2.1遥感的物理基础-电磁波
- 格式:ppt
- 大小:4.39 MB
- 文档页数:16
遥感物理电磁波的产生原理遥感物理电磁波的产生原理涉及到电磁场的概念和电磁波的特性。
电磁波是一种由电场和磁场相互作用而产生的波动现象,它的产生和传播在遥感领域具有重要的应用。
首先,我们来了解电磁场的概念。
电磁场是由电荷和电流产生的一种物理场。
任何电荷和电流都会产生电场和磁场,它们是相互作用的,互相影响。
电场是由电荷在空间中形成的,根据库仑定律,电荷之间的相互作用力是通过电场进行传递的。
磁场则是由电流产生的,根据安培定律,电流在周围形成的闭合环路上产生磁场。
在遥感物理中,电磁波是一种通过空间传播的电磁辐射。
电磁波具有特定的频率和波长,可以分为不同的频段,如无线电波、可见光、红外线、紫外线、X射线和γ射线等。
电磁波可以在真空和介质中传播,速度为光速。
那么,电磁波是如何产生的呢?它的产生涉及到一个物体的振荡和加速运动。
当一个物体振动或加速运动时,它会在周围产生变化的电场和磁场。
如果振动或加速运动的频率和电场波长相匹配,物体周围的电荷就会被激发,导致电荷的运动和电流的产生。
以无线电波为例,当一个带电物体振动或加速运动时,会产生电场和磁场的变化。
根据麦克斯韦方程组,变化的电场会产生变化的磁场,而变化的磁场又会产生变化的电场,这样形成的电场和磁场的变化就是电磁波。
电磁波会沿着传播方向传播,并且速度为光速。
当这些电磁波到达接收器时,可以被接收,并转化为我们可以理解和利用的信号。
在遥感领域,电磁波的产生和传播是非常重要的。
我们可以通过遥感传感器向地球表面发射电磁波,然后接收并记录反射回来的电磁波。
通过分析接收到的电磁波信号,我们可以获取到地表的信息,如地表的反射率、温度、湿度、地形等。
这样的遥感技术在农业、测绘、城市规划、环境保护等方面有重要的应用。
总之,遥感物理电磁波的产生原理是基于电磁场相互作用而产生的。
当物体振动或加速运动时,会产生变化的电场和磁场,形成电磁波进行传播。
通过遥感技术,我们可以利用电磁波向地球发送和接收信号,获取地表的信息。
第一章电磁波及遥感物理基础主要介绍:1 电磁波和电磁波谱2 物体的发射辐射(电磁波辐射源——黑体、太阳、一般物体)3 物体的反射辐射4 大气对辐射的作用(辐射传输方程)5 地物波谱特征及测定一切物体因其种类、特征和环境条件的不同,而具有完全不同的电磁波反射与发射辐射特性,遥感即建立在物体反射与发射电磁波的原理之上1.1 电磁波和电磁波谱1.1.1 电磁波波:是振动在空间的传播。
如声波、水波、地震波等。
机械波:振动的是弹性媒质中质点的位移矢量。
电磁波:电场矢量和磁场矢量在空间的传播。
])sin[(ϕ+−ω=ψkx t A 波函数由振幅和位相组成,一般遥感器仅仅记录电磁波的振幅信息,丢失位相信息。
全息摄影中,同时记录了振幅信息和相位信息。
雷达遥感也要记录相位信息波函数:λ/hc hv E ==λ/h P =动量:P 能量:Eh : 普朗克常数,6.6260755×10-34J sc : 光速;v : 频率能量和动量是粒子属性,频率和波长是波动属性。
可见光,红外线;微波和无线电波;紫外线和X射线Y射线。
电磁波的粒子性电磁波的叠加原理当两列波在同一空间传播时,空间上各点的振动为各列波单独振动的合成。
任何复杂的电磁波都可以分解成许多比较简单的电磁波;比较简单的电磁波也可以合成为复杂的电磁波。
(白光的色散和合成,计算机显示器的工作原理,混合像元的分解)d物镜的有效孔径也是进行一些遥感图像处理(如图像平滑等)的依据•电磁波遇到“狭缝”的障碍物时,能够通过狭缝地振动分量,称为电磁破的偏振。
偏振光,非偏振光,部分偏振电磁波的多普勒效应电磁波因辐射源(或者观察者)相对于传播介质的运动,而使观察者接受到的频率发生变化,这种现象称为多普勒效应。
类似声波的多普勒效应。
(合成孔径雷达的工作原理)1.1.2电磁波谱按照电磁波的波长(频率的大小)长短,依次排列支撑的图表,成为电磁波谱。
(图1-3)1.1.2电磁波谱(续)传播的方向性、穿透性、可见性、颜色不同。
第二章遥感物理基础遥感技术是建立在物体电磁波辐射理论基础上的。
由于不同物体具有各自的电磁波反射或辐射特性,才可能应用遥感技术探测和研究远距离的物体。
理解并掌握地物的电磁波发射、反射、散射特性,电磁波的传输特性,大气层对电磁波传播的影响是正确解释遥感数据的基础。
本章重点是掌握可见光近红外、热红外和微波遥感机理,以及地物波谱特征。
图2-1第一节电磁波与电磁波谱2.1.1 电磁波与电磁波谱1. 电磁波一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。
当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。
2. 电磁辐射电磁场在空间的直接传播称为电磁辐射。
1887 年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。
装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影像。
3. 电磁波谱γ射线、X 射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。
目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。
可见光区间辐射源于原子、分子中的外层电子跃迁。
红外辐射则产生于分子的振动和转动能级跃迁。
无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。
微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。
由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。
可见光、红外和微波遥感,就是利用不同电磁波的特性。
电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。
图2-2电磁辐射的性质4. 电磁辐射的性质电磁辐射在传播过程中具有波动性和量子性两重特性。
遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。
二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。
三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。
1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。
3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。
遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。
由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。
由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。
可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。
微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。
②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。
微波越长,穿透能力越强。
4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。
黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。