即可.【详解】解:如图所示,过点C 作CE ⊥AD 于E ,∵在菱形ABCD 中,AD ∥BC ,AD =BC ,∴当点P 在边BC 上运动时,y 的值不变,∴AD =BC =10+a -10=a ,即菱形的边长是a ,∴12⋅AD ⋅CE =4a ,即CE =8.当点P 在AC 上运动时,y 逐渐增大,∴AC =10,∴AE =AC 2-CE 2=102-82=6.在Rt △DCE 中,DC =a ,DE =a -6,CE =8,∴a 2=82+a -6 2,解得a =253.故选:B .9.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.22【答案】C 【分析】结合图象,得到当x =0时,PO =AO =4,当点P 运动到点B 时,PO =BO =2,根据菱形的性质,得∠AOB =∠BOC =90°,继而得到AB =BC =OA 2+OB 2=25,当点P 运动到BC 中点时,PO 的长为12BC=5,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当x=0时,PO=AO=4,当点P运动到点B时,PO=BO=2,根据菱形的性质,得∠AOB=∠BOC=90°,故AB=BC=OA2+OB2=25,当点P运动到BC中点时,PO的长为12BC=5,故选C.10.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APE,(A、P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)①如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE,若AB=2,∠APD=75°,直接写出BE的长;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=23,BE=219,请直接写出△APE的面积.【答案】(1)BP=CE,CE⊥BC;(2)①仍然成立,见解析;②20-83(3)73或313【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)①(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;②根据已知得出DP=AD,进而根据①可得BP=CE,根据CE⊥BC,勾股定理,即可求解;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】(1)解:如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∴AP=AE,∠P AE=60°,∴∠BAP=∠CAE=60°-∠P AC,∴△BAP≌△CAE SAS,∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE SAS,∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;②如图所示,∵△ABP≌△ACE SAS,∴CE=BP,∵∠APD=75°,∠ADB=30°∴∠DAP=75°=∠APD,∴DA=DP=2,∵BD=2BO=23AO=3AB=23∴BP=CE=BD-DP=23-2∵CE⊥AD,AD∥BC∴CE⊥BC∴BE=BC2+CE2=22+23-22=20-83故答案为:20-83.(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∵∠ABC =60°,AB =23,∴∠ABO =30°,∴AO =12AB =3,OB =3AO =3,∴BD =6,由(2)知CE ⊥AD ,∵AD ∥BC ,∴CE ⊥BC ,∵BE =219,BC =AB =23,∴CE =(219)2-(23)2=8,由(2)知BP =CE =8,∴DP =2,∴OP =5,∴AP =OA 2+OP 2=(3)2+52=27,∵△APE 是等边三角形,∴S △AEP =34×27 2=73,如图4中,当点P 在DB 的延长线上时,同法可得AP =OA 2+OP 2=(3)2+112=231,∴S △AEP =34×231 2=313.【点睛】此题考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【答案】D 【分析】本题考查了旋转的性质、菱形的性质,含30°直角三角形的性质,勾股定理,坐标与图形,根据题意得到旋转的规律是解题的关键.根据题意得到点C 2024与点C 重合,在菱形中算出C 点坐标,即可解答.【详解】解:作CD ⊥OA 于D ,则∠CDO =90°,∵四边形OABC 是菱形,O 0,0 ,A -1,0 ,∴∠AOC =∠B =60°,OC =OA =1∴∠OCD =30°∴OD =12OC =12,CD =3OD =32∴点C 的坐标为-12,32,若菱形绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,则菱形OABC 绕点O 连续旋转2024次,旋转4次为一周,旋转2024次为2024÷4=506(周),∴绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024与菱形OABC 重合,∴点C 2024与C 重合,∴点C 2024的坐标为-12,32,故选:D .【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O按顺时针方向分别旋转90°、180°、270°后,得到如图的图形,每相邻两个菱形有一个顶点重合,则图中阴影部分的面积为cm 2.【答案】12-43【分析】连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,S △AOD =12×AE ×OD =12×3×3-1 =3-32cm 2 ,计算即可.【详解】如图,连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,∴点D 在OB 上,由已知条件易得BE =DE =12AB =1cm ,AE =OE =3cm ,∴OD =3-1cm ,∴S =1×AE ×OD =1×3×3-1 =3-3cm 2 ,∴所求面积为8×3-32=12-43cm2.故答案为:12-43.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?【答案】(1)证明见解析(2)①33;②30°或90°【分析】(1)连接AF,根据菱形的性质,可得到△GAF≅△EAF,从而得到∠GAF=∠EAF,进而得到△DAF ≅△BAF,即可求证;(2)①连接AF,EG,BD,AC,BD与AC交于点O,AF交EG于点P,根据旋转的性质和菱形的性质可得AF∥OD,△ABD和△AEG是等边三角形,从而得到AF=OD,进而得到四边形AODF是平行四边形,即可求解;②分两种情况讨论:∠BDF=90°和∠BFD=90°,利用矩形的性质、等边三角形的判定与性质求解即可得.【详解】(1)证明:连接AF,∵四边形AEFG是菱形,∴AE=EF=FG=GA,在△GAF和△EAF中,AG=AEGF=EFAF=AF,∴△GAF≅△EAF SSS,∵四边形ABCD 是菱形,∴AD =AB ,在△DAF 和△BAF 中,AD =AB∠DAF =∠BAF AF =AF,∴△DAF ≅△BAF SAS ,∴DF =BF .(2)解:①如图,连接AF ,EG ,BD ,AC ,BD 与AC 交于点O ,AF 交EG 于点P ,由(1)得当菱形AEFG 没有旋转时,AC 平分∠BAD ,AF 平分∠EAG ,∴此时点A 、F 、C 三点共线,∴当菱形AEFG 绕点A 按逆时针方向旋转时,∠FAC =α,∴当α=90°时,∠FAC =∠BAE =90°,在菱形ABCD 中,AB =AD ,OD =12BD ,OA =12AC ,BD ⊥AC ,∠DAO =12∠BAD =30°,∴∠AOD =90°∴∠DOA +∠FAC =180°,∴AF ∥OD ,在菱形AEFG 中,∠EAF =12∠EAG =30°,AE =AG ,AP =12AF ,PE =12EG ,∵∠DAB =∠GAE =60°.∴△ABD 和△AEG 是等边三角形,∴BD =AB =6,EG =AE =3,∴OD =3,EP =32,∴AP =AE 2-EP 2=32,OA =AD 2-OD 2=33∴AF =3,∴AF =OD ,∴四边形AODF 是平行四边形,∴DF =OA =33;②由①得四边形AODF 是平行四边形,∵∠FAC =90°,∴四边形AODF 是矩形,∴∠BDF =90°,即△DFB 为直角三角形,∴此时旋转角α的度数为90°;如图,当点F 在AD 上时,由①得AF =3,∴AF=DF,∵△ABD为等边三角形,∴BF⊥AD,即∠BFD=90°,∴此时△DFB为直角三角形,∵∠EAF=1∠EAG=30°,2∴∠BAE=∠BAD-∠EAF=30°,即此时旋转角α的度数为30°;综上所述,当△DFB为直角三角形时,旋转角α的度数为30°或90°.【点睛】本题主要考查了菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,并利用分类讨论思想解答是解题的关键.14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【答案】(1)43(2)FD=3CG,证明见解析(3)OE=3OC,2≤OC≤4【分析】(1)连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,根据菱形的性质,证明B,F,D三点共线,求出BD,BF的长,用BD-BF即可求出DF的长度;(2)过点D作DM∥FG,过点G作GM∥DF,过点C作CN⊥MG,得到四边形DMGF为平行四边形,证明△CDM≌△CBG,得到CM=CG,∠DCM=∠BCG,进而求出∠MCG=∠BCG+∠BCM=∠DCM+∠BCM=∠DCB=120°,利用等腰三角形的性质结合30度角的直角三角形的性质,即可得出结论;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,先证明△DOC≌△GOH,推出四边形AHGB为平行四边形,再证明△HAC≌△EBC,推出△CHE为等边三角形,利用等边三角形的性质和含30度角的直角三角形的性质,即可得出结论;②三角形的三边关系,求出CE的范围,进而求出OC的范围即可.【详解】(1)解:连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,∵菱形ABCD ,菱形EBGF ,∴∠ABD =∠CBF =12∠ABC =30°,∠EBF =∠GBF =12∠EBG =30°,AC ⊥BD ,EG ⊥BF ,BD =2OB ,BF =2HB ,∵点E 、G 分别在边AB 、BC 上,∴∠ABD =∠ABF =30°,∴B ,F ,D 三点共线,∵BE =2,∠EBF =30°,∴HE =12BE =1,BH =3HE =3,∴BF =2BH =23,同理:BD =2OB =23OA =2×32AB =63,∴DF =BD -BF =43;故答案为:43;(2)FD =3CG ,证明如下:过点D 作DM ∥FG ,过点G 作GM ∥DF ,过点C 作CN ⊥MG ,则:四边形DMGF 为平行四边形,∴DF =MG ,DM =GF ,∵菱形ABCD ,菱形EBGF ,∠ABC =∠EBG =60°,∴AD ∥BC ,BE ∥GF ,∠ADB =∠ABC =∠EBG =60°,CD =BC ,BG =GF =DM∴BE ∥DM ,∠1=∠2,∠DCB =180°-∠ADC =120°,∴∠3=∠DMN ,∵∠1=∠ADM +∠DMN ,∠2=∠3+∠CBE∴∠ADM =∠CBE ,∴∠CDA +∠ADM =∠CBE +∠EBG ,即:∠CDM =∠CBG ,又∵CD =BC ,BG =DM ,∴△CDM ≌△CBG ,∴CM =CG ,∠DCM =∠BCG ,∴∠MCG =∠BCG +∠BCM =∠DCM +∠BCM =∠DCB =120°,∴∠CMG =∠CGM =12180°-120° =30°,∵CN ⊥MG ,∴DF =MG =2NG ,CN =12CG ,∴NG=CG2-CN2=3CG,2∴DF=3CG;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,∵O是DG的中点,∴OD=OG,又∵∠DOC=∠HOG,∴△DOC≌△GOH,∴GH=CD,∠OCD=∠OHG,∴CD∥HG,∵菱形ABCD,∴AB∥CD,AD∥BC,AB=BC=CD=DA,∠ADC=∠ABC=60°,∴AB∥HG,GH=CD=AB,△ABC为等边三角形,∴四边形AHGB为平行四边形,∠BAC=∠ACB=60°,AC=AB=BC,∴AH∥BG,AH=BG,∠CAQ=180°-∠CAB=120°,∴∠HAQ=∠ABG,∵BG=BE,∴AH=BE,∵∠CBE=∠ABC+∠ABG+∠EBG=120°+∠ABG,∠HAC=∠HAQ+∠CAQ=∠HAQ+120°,∴∠CBE=∠HAC,又∵AH=BE,AC=BC,∴△HAC≌△EBC,∴CH=CE,∠HCA=∠ECB,∴∠HCE=∠HCA+∠ACE=∠BCE+∠ACE=∠ACB=60°,∴△CHE为等边三角形,∵OC=OH,∠HEC=60°,∴OE⊥OC,∠CEO=30°,∴OC=1CE,2∴OE=3OC;②∵BC=AB=6,BE=2,∴BC-BE≤CE≤BC+BE,即:4≤CE≤8,∵OC=1CE,2∴2≤OC≤4.【点睛】本题考查菱形的性质,平行四边形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质,含30度角的直角三角形,勾股定理,三角形的三边关系等知识点,综合性强,难度大,属于压轴题,熟练掌握相关知识点,添加辅助线构造特殊图形和全等三角形,是解题的关键.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质连接BD ,DE ,根据菱形的性质可得,△ABD 是等边三角形,再证明△ADP ≌△ABP ,可得PD =PB ,从而得到PE +PB 的最小值为DE 的长,再由E 是AB 的中点,可得DE ⊥AB ,AE =12AB =1,然后根据勾股定理可得DE =3,即可求解.【详解】解:如图,连接BD ,DE ,∵四边形ABCD 是菱形,周长为8,∠DAC =30°,∴∠DAB =2∠DAC =60°,∠DAP =∠BAP ,AB =AD =2,∴△ABD 是等边三角形,在△ADP 和△ABP 中,∵AP =AP ,∠DAP =∠BAP ,AB =AD ,∴△ADP ≌△ABP ,∴PD =PB ,∴PE +PB =PE +PD ≥DE ,即PE +PB 的最小值为DE 的长,∵E 是AB 的中点,∴DE ⊥AB ,AE =12AB =1,∴DE =AD 2-AE 2=3,即PE +PB 的最小值为3.故答案为:3.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =23,则GH 的最小值是.【答案】62【分析】连接AF ,利用三角形中位线定理,可知GH =12AF ,当AF ⊥BC 时,AF 最小,求出AF 最小值即可求出.【详解】解:连接AF ,如图,∵四边形ABCD 是菱形,∵G ,H 分别为AE ,EF 的中点,∴GH 是△AEF 的中位线,∴GH =12AF ,当AF ⊥BC 时,则∠AFB =90°,AF 最小,GH 得到最小值,∵∠B =45°,∴△ABF 是等腰直角三角形,∴AF 2+BF 2=AB 2,即2AF 2=AB 2,∴AF =6,∴GH =62,故答案为:62.【点睛】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.(23-24八年级下·安徽合肥·期末)菱形ABCD 中,∠B =60°,E 是BC 中点,连接AE ,DE ,点F 是DE 上一动点,G 为AF 中点,连接CG .(1)∠BAE =;(2)若AB =2,则CG 的最小值为.【答案】30°2217【分析】(1)连接AC ,证明△ABC 为等边三角形,三线合一,即可得出结果;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI ,根据三角形的中位线定理,推出点G 在IH 上运动,当CG ⊥HG 时,CG 最小,进行求解即可.【详解】解:(1)连接AC ,∵菱形ABCD ,∴AB =BC ,∵∠B =60°,∴△ABC 为等边三角形,∴∠BAC =60°,∵E 是BC 中点,∴AE 平分∠BAC ,∴∠BAE =12∠BAC =30°;故答案为:30°;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI则:IG ∥DF ,HG ∥DF ,∴I ,G ,H 三点共线,。
中考数学专题复习《勾股定理之折叠问题分类讨论存在性问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 ABC 中 90A ∠= 7AB = 24AC = 点D 为边AC 上一点 将ABC 沿BD 折叠后 点A 的对应点A '恰好落在BC 边上 则线段AD 的长为( )A .407B .214C .16825D .3262.如图是一张直角三角形纸片 已知6AC = 10AB = 将纸片沿AD 折叠 使点C 落在AB 边上的点C '处 则折痕AD 长为( ).A .5B .35C .3D .323.已知2OA = 2OB = 将AOB 沿着某直线CD 折叠后如图所示 CD 与x 轴交于点C 与AB 交于点D 则点C 坐标是( )A .()0.4,0B .()0.5,0C .()0.6,0D .()0.7,04.如图 长方形纸片ABCD 中 6AB = 18AD = 将此长方形纸片折叠 使点D 与点B 重合 点C 落在点H 的位置 折痕为EF 则ABE 的面积为( )A .6B .18C .24D .485.如图 在平行四边形ABCD 中 60B ∠=︒ 4AB = 6AD = E 是AB 边的中点 F 是线段BC 上的动点 将EBF 沿EF 所在直线折叠得到EB F ' 连接B D ' 则B D '的最小值是( )A .4B .6C .2D .26.将长方形纸片ABCD 如图折叠 B C 两点恰好重合在AD 边上的同一点P 处折痕分别是MH NG 若90MPN ∠=︒ 3PM = 5MN = 分别记PHM PNG PMN 的面积为1S 2S 3S 则1S 2S 3S 之间的数量关系是 ( )A .312S S S =+B .312322S S S =+C .32155S S S =-D .2123S S S =-7.如图 直角ABC 中 90C ∠=︒ 3AC = 4BC = 将ABC 沿AB 折叠得ABD △ 点C 的对应点为点D 则点D 到BC 的距离为( )A .125B .245C .9625D .125或245 8.如图 在Rt ABC △纸片中 9043A AB AC ∠=︒==,, 将Rt ABC △纸片按图示方式折叠 使点A 恰好落在斜边BC 上的点E 处 BD 为折痕 则下列四个结论:①BD 平分ABC ∠①AD DE = ①DE EC = ①DEC 的周长为4 其中正确的个数有( )A .1B .2C .3D .4二 填空题9.如图 Rt ABC △中 90ACB ∠=︒ 30B ∠=︒ 4AC = 点P 为AB 上一个动点 以PC 为轴折叠APC △得到QPC 点A 的对应点为点Q 当点Q 落在ABC 内部(不包括边)上时 AP 的取值范围为 .10.如图 在平面直角坐标系中 长方形ABCO 的边OC OA 、分别在x 轴 y 轴上 3AB = 点E 在边BC 上 将长方形ABCO 沿AE 折叠 若点B 的对应点F 恰好是边OC 的三等分点 则点E 的坐标是 .11.如图 有一个直角三角形纸片 两直角边18cm AC = 24cm BC = 现将直角边AC 沿直线AD 折叠 使它落在斜边AB 上 且与AE 重合 则BD = cm .12.已知直线l 为长方形ABCD 的对称轴 5AD = 6AB = 点E 为射线DC 上一个动点 把ADE 沿直线AE 折叠 点D 的对应点D 恰好落在对称轴l 上.则点D 到边CD 的距离是 .13.如图 把长方形ABCD 沿直线BD 向上折叠 使点C 落在C '的位置上 BC '交AD 于E 已知4CD = 8BC = 则EC D '的面积为 .三 解答题14.如图是一张直角三角形ABC 纸片 90C ∠=︒ 6AC = 8BC =.(1)在图1中 将直角边AC 沿AD 折叠 使点C 落在斜边AB 上的点E 处 求CD 的长(2)在图2中 将BFG 沿FG 折叠 使点B 与点A 重合 求BF 的长.15.一数学兴趣小组探究勾股定理在折叠中的应用 如图 将一张长方形纸片ABCD 放在平面直角坐标系中 点A 与原点O 重合 顶点B D 分别在x 轴 y 轴上 P 为边CD 上一动点 连接BP 将BCP 沿BP 折叠 点C 落在点C '处.(1)若4AB = 3AD = 如图1 连接BD 当点C '在线段BD 上时 求点P 的坐标.(2)在(1)的条件下如图2 当点P 与点D 重合时 沿BD 将BCD △折叠得BC D '△ DC '与x 轴交于E 点 求BDE 的面积.(3)若8AB = 4BC = 当ADC '为等腰三角形时 求点P 的坐标.16.如图1 ABC 中 90,BAC AB AC ∠=︒= D E 是直线BC 上两动点 且45DAE =︒∠.探究线段BD DE EC 三条线段之间的数量关系:小明的思路是:如图2 将ABD △沿AD 折叠 得ADF △ 连接EF 看能否将三条线段转化到一个三角形中 …请你参照小明的思路 探究并解决下列问题:(1)猜想BD DE EC 三条线段之间的数量关系 并证明(2)如图3 当动点E 在线段BC 上 动点D 运动在线段CB 延长线上时 其它条件不变 (1)中探究的结论是否发生改变?请说明你的猜想并给予证明.17.已知ABC CDE △≌△ 且90B D ∠=∠=︒ 把ABC 和CDE 拼成如图所示的形状 使点B C D 在同一条直线上 若4AB = 3DE =.(1)求AE 的长(2)将ABC 沿AC 折叠 点B 落在点F 处 延长AF 与CE 相交于点G 求FG 的长.18.如图 在ABC 中 90C ∠=︒ 把ABC 沿直线DE 折叠 使ADE 与BDE 重合.(1)若38A ∠=︒ 则CBD ∠的度数为________(2)若6AC = 4BC = 求AD 的长(3)当(0)AB m m ABC =>,△的面积为24m +时 求BCD △的周长.(用含m 的代数式表示)参考答案:1.B2.B3.B4.C5.C6.C7.C8.C9.234AP <<10.25⎛- ⎝⎭或2⎛- ⎝⎭11.1512.1或9/9或113.614.(1)3CD = (2)254BF15.(1)点P 的坐标为5,32⎛⎫ ⎪⎝⎭ (2)7516(3)当ADC '为等腰三角形时 点P 的坐标为()44,或4⎫⎪⎪⎝⎭.16.(1)222DE BD EC =+(2)不变 222DE BD EC =+17.(1)AE =(2)9418.(1)14︒ (2)133AD =(3)BCD △的周长为4m +.。
专题02 中考折叠问题的归类解析【专题综述】折叠问题在近年来各地的中考试卷中频频出现,解决这一类问题主要抓住两点:折叠前后重合的角相等,重合的边也相等.【方法解读】一、折叠与平行例1:如图,在四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___.【来源】2013-2014学年江苏省宜兴市和桥学区七年级下学期期中考试数学试卷(带解析)【答案】95°在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.考点:1.平行线的性质;2.三角形内角和定理;3.翻折变换(折叠问题).【解读】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【举一反三】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:EDB EBD∠=∠;(2)判断AF与BD是否平行,并说明理由.【来源】2015中考真题分项汇编第1期专题4 图形的变换【答案】【解析】试题解析:(1)由折叠可知:∠CDB =∠EDB∵四边形ABCD是平行四边形∴DC∥AB∴∠CDB =∠EBD∴∠EDB=∠EBD(2) ∵∠EDB=∠EBD∴DE=BE由折叠可知:DC=DF∵四边形ABCD是平行四边形∴DC=AB∴AE=EF∴∠EAF=∠EFA△BED中, ∠EDB+∠EBD+∠DEB=180°即2∠EDB+∠DEB=180°同理△AEF中,2∠EFA+∠AEF=180°∵∠DEB=∠AEF∴∠EDB= ∠EFA∴AF∥BD考点:折叠变换,平行四边形的性质,等腰三角形的性质与判定,三角形的内角和二、折叠与全等例2:如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。
题型四几何最值问题类型一利用“垂线段最短”解决最值问题1. 如图,在△ABC中,AC=BC=6,AB=8,点D在AC边上,连接BD,以AD,BD为邻边作▱ADBE,连接DE,则DE的最小值为________.第1题图2. 如图,在△ABC中,AC=BC=6,S△ABC=12,点D为AB的中点,点M,N分别是CD 和BC上的动点,则BM+MN的最小值是________.第2题图3. 如图,四边形ABCD是菱形,对角线AC,BD相交于点O,点P是BD上一动点,点E 是BC上一动点,若AC=6,BD=63,则PC+PE的最小值为________.第3题图4. 如图,在△OAB中,已知∠AOB=35°,点P是边AB上一点,点M,N分别是射线OA,OB上异于点O的动点,连接PO,PM,MN,若∠BOP=10°,OP=6,则PM+MN的最小值为________.第4题图类型二 利用“两点之间线段最短”解决最值问题1. 如图,在矩形ABCD 中,AB =6,AD =8,点P 是矩形ABCD 内一点,记a =S △APB +S △CPD ,b =P A +PB +PC +PD ,则a +b 的最小值为________.第1题图2. 如图,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,AB =1,AD =2,M ,N 分别为BC ,CD 边上的动点,则△AMN 周长的最小值为________.第2题图3. 如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,BC =43 ,点D 为边BC 上的动点,点E 为边AB 的中点,连接DE ,DA ,则线段DE +DA 的最小值为________.第3题图4. 如图,在等腰Rt △ABC 中,AB =AC =22 ,∠A =90°,点P 是△ABC 内部一点,且满足S △BCP =12S △ABC ,则PB +PC 的最小值为________.第4题图5. 如图,二次函数y =-23 x 2-43x +2的图象与x 轴分别交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点P 是其对称轴上一点,连接PB ,PC ,BC ,则△PBC 的周长最小为________.第5题图类型三 利用“二次函数性质”解决最值问题(2021.9)1. 我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c, 记p =a +b +c 2,则其面积S =p (p -a )(p -b )(p -c ) .这个公式也被称为海伦-秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( )A. 5B. 4C. 25D. 52. 如图,在矩形ABCD 中,AB =2,AD =3,P 是BC 上的任意一点(P 与B ,C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E ,连接AE ,在点P 的运动过程中,线段CE 的最大值为________.第2题图3. 如图,在等腰△ABC 中,AC =BC =4,∠C =120°,点P 是AC 上一动点,PD ∥AB ,交BC 于点D ,连接AD ,则点P 在运动过程中,△APD 的面积的最大值为________.第3题图4. 如图,矩形ABCD中,AB=6,BC=4,点E,F分别为边AB,CD上的动点,且AE=CF,将线段EF绕点F逆时针旋转90°得到线段FG,连接DG.(1)当点E为AB的中点时,线段DG的长是________;(2)当点E在边AB上运动时,线段DG的最小值是________.第4题图类型四利用“辅助圆”解决最值问题(8年3考:2021.10、17,2020.17)1. 如图,在矩形ABCD中,AB=6,AD=25,E是边CD上一点,将△ADE沿直线AE 折叠得到△AFE,BF的延长线交边CD于点G,则DG长的最大值为________.第1题图2. 如图,在正方形ABCD中,E,F分别是AB,BC边上的动点(不与正方形的顶点重合),且AE=BF,CE,DF交于点M,连接BM,若AB=2,则BM的最小值为________.第2题图3.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,E,F分别是AC,BC边上的动点,且EF=AC,P是EF的中点,连接AP,BP,则△APB面积的最小值为________.第3题图4. 如图,已知△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转a(0°<a<120°),得到线段AD,连接CD,点E为CD上一点,且DE=2CE.连接BE,则BE的最小值为________.第4题图5. 如图,在△ABC中,∠C=45°,∠B=60°,BC=3+1,P为边AB上一动点,过点P 作PD⊥BC于点D,PE⊥AC于点E,连接DE,则DE的最小值为________.第5题图题型四 几何最值问题类型一 利用“垂线段最短”解决最值问题 1. 853【解析】如解图,设DE 与AB 交于点O ,∵四边形ADBE 是平行四边形,∴OB =OA ,DE =2OD ,∴当OD ⊥AC 时,DO 的值最小,即DE 的值最小,过点B 作BH ⊥AC 于点H ,则∠BHD =∠EDH =90°,易知AD ∥BE ,即AC ∥BE ,∴∠EBH =90°,∴四边形BHDE 是矩形,∴DE =BH ,∵AC =BC =6,AB =8,∴设CH =x ,则AH =6-x ,∵BA 2-AH 2=BH 2=BC 2-CH 2,即82-(6-x )2=62-x 2,解得x =23 ,∴CH =23,∴DE =BH =BC 2-CH 2 =853 .∴DE 的最小值为853.第1题解图2. 4 【解析】如解图,作点N 关于DC 的对称点N ′.∵AC =BC ,点D 为AB 的中点,∴点N ′在AC 上,连接MN ′,BN ′,∴BM +MN =BM +MN ′≥BN ′,∴当B ,M ,N ′三点共线,且BN ′⊥AC 时,BM +MN 取得最小值.∵AC =6,S △ABC =12,∴△ABC 中AC 边上的高为4,∴BM +MN 的最小值是4.第2题解图3. 33 【解析】如解图,作点E 关于BD 的对称点E ′,连接PE ′,∵四边形ABCD 是菱形,∴BA 与BC 关于BD 对称,∴点E ′位于BA 上,由对称的性质可知,PE =PE ′,∴当C ,P ,E ′三点重合,且CE ′⊥BA 时,PC +PE 的值最小,即为CE ′的长,∵四边形ABCD 是菱形,∴AO =CO =12 AC =3,BO =DO =12BD =33 ,AC ⊥BD ,AB =BC ,∴在Rt △BOC 中,BC =BO 2+CO 2 =6,tan ∠BCO =BO CO=3 ,∴∠BCO =60°,∴△ABC 是等边三角形,∴CE ′=BC ·sin 60°=33 ,∴PC +PE 的最小值为33 .第3题解图 4. 33 【解析】如解图,作点P 关于OA 的对称点P ′,连接OP ′,过点P ′作OB 的垂线交OA 于点M ,交OB 于点N ,此时PM +MN 的值最小,最小值为线段P ′N 的长.∵∠AOB =35°,∠BOP =10°,点P ′与点P 关于OA 对称,∴∠POA =∠P ′OA =25°,∴∠BOP ′=60°,OP ′=OP =6,在Rt △P ′ON 中,P ′N =OP ′·sin 60°=6×32=33 ,∴PM +MN 的最小值为33 .第4题解图类型二 利用“两点之间线段最短”解决最值问题1. 44 【解析】如解图,过点P 作EF ⊥AB ,分别交AB ,CD 于点E ,F ,连接AC ,BD ,则EF =AD =8,∵四边形ABCD 是矩形,∴∠ABC =90°,AB =CD =6,AD =BC =8,∴AC=AB 2+BC 2 =62+82 =10,∴BD =AC =10,∵S △APB +S △CPD =12 AB ·PE +12 CD ·PF =12AB ·EF =12×6×8=24,P A +PC ≥AC ,PB +PD ≥BD ,∴当A ,P ,C 三点共线,B ,P ,D 三点也共线时,P A +PB +PC +PD 有最小值,最小值为AC +BD =20,∴a +b 的最小值为24+20=44.第1题解图2. 27 【解析】如解图,分别作A 关于BC 和CD 的对称点A ′,A ″,连接A ′A ″,交BC 于点M ,交CD 于点N ,则A ′A ″即为△AMN 的周长最小值,作A ′H ⊥DA 交DA 的延长线于点H ,∴AA ′=2AB =2,AA ″=2AD =4,∵∠BAD =120°,∴∠HAA ′=60°,∴在Rt △A ′HA 中,AH =12 AA ′=1,∴A ′H =22-12 =3 ,A ″H =AH +AA ″=1+4=5,∴A ′A ″=A ′H 2+A ″H 2 =27 ,∴△AMN 的周长最小值为27 .第2题解图3. 43 【解析】如解图,作点E 关于BC 的对称点E ′,连接EE ′,交BC 于点F ,连接DE ′,AE ′,过点E ′作E ′G ⊥AC 交AC 的延长线于点G ,则DE =DE ′,EF =E ′F ,DE +DA =DE ′+DA ≥AE ′,∴当A ,D ,E ′在同一直线上时,DE +DA 的值最小,最小值为AE ′的长,∵∠ACB =90°,∠ABC =30°,BC =43 ,∴AC =33 BC =33×43 =4,∵点E 为边AB 的中点,∴EF 为△ABC 的中位线,∴EF =12 AC =2,CF =12BC =23 ,∴E ′F =EF =2=CG ,E ′G =CF =23 ,∴AG =AC +CG =4+2=6,∴AE ′=E ′G 2+AG 2 =(23)2+62 =43 ,∴DE +DA 的最小值为43 .第3题解图4. 25 【解析】如解图,过点A 作AD ⊥BC 于点D ,∵AB =AC =22 ,∠BAC =90°,∴AD =2,BC =4,∵S △BCP =12S △ABC ,∴点P 到BC 的距离为1,即点P 在AD 的垂直平分线l 上运动,作点B 关于直线l 的对称点B ′,连接B ′C 交直线l 于点P ′,连接BP ′,B ′P ,则BB ′⊥BC ,BP ′=B ′P ′,BP =B ′P ,∴BP +PC =B ′P +PC ≥B ′C ,当B ′,P ,C 三点共线,即点P 与点P ′重合时,BP +PC 的值最小,为B ′C 的长.在Rt △B ′BC 中,BB ′=2,BC =4,∴B ′C =BB ′2+BC 2 =25 ,∴PB +PC 的最小值为25 .第4题解图5. 13 +5 【解析】如解图,连接AC ,AP ,令y =0,得x =-3或1,∴点A (-3,0),点B (1,0),∴抛物线的对称轴是直线x =-1,OA =3,OB =1,令x =0,得y =2,∴点C (0,2),∴OC =2,∴BC =OB 2+OC 2 =5 ,AC =OA 2+OC 2 =13 ,∵△PBC 的周长为PB +PC +BC ,BC 为定值,∴要使△PBC 的周长最小,则PB +PC 最小即可,∵点A 与点B 关于对称轴对称,∴P A =PB ,∴PB +PC =P A +PC ≥AC ,∴PB +PC 的最小值为AC 的长,∴△PBC 的周长最小值=AC +BC =13 +5 .第5题解图类型三 利用“二次函数性质”解决最值问题1. C 【解析】∵p =5,c =4,∴S =5(5-a )(5-b )(5-4) =5(5-a )(5-b ) ,∵p =a +b +c 2 ,∴a +b =2p -c =6,∴b =6-a ,∴S =5(5-a )[5-(6-a )] =5(5-a )(a -1) =-5(a -3)2+20 ,∵-5<0,∴当a =3时,S 有最大值为20 =25 .2. 98【解析】∵四边形ABCD 是矩形,∴∠B =∠C =90°,∵AP ⊥PE ,∴∠APB +∠CPE =∠CPE +∠PEC =90°,∴∠APB =∠PEC ,∴△ABP ∽△PCE ,∴AB PC =BP CE,设BP =x ,CE =y ,则PC =3-x ,即23-x =x y,∴y =-12 x 2+32 x =-12 (x -32 )2+98 ,∵-12 <0,∴当x =32 时,y 有最大值,最大值是98 ,∴线段CE 的最大值为98 . 3. 3 【解析】如解图,过点C 作CE ⊥AB 于点E ,过点P 作PF ⊥AB 于点F ,设AP =x ,则CP =4-x ,∵AC =BC ,∠C =120°,∴∠BAC =∠B =30°,AE =BE ,∴CE =12AC =2,PF =12 AP =12x ,在Rt △AEC 中,由勾股定理得AE =42-22 =23 ,∴AB =2AE =43 ,∵PD ∥AB ,∴△PCD ∽△ACB ,∴PC AC =PD AB ,∴4-x 4 =PD 43,解得PD =3 (4-x ),∴S △APD =12 PD ·PF =12 ×3 (4-x )×12 x =-34 (x -2)2+3 ,∵-34<0,∴当x =2时,S △APD 有最大值,最大值为3 .第3题解图4. (1)1 【解析】∵点E 为AB 的中点,AE =CF ,∴点F 为CD 的中点,∴EF =FG =4,此时F ,D ,G 三点共线,∴DG =FG -FD =1; (2)255 【解析】如解图,过点F 作FH ⊥AB 于点H ,过点G 作IG ⊥CD 于点I ,则∠EHF =∠GIF =90°,由题意可知∠EFG =90°,EF =GF ,∴∠EFH +∠EFI =∠EFI +∠GFI =90°,∴∠EFH =∠GFI ,∴△EFH ≌△GFI (AAS),∴EH =GI ,设AE =a ,①当0<a <3时,如解图①,GI =EH =6-2a ,ID =FD -FI =FD -FH =6-a -4=2-a ,∴DG 2=ID 2+IG 2=(2-a )2+(6-2a )2=5a 2-28a +40=5(a -145 )2+45 ,∵5>0,∴当a =145 时,DG 2取最小值45,∴DG =255;②当3≤a <6时,如解图②,GI =EH =2a -6,ID =FI -FD =FH -AE +EH =4-a +2a -6=a -2,∴DG 2=ID 2+IG 2=(a -2)2+(2a -6)2=5a 2-28a +40=5(a -145)2+45 ,∵5>0,3≤a <6,∴当a =3时,DG 2取最小值1,∴DG =1,∵1>255,∴DG 的最小值为255.第4题解图类型四 利用“辅助圆”解决最值问题1. 2 【解析】如解图,以点A 为圆心,AD 长为半径画弧,过点B 作弧的切线交CD 于点G ,切点为F ,此时点E 和点G 重合,DG 的最大值即为DE 的长,∵四边形ABCD 是矩形,∴BC =AD =25 ,AB =CD =6,由折叠的性质可知,DE =EF ,AF =AD =25 ,设DE =EF =x ,则CE =CD -DE =6-x ,在Rt △ABF 中,由勾股定理得BF =AB 2-AF 2 =4,则BE =BF +EF =4+x ,在Rt △BEC 中,由勾股定理得BE 2=CE 2+BC 2,即(4+x )2=(6-x )2+(25 )2 ,解得x =2,即DG 的最大值为2.第1题解图 2. 5 -1 【解析】如解图,取CD 的中点O ,连接BO ,∵四边形ABCD 为正方形,∴AB =BC =CD =AD ,∠EBC =∠FCD =90°,∵AE =BF ,∴AE +BE =BF +CF ,∴BE =CF ,∴△EBC ≌△FCD (SAS),∴∠BCE =∠CDF ,∵∠BCE +∠DCE =∠BCD =90°,∴∠CDF +∠ECD =90°,∴∠CMD =90°,当点E ,F 分别在AB 和BC 上移动时,点M 在以CD 的中点O 为圆心,OC 长为半径的半圆上运动,要使BM 取得最小值,则需点B ,M ,O 在同一条直线上.∵AB =2,∴CO =1,∴BO =5 ,∴此时BM =5 -1,即BM 的最小值为5 -1.第2题解图3. 9 【解析】如解图,过点P 作PH ⊥AB 于点H ,则S △ABP =12AB ·PH =5PH ,∴当PH 最小时,△ABP 的面积最小.∵∠ACB =90°,AB =10,BC =8,∴AC =AB 2-BC 2 =6.∴EF=AC =6.连接CP ,则CP =12EF =3.∴点P 在以点C 为圆心,3为半径的圆弧上,过点C 作CH ′⊥AB 于点H ′,交⊙C 于点P ′,∵P ′H ′=CH ′-CP ′=CH ′-CP ≤CP +PH -CP =PH ,∴当点P 与点P ′重合,点H 与点H ′重合时,PH 最小,最小值为P ′H ′的长.∵S △ABC =12AC ·BC =12 AB ·CH ′,∴CH ′=AC ·BC AB =245 ,∴P ′H ′=CH ′-CP ′=245 -3=95 ,∴PH 的最小值是95 ,此时S △ABP =5PH =9,即△ABP 面积的最小值为9.第3题解图4. 27 -2 【解析】如解图,过点E 作EH ∥AD ,交AC 于点H ,∵△ABC 为等边三角形,∴AB =AC =6,由旋转的性质得AD =AB ,∴AD =AC ,∴∠D =∠ACD ,∵DE =2CE ,∴CE CD =CH CA =13 ,∠CEH =∠D =∠ACD ,∴CH =EH ,∵AC =6,∴CH =EH =2,取AH 的中点P ,连接EP ,则PH =EH ,∴∠EPH =∠PEH ,∵∠EPH +∠CEP +∠ACD =180°,∴2∠PEH +2∠CEH =180°,∴∠CEP =90°,∴点E 在以点H 为圆心,CP 为直径的圆弧上运动,连接BH ,∵EH 为定值2,∴当B ,E ,H 三点共线时,BE 的长最小,过点B 作BQ ⊥AC 于点Q ,则CQ =12AC =3,∴QH =CQ -CH =1,BQ =BC 2-CQ 2 =62-32 =33 ,∴BH =BQ 2+QH 2 =(33)2+12 =27 ,∴BE 的最小值为27 -2.第4题解图5. 32+64【解析】如解图,连接CP ,∵∠PDC =∠PEC =90°,∴∠PDC +∠PEC =180°,∴C ,D ,P ,E 四点共圆,圆心为点O ,且直径为CP ,∵BC =3 +1,∠ACB =45°,∠B =60°是定值,∴直径CP 最小时,∠DCE 所对的弦DE 最小,即CP ⊥AB 时,DE 的值最小,连接OD ,OE ,∵∠B =60°,CP ⊥AB ,BC =3 +1,∴∠BCP =30°,∴BP =12BC =3+12 ,CP =3 BP =3+32 ,∴OD =OE =12 CP =3+34,∵∠ACB =45°,∴∠DOE =2∠ACB =90°,∴△ODE 是等腰直角三角形,∴DE =2 OD =32+64,即DE 的最小值为32+64.第5题解图。
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
2019-2020 年中考数学专题复习题型九折叠旋转问题含解析1.(xx 贵州安顺第7 题)如图,矩形纸片ABCD 中,AD=4cm,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O,若AO=5cm,则AB 的长为()A.6cm B.7cm C.8cm D.9cm【答案】C.2.(xx 湖南张家界第 14 题)如图,在正方形ABCD 中,AD=,把边BC 绕点B 逆时针旋转30°得到线段BP,连接AP 并延长交CD 于点E,连接P C,则三角形PCE 的面积为.【答案】.3.(xx·湖北荆门·3分)两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= 2 cm.4.(xx 甘肃兰州第 14 题)如图,在正方形和正方形中,点在上,,将正方形绕点顺时针旋转,得到正方形,此时点在上,连接,则( )A. B. C. D.【答案】AA5.(xx 浙江嘉兴第16 题)一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点,此时线段的长是.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长共为.(结果保留根号)【答案】12-12.12-18.6.(xx 辽宁沈阳第16 题)如图,在矩形中,,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,连接,则的长是.【答案】.7.(xx 年重庆A4 分)如图,矩形ABCD 中,连接BD,∠DBC 的角平分线BE 交DC 于点E,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为,当射线和射线都与线段AD 相交时,设交点分别F,G,若△BFD 为等腰三角形,则线段DG 长为▲ .【答案】.8.(xx 年上海4 分)已知在△ABC 中,.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D处.延长线段AD,交原△ABC 的边BC 的延长线于点E,那么线段DE 的长等于▲.【答案】.9.(xx 年福建福州4 分)如图,在中,=90°,,将绕点C逆时针转60°,得到△MNC,则BM的长是▲.【答案】.10.(xx 江苏无锡第10 题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED,连CE,则线段CE 的长等于( D )A.2 B. C. D.11.(xx 新疆乌鲁木齐第 9 题)如图,在矩形中,点在上,点在上,把这个矩形沿折叠后,使点恰好落在边上的点处,若矩形面积为且,则折痕的长为( C )A.B. C. D.12.(xx 重庆A 卷第18 题)如图,正方形ABCD 中,AD=4,点E 是对角线AC 上一点,连接DE,过点E 作EF⊥ED,交AB 于点F,连接DF,交AC 于点G,将△EFG 沿EF 翻折,得到△EFM,连接DM,交EF 于点N,若点F 是AB 的中点,则△EMN 的周长是.13.(xx 河南第 15 题)如图,在中,,,点,分别是边,上的动点,沿所在的直线折叠,使点的对应点始终落在边上. 若为直角三角形,则的长为.【答案】1 或.14.(xx 江苏苏州第18 题)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,则(结果保留根号).【答案】.15.(xx 海南第 17 题)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos∠EFC 的值是.【答案】.16.(xx·黑龙江齐齐哈尔·3分)如图,在边长为2 的菱形ABCD 中,∠A=60°,点M 是AD 边的中点,连接MC,将菱形ABCD 翻折,使点A 落在线段CM 上的点E 处,折痕交AB 于点N,则线段EC 的长为﹣1 .17.(xx·吉林·3分)在三角形纸片ABC 中,∠C=90°,∠B=30°,点D(不与B,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为 3a(用含a的式子表示).18.(xx 河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E 为射线BC 上一个动点,连接AE,将△ABE 沿AE 折叠,点B 落在点B′处,过点B′作AD 的垂线,分别交AD,BC 于点M,N.当点B′为线段MN 的三等分点时,BE 的长为或.19.(xx 年河南3 分)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE=3,点F 是边BC 上不与点B、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B′处,若△CDB′恰为等腰三角形,则DB′的长为▲.【答案】16 或.20.(xx 年江苏泰州3 分)如图,矩形中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP,PE 与CD 相交于点O,且OE=OD,则AP 的长为▲.【答案】.21.(xx 湖北鄂州第8 题3 分)如图,在矩形ABCD 中,AB=8,BC=12,点E 是BC 的中点,连接AE,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC,则sin∠ECF =()A.B.C.D.【答案】D.22.(xx•四川自贡,第10 题4 分)如图,在矩形中,,是边的中点,是线段边上的动点,将△沿所在直线折叠得到△, 连接,则的最小值是( A )B'A DEB F CA.B.6 C. D.423.(xx•绵阳第 12 题,3 分)如图,D 是等边△ABC 边AB 上的一点,且AD:DB=1:2,现将△ABC 折叠,使点C 与D 重合,折痕为E F,点E,F 分别在A C 和B C 上,则C E:CF=(B )A.B.C.D.24.(xx•四川省内江市,第 14 题,5分)如图,在四边形ABCD 中,AD∥BC,∠C=90°,E 为CD 上一点,分别以EA,EB 为折痕将两个角(∠D,∠C)向内折叠,点C,D 恰好落在AB 边的点F 处.若AD=2,BC=3,则EF 的长为.25.(xx•浙江滨州,第17 题4 分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2019中考数学专题复习和折叠有关的题型突破( Word版,无答案)以折叠为背景的题型分析【解题思路】折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.本专题内容在考查中常涉及到特殊平行四边形的折叠与性质、特殊三角形的判定、勾股定理的运用,角平分线的性质等. 因此考生在复习中应熟练掌握一些基本图形的性质和判定定理以及图形折叠的性质. 图形折叠是中考中常考题型,这种题型主要考察学生对图形的认知,特别是考察轴对称的性质、全等三角形、勾股定理、相似三角形等知识综合运用。
【中考原题】【例 1】如图,在矩形纸片ABCD 中,AB=2,AD=3,点 E 是 AB 的中点,点 F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A′EF,则A′C 的长的最小值是.(考点:折叠动点)2019中考数学专题复习和折叠有关的题型突破( Word版,无答案)【例2】如图,在矩形纸片ABCD 中,AB=4,AD=12,将矩形纸片折叠,使点C 落在AD 边上的点M 处,折痕为PE,此时PD=3.(1)求MP 的值;(4 分)(考点:勾股定理)(2)在AB 边上有一个动点F,且不与点A,B 重合.当AF 等于多少时,△MEF的周长最小?(4 分)(考点:折叠性质将军饮马)(3)若点G,Q 是AB 边上的两个动点,且不与点A,B 重合,GQ=2.当四边形MEQG 的周长最小时,求最小周长值.(计算结果保留根号)(4 分)(考点:将军饮马)【例 3】已知二次函数及一次函数 y = x 2 + x + 6 ,将该二次函数在 x 轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新图象(如图所示)当直线 y=x+m 与新 图象有 4 个交点时,m 的取值范围是() (考点:函数的交点判断)(A) - 254 < m < 3 (B) - 254< m < -2(C) - 2 < m < 3 (D) - 6 < m < -2【相关知识扩展】类型1 与角度有关的折叠1.把一张长方形纸片按如图所示折叠2 次,若∠1=50︒,则∠2的度数为()A.10︒ B.15︒C.20︒D.25︒3.如图,在∆ABC 中,∠B = 32︒,将∆ABC 沿直线m 翻折,点B 落在点D 的位置,则∠1 -∠2 的度数是()A.32︒ B.64︒C.65︒D.70︒4.如图,点D 为∆ABC 边BC 的延长线上一点.∠ABC 的角平分线与∠ACD 的角平分线交于点M ,将∆MBC 以直线BC 为对称轴翻折得到∆NBC ,∠NBC 的角平分线与∠NCB 的角平分线交于点Q ,若∠A=48︒,则∠BQC 的度数为()A.138︒B.114︒C.102︒ D.100︒6.已知长方形ABCD ,E 点和F 点分别在AB 和BC 边上,如图将∆BEF 沿着EF 折叠以后得到△B'EF,B'E与AD相交于点M,B'F与AD相交于点G ,则∠1与∠2的数量关系为.7. 如图,将平行四边形ABCD 沿对角线BD 折叠,使点A 落在点E 处,ED 交BC 于点F .若∠ABD=48︒,∠CFD=40︒,则∠E的度数为.8.如图,在四边形ABCD 中,∠B = 120︒,∠B 与∠ADC 互为补角,点E 在BC 上,将∆DCE 沿DE 翻折,得到△DC'E,若AB//C'E,DC'平分∠ADE,则∠A的度数为︒.9. 如图,在△ABC中,将△ABC沿DE 折叠,使顶点C 落在△ABC三边的垂直平分线的交点O 处,若BE=BO,则∠BOE=度.10.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β类型2 与长度、周长、面积有关的折叠1. 如图,有一张直角三角形纸片,两直角边AC=6cm,B C=8cm,点D 在BC 边上,将直角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处,则线段CD 的长为.A DC MFDNB E A B E C第1 题图第2 题图2. 如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在点F处,折痕为MN,则线段CN 的长为.3. 如图,在长方形ABCD 中,AB=3,AD=9,将此长方形折叠,使点D 与点B 重合,折痕为EF,则△ABE 的面积为.A E DB F CC'4. 如图,折叠长方形的一边AD,使点D 落在BC 边上的点F 处,若AB=4cm,B C=5cm,则EF的长为.A DEB F C5. 如图,在△ABC 中,AB=20,AC=12,BC=16,E 为BC 边上一点,把△ABC 沿AE 折叠,使AB 落在直线AC 上,求重叠部分(阴影部分)的面积.AC6. 如图,正方形ABCD 的边长为3,E、F 分别是AB、CD 上的点,且∠CFE=60°,将四边形BCFE 沿EF 翻折,得到B′C′FE,C′恰好落在AD 边上,B′C′交AB 于点G,则GE 的长是()A. 4B. 5C. 4-5-7. 如图,四边形ABCD 是边长为9 的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 的对应点为A'.若B'C=3,则CN=_ ,AM=_.A'A M DFA M DB' EB NC B N C第7 题图第8 题图8. 如图,将长为4cm,宽为2cm 的矩形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN,则线段AM 的长为.9. 如图,在△ABC 中,AB=3,BC=4,∠B=90°,将△ABC 折叠,使点C 与点A 重合.若折痕分别交AC,BC 于点E,F,则BF= ,EF= _.AEB F C10. 如图,将长方形ABCD 折叠,使点A 与点C 重合,折痕为EF,若AB=3,AD=4,则DE的长为.A E DB F C11. 如图,在长方形纸片ABCD 中,AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕交BC 于点E,若EF=3,则AB 的长为()A.3 B.4 C.5 D.6A DFB E C第11 题图12. 把长方形纸片ABCD 按如图所示的方式折叠,使点B 与点D 重合,折痕为EF.若AB=3cm,BC=5cm,则DE= .A'A E D(B')B F C13. 如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D′,点C 落在C′处.若AB=6,AD′=2,则DM=,CN= .FD CN A E DC'MB CA D' B第13 题图第14 题图14. 如图,在长方形ABCD 中,BC=4,CD=3,将该长方形沿对角线BD 折叠,使点C 落在点F 处,BF 交AD 于点E,则EF=.A F DGB E CD'C'第15 题图15. 如图,已知在长方形ABCD 中,点E 在边BC 上,BE=2CE,将长方形沿着过点E 的直线翻折后,点C,D 分别落在边BC 下方的点C′,D′处,且点C′,D′,B 在同一条直线上,折痕与边AD 交于点F,D′F 与BE 交于点G.设AB=t,那么△EFG 的周长为.(用含t 的代数式表示)16. 如图,长方形ABCD 中,AB=15cm,点E 在AD 上,且AE=9cm,连接EC,将长方形ABCD沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则A'C= cm.A E D A E DA' M A′NB C B F C第18 题图第19 题图17. 如图,将长方形纸片ABCD 对折,得折痕MN,展开后再沿过点B 的直线折叠,使点A 落在MN 上的A′处,得折痕BE,连接EA′并延长交BC 于点F.若AB=2,则BE=,EF=.18. 如图,在∆ABC 中.∠ACB = 90︒,AC = 4 ,BC ,点D 在AB 上,将∆ACD 沿CD 折叠,点A 落在点A1 处,A1C 与AB 相交于点E ,若A1 D / / BC ,则A1 E 的长为( )2019中考数学专题复习 和折叠有关的题型突破 ( Word 版,无答案)A .B .83C .3D .4 - 220. 如图,矩形ABCD 中, AB = 4 , BC = 3 ,点 E 是 DC 边上一点,连接 BE ,把 ∠C 沿 BE 折叠,使点 C 落在点 F 处,当 ∆DEF 为直角三角形时, DE 的长为 .第 20 题图 第 21 题图21. 图,矩形ABCD 中, AB = 5 , BC = 8 ,点 E 、 G 为直线 BC 上两个动点, BE = CC ,连接 AE , 将∆ABE 沿 AE 折叠,将 ∆DCC 沿 DG 折叠,当对应点 F 和 H 重合时, BE 的长为 .22. 将一张宽为5cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形, 则这个三角形面积的最小值是 ()A .3 cm 2 B .252cm 2 C . 25cm 2D .3 cm 223. 如图, 在矩形ABCD 中, AB = 4 ,BC = 6 ,E 为 BC 的中点 . 将 ∆ABE 沿 AE 折叠, 使 点 B 落在矩形内点 F 处, 连接CF ,则 ∆CDF 的面积为 ( )A .3.6B .4.32C .5.4D .5.7624. 如图,在ABCD 中,BC = 4 ,CD = 6 ,点E 是AB 边上的中点,将∆BCE 沿CE 翻折得∆FCE ,连结DF ,射线CF 交直线DA 于点P ,当∠CPD = 90︒时,∆DCF 的面积是.25. 如图,有一张矩形纸片ABCD ,AB = 8 ,AD = 6 .先将矩形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将∆AEF 沿EF 翻折,AF 与BC 相交于点G ,则∆GCF 的周长为.26. 如图,在四边形ABCD 中,AB = 10 ,BD ⊥AD .若将∆BCD 沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BCDE 的周长为.27. 如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE = 5 ,则GE 的长为.第27 题第28 题28. 如图,矩形纸片ABCD 中,AD = 6 ,AB = 10 ,E 为CD 中点,将矩形纸片沿AE 折叠,点D 落在点D'处,延长AD'交BC 于点F ,则D'F 的长度为.29. 如图,在矩形ABCD 中,AD = 2 .将∠A 向内翻折,点A 落在BC 上,记为A',折痕为DE .若将∠B 沿EA'向内翻折,点B 恰好落在DE 上,记为B',则AB = .第29 题第30 题30. 如图,矩形ABCD 中,AB =,BC = 12 ,E 为AD 中点,F 为AB 上一点,将∆AEF 沿EF折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是.31. 如图,在∆ABC 中,∠ABC = 45︒,AB = 3 ,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将∆AED 沿直线AE 翻折至∆ABC 所在的平面内,得∆AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为( )A.8 B.C.+ 4 D.+ 232. 形纸片ABCD 如图 2 那样折叠,使顶点B 与顶点D 重合,折痕为EF . 若AB , AD = 3 ,则∆DEF 的周长为.33. 如图(1)的矩形纸片折叠,B、C 两点恰好重合落在AD 边上的点P 处,如图(2),已知∠MPN=90º,PM=3,PN=4,那么矩形ABCD 的周长为。
【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。
中考数学专题复习《特殊平行四边形中的折叠问题》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在矩形纸片ABCD 中 将BCD △沿BD 折叠 C 点落在C '处 则图中共有全等三角形( )A .2对B .3对C .4对D .5对2.如图 对折矩形纸片ABCD 使AB 与DC 重合得到折痕EF 将纸片展平 再一次折叠 使点D 落到EF 上点G 处 并使折痕经过点A 展平纸片后DAG ∠的大小为( )A .40︒B .60︒C .55︒D .75︒3.如图 在矩形ABCD 中 5AB = 8BC = 点E 和F 是边BC 上的两点 连结AE DF 、 将ABE 和CDF 沿AE DF 、折叠后 点B 和点C 重合于点M 则EF 的长是( )A .2.5B .3C .1.5D .44.如图 在矩形纸片ABCD 中 已知8AD = 折叠纸片使AB 边与对角线AC 重合 点B 落在点F 处 折痕为AE 且3EF = 则ABE 的面积为( )A .10B .9C .8D .75.如图 在矩形OABC 中 9OA = 15AB = E 是BC 上一点 沿AE 折叠 使点B 恰好落在x 轴的点D 处.E 点坐标是( )A .()5,15B .()3,15C .()15,2D .()15,4 6.如图 在矩形ABCD 中 点E 是边CD 的中点 将ADE 沿AE 折叠后得到AFE △ 且点F 在矩形ABCD 的内部 将AF 延长后交边BC 于点G 且45CG GB = 则AB AD 的值为( )A .43B .56C .1D .77.如图 把矩形纸片ABCD 沿对角线BD 折叠 设重叠部分为EBD △ 则下列结论不一定成立的是( )A .AB CD = B .BAE DCE ≌△△C .EB ED = D .30ABE ∠=︒ 8.如图 在一张菱形纸片ABCD 中 2AB = 30B ∠=︒ 点E 在BC 边上(不与B C 重合)将ABE 沿直线AE 折叠得到AFE △ 连接BF EF DF 有以下四个结论:AE EF =① 105BFD ∠=︒② ③当AE BC ⊥时 FD AC = ④当FE 平分AFB ∠时 则23FD = 其中正确的结论个数是( )A .1B .2C .3D .4二 填空题9.如图 正方形纸片ABCD 的边长为12 E 是边CD 上一点 连接AE 折叠该纸片 使点A 落在AE 上的点G 并使折痕经过点B 得到折痕BF 点F 在AD 上.若5DE = 则GE 的长为 .10.将一张长方形纸片ABCD 按如图所示方式折叠 AE AF 为折痕 点B D 折叠后的对应点分别为B' 'D 若''4B AD ∠=︒ 则EAF ∠的度数为 .11.如图 在长方形ABCD 中 3AD = 2AB = 点F 是AB 上一点 1AF = 点E 是BC 上一动点 连接EF 将BEF △沿EF 折叠 记点B 的对应点为点B ' 连接DB ' 则FB DB '+'的最小值是 .12.如图 在矩形ABCD 中 5AB = 8AD = 边AD 上有一动点P 连结BP 把ABP沿BP 折叠当点A 的对应点A '刚好落在BC 的垂直平分线上时 点A '到AD 的距离为 .13.如图所示 在完全重合放置的两张矩形纸片ABCD 中 8AB = 16BC = 将上面的矩形纸片折叠 使点C 与点A 重合 折痕为EF 点D 的对应点为点G 连接DG 则图中阴影部分的面积为 .三 解答题14.如图 正方形纸片ABCD 的边长12AB = E 是DC 上一点 5CE = 折叠正方形纸片 使点B 和点E 重合 折痕为FG 试求FG 的长.15.如图 把一张长方形纸片ABCD 折叠起来 使其对角顶点A 与C 重合 D 与G 重合 若长方形的长BC 为8 宽AB 为4(1)求DE 的长(2)求阴影部分的面积.16.如图1 将矩形纸片()ABCD AD AB >折叠 使点C 刚好落在线段AD 上 且折痕分别与边BC AD 相交 设折叠后点C D 的对应点分别为点G H 折痕分别与边BC AD 相交于点E F .(1)求证:四边形CEGF 是菱形(2)如图2 若3AB = 9BC = 当点G 与点A 重合时 求折痕EF 的长.17.如图 在四边形纸片ABCD 中 AD BC ∥ AD CD > 将纸片沿过点D 的直线折叠 使点C 落在AD 上的点C '处 折痕DE 交BC 于点E 连接C E '.(1)请确定四边形CDC E '的形状 并说明理由(2)若30BCD ∠=︒ 2CE = 过点C '作C F BC '⊥于F 连接CC '交DE 于点M 连接FM : ①四边形CDC E '的面积为①2FM = .18.已知矩形ABCD 中 4AB = 6AD = 点P 是边AD 的中点.(1)如图1 连接BP 并延长 与CD 的延长线交干点F 问:线段CF 上是否存在点Q 使得PFQ △是以PF 为腰的等腰三角形 若存在 请直接写出DQ 的长 若不存在 请说明理由.(2)①如图2 把矩形ABCD 沿直线MN 折叠 使点B 落在点D 上 直线MN 与AD BD BC 、、的交点分别为M H N 求折痕MN 的长.①如图3:在①的条件下 以点A 为原点 分别以矩形ABCD 的两条边AD AB 、所在的直线为x 轴和y 轴建立平面直角坐标系 若点R 在x 轴上 在平面内是否存在点S 使以R M N S 为顶点的四边形是菱形?若存在 请求出点S 的坐标 若不存在 请说明理由.(3)如图4:若点E 为CD 边上的一个动点 连结PE 以PE 为边向下方作等边PEG △ 连结AG 则AG 的最小值是______.(请直接写出答案)参考答案:1.C2.B3.B4.B5.D6.A7.D8.B9.491310.43︒111012.213.72514.解:如图 过点F 作FM BC ⊥ 垂足为M 连接BE .①四边形ABCD 为正方形①AB BC CD AD === 90A ABC C D ∠=∠=∠=∠=︒①90A ABC BMF ===︒∠∠∠①四边形ABMF 为矩形①12MF AB BC ===①将正方形纸片ABCD 折叠 使点B 落在边CD 上的点E 折痕为FG ①90C FMG ∠=∠=︒ BE FG ⊥①90BNG C ∠=∠=︒①90MGF CBE BEC CBE ∠+∠=∠+∠=︒ ①MGF CEB ∠=∠在FMG 和BCE 中 MGF CEB FMG C FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS FMG BCE ≌①MG CE =.又①5CE =①5MG =.在Rt MFG 中 根据勾股定理得13FG == 即FG 的长是13.15.(1)设DE EG x == 则8AE x =- 在Rt AEG △中 222AG EG AE +=所以()22168x x +=-解得:3x =即3DE =(2)过点G 作GM AD ⊥于M 则1122AG GE AE GM ⨯=⨯4AG AB == 5AE = 3GE = 所以1143522GM ⨯⨯=⨯⨯所以125GM = 所以11825CED S GM DE =⨯=△. 16.解:(1)证明:①四边形ABCD 是矩形 ①AD ①BC①①GFE =①FEC①图形翻折后点G 与点C 重合 EF 为折线 ①①GEF =①FEC FG =FC EG =EC ①①GFE =①FEG①GF =GE①GE =EC =CF =FG①四边形CEGF 为菱形(2)当G 与A 重合时 由折叠的性质得AE =CE ①①B =90° AB =3 BC =9 BE =9-CE ①Rt ①ABE 中 AE 2=AB 2+BE 2即CE 2=32+(9-CE )2解得 CE =5.AC 222239310AB BC ++=由(1)知四边形CEGF 为菱形 ①12CEGF S EF AC CE AB =⨯=⨯菱形 ①10310EF == 17.(1)解:四边形CDC E '是菱形 理由如下: 根据折叠的性质可得:CD C D C DE CDE '∠=∠ CE C E '= ①AD BC ∥①C DE CED '∠=∠①CDE CED ∠=∠①CD CE =①CD C D C E CE ''===①四边形CDC E '为菱形(2)①①四边形CDC E '是菱形 ①2C E CE '== C E CD '∥ CM C M '= ①30C EF DCB '∠=∠=︒ ①C F BE '⊥ ①112C F C E ''== EF F '=①四边形CDC E '的面积212CE C F '=⨯=⨯= 故答案为:2①①EF = 2CE =①2CF =①(2222218C C C F CF ''=+=+=+①C F BC CM C M ''⊥=, ①12FM C C '=①22124FM C C '==故答案为:2 18.(1)解:存在 理由如下: 四边形ABCD 是矩形 90A ADC ∴∠=∠=︒ AB CD = 90FDP ∴∠=︒点P 是边AD 的中点 AP DP ∴=又APB DPF ∠=∠ ()ASA ABP DFP ∴△≌△ PF PB ∴= AB DF = 4,6AB AD ==4DF AB ∴== 132AP PD AD === 90A ∠=︒在Rt ABP 中:2222345PB AB AP +=+=5PF ∴=PFQ △为等腰三角形 以PF 为腰的等腰三角形分为两种情形: ①当PF PQ =时 此时点Q 与点C 重合 故4DQ DC == ①当FP FQ =时 如图:5PF = 5FQ = FD =4541DQ FQ FD =-=-=综合①① DQ 的长为:4或1(2)解:①如图:连接BM DN根据题意可知:MN 垂直平分BD ,MN BD BH DH ∴⊥= ,NB ND MB MD == 四边形ABCD 是矩形AD BN ∴MDH HBN ∴∠=∠ 又MHD NHB ∠=∠MHD NHB ∴△≌△MH HN ∴= MD NB =∴四边形MBND 是菱形设AM b = 则6MD MB b ==-在Rt AMB △中222BM AM AB =+即:222(6)4b b -=+ 解得:53b = 5513,6333AM BM ∴==-= 在Rt △ABD 中BD 12BH BD ∴=MH BD ⊥∴在Rt MHB △中MH ==2MN MH ∴== ①建立平面直角坐标系如图:由①知:53AM = 133BN MD MB ===4AB = MN = ①5130433M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,, R M N S 为顶点的四边形是菱形 点R 在x 轴上当MR 为对角线时 MR NS ⊥,M R 都在x 轴上 ∴,N S 关于x 轴对称 1343S ⎛⎫∴ ⎪⎝⎭, 当MN 为对角线时 MN RS ⊥ 由(2)知 四边形MBND 是菱形 则S 与点B 重合 ∴此时(0,4)S -当MS 为对角线时 则MR SN ∥ MR SN =MN = 13(,4)3N -①1343S ⎛⎫- ⎪ ⎪⎝⎭综上可知 存在点S 使得以R M N S 为顶点的四边形是菱形 点S 坐标为:134134⎫--⎪⎪⎝⎭ 134134⎫+-⎪⎪⎝⎭ 13,43⎛⎫⎪⎝⎭ (0,4)- (3)解:如图:分别以PD PC 为边向下方作等边,PDF PCH △△ 过点F 作FI AD ⊥垂足为I 连接AF HF P 为AD 中点 ∴132AP PD AD ===PDF △为等边三角形1322PI PD ∴== 60DPF ∠=︒ PD PF =PA PF = 60DPF ∠=︒30PAF PFA ∴∠=∠=︒120APF ∴∠=︒92AI AP PI ∴=+=点E 为CD 边上的一个动点 以PE 为边向下方作等边PEG △ 当点E 与点D 重合时 点G 与点F 重合 当点E 与点C 重合时 点G 与点H 重合 ∴点G 在线段FH 上运动 当AG HF ⊥时 AG 最小 PEG △为等边三角形60EPG ∴∠=︒ PE PG =60 FPG FPE FPE EPD∴∠+∠=∠+∠=︒FPG DPE∴∠=∠∴FPG DPE△≌△PDE PFG∴∠=∠90PDE∠=︒∴90PFG∠=︒PF FH∴⊥当AG HF⊥时AG PF120,30APF PAF∠=︒∠=︒18012060PAG∴∠=︒-︒=︒603030 FAG PAG PAF∠=∠-∠=︒-︒=︒IAF GAF∴∠=∠FI AD⊥90AIF∴=︒在AFI和AFI中AIF AGFAF AFFAG FAI∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASAAFI AFI≌AG AI∴=∴当AG HF⊥时92AG AI==故答案为:92.。
NM FEDCBA CDEBA 图②ABCDEF中考数学专题复习——四边形中的折叠、剪切、旋转与动点最值问题一、折叠、剪切类问题 1、折叠后求度数(1)将一张长方形纸片按如图1所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( )A .600B .750C .900D .950(2)如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于()A .50°B .55°C .60°D .65°(3)用一条宽相等的足够长的纸条,打一个结,如图3中的图①所示,然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE ,其中∠BAC =____________度. 2、折叠后求长度(1)将矩形纸片ABCD 按如图1所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A 、3B 、2C 、3D 、32(2)如图4,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且ED BC ⊥,则CE 的长是( ) (A )10315- (B )1053- (C )535- (D )20103-(3)如图5,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.(4)如图6,是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD =(5)如图7,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cmB .4cmC .5cmD .6cm图①图1 图2图3图4图5图6图7(6)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m n -C .2mD .2n3、折叠后求面积(1)如图8,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( ) A .4B .6C .8D .10(2)如图9,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( ) A .2 B .4 C .8 D .10(3)如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm 。
操作:①将AB 向AE 折过去,使AB 与AE 重合,得折痕AF ,如图b ;②将△AFB 以BF 为折痕向右折过去,得图c 。
则△GFC 的面积是( )A.1cm 2B.2 cm 2C.3 cm 2D.4 cm 2(4)如图10点E 、F 分别在一张长方形纸条ABCD 的边AD 、BC 上,将这张纸条沿着直线EF 对折后如图,BF 与DE 交于点G ,如果∠BGD=30°,长方形纸条的宽 AB=2cm ,那么这张纸条对折后的重叠部分△GEF 的面积=______ cm 2(5)如图11,红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起,则重叠四边形的面积为_______2.cm(6)如图12,一个四边形花坛ABCD ,被两条线段MN 、EF 分成 四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、 S 2、S 3、S 4,若MN∥AB∥DC、EF∥DA∥CB,请你写出一个关 于S 1、S 2、S 3、S 4的等量关系_________________________.EA AAB BBCCC G DDDFF F图a图b图cmnnn图②图①6题图图8图9图10图11图124、折叠、剪切后得图形(1)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )A .矩形B .三角形C .梯形D .菱形(2)在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是( )A. B. C. D.(3)小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )(4)将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )(5)如图1所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )(6)如图,已知BC为等腰三角形纸片ABC 的底边,AD ⊥BC ,AD=BC. 将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形, 则能拼出互不全等的四边形的个数是( )A. 1B. 2C. 3D. 4(7)如图7所示,将一张正方形纸片对折两次, 然后在上面打3个洞,则纸片展开后是( )ABCD图3图1A .B .C .D .5、折叠后得结论(1)亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.” (2)从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A.a 2–b 2 =(a+b)(a-b)B.(a –b)2 = a 2–2ab+b 2C.(a+b)2=a 2+2ab+b 2D.a 2+ab=a(a+b)(3)如图,一张矩形报纸ABCD 的长AB =a cm ,宽BC=b cm ,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于( ). A .1:2 B .2:1 C .1:3 D .3:16、折叠和剪切的应用(1)如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:__________________________________________________________________________________________________________________________(2)如图,已四边形纸片ABCD ,现需将该纸片剪拼成一个与它面积相等的平行四边形纸片,如果限定裁剪线最多有两条,能否做到:__________(用“能”或“不能”填空)。
若填“能”,请确定裁剪线的位置,并说明拼接方法;若填“不能”,请简要说明理由。
____________________________________________________ ____________________________________________________(3)如图,已知五边形ABCDE 中,AB//ED ,∠A =∠B =90°, 则可以将该五边形ABCDE 分成面积相等的两部分的直线 有__________条,满足条件的直线可以这样趋确定: ____________________________________________________ ________________________________________________________________________________________________________(1)(2)DCBAABEDC(5)如图,有一个长:宽=2:1的长方形纸片ABCD.①含有30°、60°的直角三角形最短边与最长边之比为___________;②请你设计一种折叠一次使这张纸片出现30°和60°(在图中画出折叠线和折叠后图线),叙述折叠过程并简要说明理由:__________________________________________________ ____________________________________________________________________________________________________(6)如图,有一个长方体的底面边长分别是1cm 和3cm ,高为6cm.①现用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么细线最短需要________cm ;②若从点A 经过开始经过3个侧面缠绕n 圈到达点B ,此时细线最短需要____________________cm.③若有一个长方体的边长为a 的正方形,高为b ,那么细线从点A 到点C 的最短距离:______________________________________________________________________________________________________________________________________________________________________________.(7)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A′,折痕交AD 于点E,若M 、N 分别是AD 、BC 边的中点,则A′N= ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A′N= (用含有n 的式子表示)(8)如图,现有两个边长之比为1:2的正方形ABCD 与A ′B ′C ′D ′,点B 、C 、B ′、C ′在同一直线上,且点C 与点B ′重合,能否利用这两个正方形,通过裁割、平移、旋转的方法,拼出两个相似比为1:3的三角形? (填能或否),若你认为能,请在原图上画出裁剪线和拼接线说明你的操作方法: __________________________________________________________ __________________________________________________________. (9)用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.①用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.②若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.EBAC B A M CD M 图图图图 A'N M B CA D E D'C'(B')A'D C B A(10)在一张长12cm 、宽5cm 的矩形纸片内,要折出一个菱形.甲同学按照取两组对边中点的方法折出菱形EFGH (见方案一),乙同学沿矩形的对角线AC 折出∠CAE=∠DAC ,∠ACF=∠ACB 的方法得到菱形AECF (见方案二),请你通过计算,比较甲同学和乙同学的折法中,哪种菱形面积较大?(11)有一张矩形形状的纸ABCD 如图所示,只用折叠的方法将直角三等分,步骤如下:第一步:先把矩形对折,设折痕为MN ;第二步:再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 折叠. 此时,AE 、AH 是否就是直角BAD 的三等分线?并说明理由.(12)如图,若把边长为1的正方形ABCD 的四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1.试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的95,请说明理由(写出证明及计算过程).二、旋转类问题(1)如图,由“基本图案”正方形ABCO 绕O 点顺时针旋转90°后的图形是 ( ).(2)如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .(3)如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针 方向旋转90°能与△CBP'重合,若PB=3,则PP'=_____________.A D EH F B C G (方案一) A D E F B C (方案二) B A C B A C BA CB AC C A B O O O O O A A B B CD CD M NE H A D CB C ' D 'B 'E 图 A . B . C . D . P'PDC BAD B CB D A MN(4)如图,已知正方形ABCD 的边长为3,E 为CD 上一点,DE=1,以点A 为中心,把△ADE 顺时针旋转90°得△ABE',连接EE',则EE'=________________.(5)已知在正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,DC (或延长线)于点M ,N.(Ⅰ)如图①所示,当∠MAN 绕点A 旋转到BM DN 时,求证:BM+DN=MN.思路点拨:考虑证明BM+DN=MN 需将线段BM 、DN 转化到同一条直线上,再证明BM+DN=MN .可将△ADM 顺时针旋转90° 请你完成证明过程:(Ⅱ)当∠MAN 绕点A 旋转到如图②所示时,线段BM ,DN 和MN 之间又有怎样的数量关系?写出猜想,并加以证明.(6)在图1至图2中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(Ⅰ)如图1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合, 求证:FM = MH ,FM ⊥MH ;(Ⅱ)将图1中的CE 绕点C 顺时针旋转一个锐角,得到图2,求证:△FMH 是等腰直角三角形;A C D MN三、动点类问题1、动点距离和最小值问题(1)如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 .第(2题) 第(2题) 第(4题) (2)如图,梯形ABCD 中,AD//BC ,AB=CD=AD=1,∠B=60°,M 、N 分别为AD、BC 中点,P 为MN 上一动点,那么PC+PD 的最小值为_________.(3)如图,正方形ABCD 的边长为8,AE=3,CF=1,点P 是对角线AC 上一动点,则PE+PF的最小值________.(4)如图,在锐角△ABC 中,AB=6,∠BAC=60°,∠BAC 的平分线交BC 于点D,点M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为( ) A. B. C.6 D.3(5)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;A B CDM NP A B C DP E F 第(5)题y B ODCA xED 'y B OD CA x第(1题)。