4.2.1替代定理 - 齐次定理和替代定理——【江苏大学 电路原理】
- 格式:pptx
- 大小:1.11 MB
- 文档页数:15
《大学电路/电路原理/电路分析》06--替代定理的妙用电学中重要的电路定理有叠加定理、齐性定理、替代定理、戴维宁定理、诺顿定理和最大功率传输定理,在不同的场合解决各类电路问题,真的是太精妙了。
叠加定理把多电源电路变为单电源电路,一下子回到高中物理。
齐性定理体现了线性电路的比例性质,其“倒推法”用在单电源多电阻电路就是一个字--“绝”。
戴维宁定理和诺顿定理特别擅长于只求某一支路参数的场合,把待求支路从电路中一取走,变成开口电路,难度一下降低。
最大功率传输定理将复杂的求导变成求戴维宁/诺顿等效电路中的等效电阻了。
但唯独对替代定理的介绍最少,相应的例题应就更少。
其实替代定理是一个非常棒的定理,用得好,考试时大可以提前交卷!接下来介绍替代定理在推导及计算中的妙用。
1.替代定理替代定理是指已知电路中某一支路的参数,如两端的电压,流过支路的电流,那么该支路可等效为一个电压源,或电流源,又或是一个电阻,如下图所示:其证明过程也是相对简单的,等效为电压源时只需在支路上串联2个大小相等,方向相反的电压源,如下图所示:虚线框内支路电压刚好和下面的电压源抵消了,电压为0,可用一条导线替代,这样就只剩下面那个电压源了,得证。
而等效为电流源时,则需在支路两端并联2个大小相等,方向相反的电流源,如下图所示:虚线框内流过支路的电流和右边的电流源也抵消,电流为0,整个框可以去掉,只剩左边那个电流源了。
2. 替代定理在定理推导中的应用戴维宁定理是指,一个含源一端口可以等效为一个实际电压源模型,在证明时该定理就先替代定理,再用叠加定理来操作的,如下图所示:图中N s表示含源一端口,N0表示无源一端口。
有学生问替代时为什么选电流源而不选电压源,主要是由于在接着使用的叠加定理,将电流源置零时可直接将其断开,方便计算,如果选电压源,置零时就要短接,求解麻烦。
将分电路中求出的电压u叠加,得到表达式为:根据式中的电压电流关系,得到等效电路就是实际电压源模型,即戴维宁等效电路,如下图所示:看到这里,只想喊一句:“太妙了!”3.替代定理在解题中的应用替代定理在一些复杂电路中最能显示它的优势,如下图所示:电路要求电流I1,但电路结构很复杂,支路多,电源、电阻也多,看到都头晕。
第4章 电路的若干定理 (Circuit Theorems )4.1 叠加定理 (Superposition Theorem)4. 2 替代定理 (Substitution Theorem )4.3 戴维南定理和诺顿定理(Thevenin -Norton Theorem )4. 5*特勒根定理 (Tellegen’s Theorem )4. 6 互易定理 (Reciprocity Theorem )4. 7*对偶原理 (Dual Principle )4.4 最大功率传输定理(Maximum Power Transfer Theorem )4.1 叠加定理 (Superposition Theorem )一、线性电路的齐次性和叠加性线性电路:由线性元件和独立源构成的电路。
1.齐次性(homogeneity)(又称比例性,proportionality)电路x (t )y (t )+-+-齐次性:若输入x (t ) → 响应y (t ) ,则输入K x (t) → K y (t ) 电路K x (t )K y (t )+-+-2.叠加性(superposition)若输入x 1(t ) → y 1(t )(单独作用) , x 2(t ) → y 2(t ) … x n (t ) → y n (t )则x 1(t ) 、x 2(t ) … x n (t ) 同时作用时响应y (t )= y 1(t )+ y 2(t )+ … +y n (t )注: x 1(t ) … x n (t ) 可以是不同位置上的激励信号电路x 1(t )y (t )+-+-x 2(t )x n (t )++--3.线性=齐次性+叠加性(t) →y1(t)(单独作用)若输入x1x2(t) →y2(t)…x n(t) →y n(t)则:K1x1(t) +K2x2(t) +…+K n x n(t) →K1y1(t)+ K2y2(t)+ … + K n y n(t)注:齐次性是一种特殊的叠加性。
4.2 替代定理对于一个电路,若某一支路电压为uk 、电流为ik,那么这条支路就可以用一个电压等于uk的独立电压源,或者用一个电流等于ik 的独立电流源,或用大小为R=uk/i k的电阻来替代,替代后电路中所有元件或支路的电压、电流均保持原值(解答唯一)。
1.替代定理第 1 页替代定理支路i k+–u k+–u k i k +–u k u=Rii ki=i k u=Riiuu=u k 工作点等效伏安注意:不是伏安特性等效第 2 页Ai k+–u k支路kA+–u k证毕!2. 定理的证明u k u k++Ai k+–u k支路k+–u ku k u k=0第 3 页+310++32+替代前后KCL、KVL关系相同,但“替代” “等效变换”。
替代定理既适用于线性电路,也适用于非线性电路。
注意“替代”仅仅是在工作点等效,不是伏安特性等效。
替代后电路必须有唯一解:替代后不能出现纯电压源回路和纯电流源节点(包括广义节点)替代后其余支路及参数不能有任何改变。
第 5 页有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)1.5A-----1.5A2.5A1.5A 1A-+---?-?第+U +6A=+–+U 0.50.530V1 0.5+6A–+U'0.50.510.5 30V+–+0.50.510.56AU''第8 页有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)– ++6AU''。
替代定理
替代定理(substitution theorem )
如果已知电路中第 k 条支路的电压 uk 和电流 ik ,那么无论该条支路是由何种元件构成的,它都可以用电压等于 uk 的理想电压源或电流等于 ik 的理想电流源去替代,替代之后,电路中其他支路的电压和电流均不变。
推论:如果第 k 条支路的电压 uk 等于 0 ,那么该支路可用一条短路线去替代;如果第 k 条支路的电流 ik 等于 0 ,那么该支路可用一对断开的节点去替代。
例 4.2-1 图 4.2-2 ( a )所示电路为电桥电路,当通过电阻 Rg 的电流 Ig=0 时,电桥达到平衡。
Us=4.5V , R1=1K Ω, R2=10K Ω, R3 为可变电阻, R4 为被测电阻,现调节电阻 R3 ,当 R3=0.5K Ω时 , 电桥达到平衡。
求被测电阻 R4 及电压源供出的电流 I 。
解:当电桥平衡时,,则 Rg 电阻上的电压。
由于,根据替代定理, ab 支路可用一条短路线替代,如图 4.2-2 ( b )所示。
显然,
,
即
又由于,根据替代定理, ab 支路可用一对断开的节点替代,如图 4.2-2 ( c )所示。
则
所以,
上面两式相除,得
因此,被测电阻为
再由图 4.2-2 ( b ),得电桥平衡时, c 、 d 两端的等效电阻为
Rcd= ( R1 ∥ R2 ) + ( R3 ∥ R4 ) = ( 1K ∥ 10K ) + ( 0.5K ∥ 5K )
=1.364K Ω
所以,平衡时电压源供出的电流
注意:替代定理对于线性电路和非线性电路都是成立的。