赤霉素调控最新综述
- 格式:pdf
- 大小:1.06 MB
- 文档页数:9
2024年高三生物植物的激素调节知识点总结植物激素是植物体内产生或合成的一类物质,它们能够调节植物的生长、发育、开花、果实生长等生理过程。
植物激素分为六类:赤霉素、生长素、细胞分裂素、脱落酸、吲哚乙酸和脱落酸。
这些激素在植物体内以极低的浓度起作用,通过相互作用和调控,共同维持植物的正常生理功能。
一、赤霉素赤霉素是最早被发现的植物激素之一,它能够调节植物的生长、发育和形态。
具体来说,赤霉素能够促进植物的细胞分裂和伸长,使植物的茎长高;同时,赤霉素也能够促进果实的发育和种子的萌发。
此外,赤霉素还能调节植物的光合作用、光导导性和细胞分化等过程。
二、生长素生长素是植物体内产生最多的激素之一,它能够调节植物的细胞分裂、伸长和分化过程。
具体来说,生长素能够促进植物茎叶的伸长,使植物呈现向光倾斜的生长方式;同时,生长素还能够促进植物的根系发育和水分吸收。
此外,生长素还能调节植物的开花和果实发育过程。
三、细胞分裂素细胞分裂素是植物生长中必不可少的激素之一,它能够调节植物细胞的分裂和生长。
具体来说,细胞分裂素能够促进细胞的分裂和增殖,促使植物体组织的生长和发育;同时,细胞分裂素还能够促进种子的萌发和根系的发育。
此外,细胞分裂素还能调节植物的开花、果实生长和叶片的扩展等过程。
四、脱落酸脱落酸是植物体内的一种激素,它能够调节植物的生长和发育过程。
具体来说,脱落酸能够促进植物的果实脱落和落叶过程,使植物进入休眠状态;同时,脱落酸还能够调节植物的花蕾休眠和激活过程。
此外,脱落酸还能控制植物的伸长和生殖生长。
五、吲哚乙酸吲哚乙酸是植物生长中重要的激素之一,它主要调节植物的茎叶伸长和分裂过程。
具体来说,吲哚乙酸能够促进茎叶的伸长和根系的发育;同时,吲哚乙酸还能够促进果实的发育和种子的萌发。
此外,吲哚乙酸还能调节植物的开花和光合作用。
六、脱落酮脱落酮是植物生长中重要的激素之一,它主要调节植物的休眠和休眠释放过程。
具体来说,脱落酮能够促进植物进入休眠状态和从休眠状态中苏醒;同时,脱落酮还能够调节植物的花蕾休眠和激活过程。
植物分子生物学研究中的激素调控机制植物生长和发育过程中,激素发挥着非常重要的调控作用。
植物体内常见的激素包括:赤霉素、细胞分裂素、激素酸、生长素等。
这些激素在植物的生长发育、逆境应答、细胞分化、开花、营养分配和胁迫响应等方面,都具有非常关键的作用。
近年来,随着植物分子生物学技术的不断发展,激素调控机制也被越来越深入地研究。
本文将重点探讨几种常见的激素及其在植物分子生物学中发挥的调控作用。
1. 赤霉素调控机制赤霉素可以促进幼苗的生长,使叶片更加扁平化。
其中,赤霉素的信号转导通路是经典的激素响应性信号转导模型:赤霉素荷叶素复合物(SCFSlRB)在存在赤霉素的情况下,被激活并降解一种抑制性复合物(DELLA),从而激活赤霉素的响应反应。
但是,在很多情况下,赤霉素的信号转导机制比较复杂,同时还与其他信号通路发生交叉作用,例如干旱胁迫信号通路、光信号转导通路等。
近年来的研究表明,赤霉素的响应反应是通过多种途径调控的,例如翻译后修饰和基因表达调控等。
2. 细胞分裂素调控机制细胞分裂素(cytokinin)是一类重要的植物激素,可以促进细胞的分裂和增殖,同时也在干旱、盐或寒冷等环境压力响应中发挥了关键作用。
在植物细胞分裂素响应的信号转导通路中,细胞分裂素通过调节细胞质中的信号传递途径、核内响应活性蛋白(ARR)的磷酸化和去磷酸化等方式来进行信号转导。
此外,在信号转导中还涉及到多种合成和降解途径的调控,例如细胞分裂素的合成和降解、激素转运等。
细胞分裂素和赤霉素等其他激素通路之间也存在着相互作用和交流的机制。
3. 激素酸调控机制激素酸(abscisic acid)是一种重要的植物生长素,具有促进植物逆境应对、抗氧化和减少蒸腾等作用,是植物体内一个十分重要的激素。
激素酸的信号转导机制十分复杂,涉及到多重受体和信号通路的交叉作用。
激素酸的受体分为GCN2、PYR/PYL/RCAR和RCN,其中PYR/PYL/RCAR反应的激素酸主要与ABA脱落酸极(PP2C)交互,调节ABA的活性反应。
赤霉素调控植物花器官的发育机制研究植物花器官的发育一直是植物学领域的研究热点之一。
赤霉素(Gibberellins,GA)是一种重要的植物激素,也是调控植物生长发育的关键物质之一。
赤霉素的作用范围很广,包括芽发育、种子萌发、植株高度等方面。
其中,赤霉素对植物花器官的发育有着重要作用。
本文将从赤霉素的概念入手,分析赤霉素在植物花器官发育调控中的作用机制。
一、赤霉素的概念赤霉素是一种重要的植物激素,是由真菌赤霉菌(Gibberella fujikuroi)所产生的一类化合物的总称。
赤霉素可影响植物的生长和发育,其作用范围很广,包括幼苗、种子、新梢、果粒等部位。
与其他激素不同的是,赤霉素的作用是促进植物的细胞延伸,从而导致生长。
二、赤霉素调控植物花器官发育的机制植物花器官发育是复杂的生物学过程,其中涉及到多种植物激素的相互作用和调控。
赤霉素对植物花器官的发育起到了重要作用,主要表现在以下几个方面:1、促进花蕾分化在植物生长发育的过程中,花蕾分化是关键的一环。
研究发现,赤霉素可以促进花蕾分化的过程,进而影响花器官的发育。
具体来讲,赤霉素可以刺激叶片的生长,增加叶绿素含量,从而促进花蕾分化的过程。
2、促进花梗的生长花梗是连接花蕾与植物茎的部分,是花器官发育中的重要组成部分。
研究表明,赤霉素可以促进花梗的生长,使其变得更加细长,进而促进花器官的展开。
具体来讲,赤霉素可以刺激细胞壁的涨压作用,促进细胞的延伸,进而使花梗变得更加细长,从而促进花器官的生长发育。
3、促进花器官的开放在植物花器官发育的过程中,花器官的开放是关键的一环。
研究发现,赤霉素可以促进花器官的开放,进而使花朵更加鲜艳美丽。
具体来讲,赤霉素可以增加细胞的水分含量,促进细胞的涨压作用,进而使花器官的开放变得更加迅速和顺畅。
4、调控花器官的数量和大小赤霉素对植物花器官的发育还有一个重要的作用,就是调控花器官的数量和大小。
研究表明,赤霉素可以刺激花器官的增生和分化过程,促进花器官的发育。
2023年赤霉素行业市场调研报告赤霉素是一种有效的植物生长调节剂,对促进作物生长、提高产量、提高商品性、增强作物抗逆性等方面有着重要的作用。
据统计,全球赤霉素市场规模大约在150亿美元左右,中国赤霉素市场规模在其中占据了相当比重,因此本文将以中国市场为主要研究对象,全面分析中国赤霉素市场现状及未来趋势。
一、产业概述赤霉素于1919年首次被Isidor Friedjung从鼠李中分离出来,1992年应用于棉花、水稻、玉米、葡萄等种植上。
赤霉素广泛应用于作物生长控制、果树生长管理和花卉育种等领域,其应用范围不限于国内市场,也服务于全球市场。
中国赤霉素市场从上世纪90年代开始兴起,目前已经形成了以优智唯信、中天科技、荣盛生物、海思科技等为代表的一批赤霉素制造企业,同时也逐渐形成了以山东、江苏、浙江等为主的集中产业区,在中国赤霉素市场中处于领导地位。
二、市场需求分析1. 农业产值增长带来的动力随着中国经济发展的加速,农业的发展也日益壮大,赤霉素的需求也随之增加,赤霉素不仅能使作物提高产量和商品性,还能提高农产品品质,为农业生产提供了有力支撑。
2. 国家政策的支持在国家推动生态农业和绿色食品的政策背景下,有关部门对农业的财政投入也日益增加,使得赤霉素市场需求得到保障。
3. 加强环保节能需求随着生产方式的变革,环保节能已经成为各大企业的追求,而使用赤霉素可以减少农药和化肥的使用,达到环保效果,这一点对于大量的中小型作物种植企业非常重要。
4. 医药市场的需求赤霉素还广泛应用于医药市场,主要用于肿瘤、秃发、牛皮癣、成年人尖锐湿疣等治疗,所以在这个方向上的商业营销也是很必要的。
三、市场竞争现状1. 一系列政策规定,加强行业监管目前,赤霉素行业已经形成了一些核心企业,其中优智唯信、中天科技、荣盛生物、海思科技等为赤霉素市场主导企业,但也因一些小企业的营收不佳而促使监管部门出台了一系列政策规定,增加了对小企业赤霉素的监管和约束,增强了行业的整体水平。
高中生物赤霉素知识点总结一、赤霉素的发现与分类赤霉素(Gibberellins,GAs)是一类具有广泛生物活性的植物激素,最初由日本科学家在20世纪50年代发现。
它们是低分子量的有机酸,具有高度的生物活性,能够调节植物的生长和发育过程。
赤霉素的发现源于对水稻恶苗病的研究,这种病害是由于赤霉菌(Fusarium moniliforme)产生的赤霉素过量而导致的。
目前已知的赤霉素种类超过100种,根据结构和功能的不同,可以分为几大类:GA1、GA3、GA4、GA7等,其中GA1、GA3和GA4是最为常见的内源性赤霉素。
二、赤霉素的生物合成赤霉素的生物合成是一个复杂的生物化学过程,涉及多个酶的参与和多个步骤。
合成途径主要包括两个分支:一个是起始于贝壳杉烯(ent-kaurene),另一个是起始于贝壳杉醇(ent-kaurenoic acid)。
这两个途径最终都会合成到活性赤霉素GA1。
赤霉素的合成主要发生在植物的幼嫩组织中,如种子、幼苗、根尖和芽尖等。
三、赤霉素的生理作用1. 促进茎的伸长赤霉素最显著的生理作用是促进细胞的伸长,从而引起植物茎的增高。
它通过影响细胞壁的可塑性和细胞质的流动性,降低细胞壁的刚性,使细胞能够伸长。
2. 打破种子休眠赤霉素能够打破某些种子的休眠状态,促进种子的萌发。
它通过调节种子内赤霉素和脱落酸(ABA)的平衡,降低ABA的浓度,从而减轻其对种子萌发的抑制作用。
3. 促进果实发育在某些植物中,赤霉素还参与调节果实的发育过程。
它可以促进果实的膨大,改善果实的品质。
4. 参与光周期反应赤霉素还参与植物的光周期反应,影响植物的开花时间。
在短日照植物中,赤霉素的积累可以促进花芽的分化。
四、赤霉素的应用由于赤霉素具有显著的生理活性,它在农业生产中有着广泛的应用。
例如,通过外源施用赤霉素可以促进作物的生长,增加产量;在园艺上,赤霉素用于促进花卉的开花和果实的成熟;在种子处理上,赤霉素可以打破种子休眠,提高种子的发芽率。
2024年赤霉素市场发展现状引言赤霉素(Gibberellin)是一种植物生长调节剂,对植物的生长发育具有重要影响。
它可以促进植物的细胞分裂和伸长,调节植物的开花、结果、光合作用等生理过程。
赤霉素具有广泛的应用领域,包括农业、林业、园艺以及食品加工等。
本文将对赤霉素市场的发展现状进行探讨。
赤霉素的应用领域农业领域赤霉素在农业领域的应用主要体现在促进植物生长和提高产量方面。
通过外源施加赤霉素,可以促进作物的生长速度和株高,提高作物的产量和品质。
此外,赤霉素还可以调节作物的开花时间,使作物能够在合适的季节开花结果,进而提高农作物的经济效益。
林业领域赤霉素在林业领域的应用主要体现在促进树木生长和改善木材品质方面。
赤霉素可以促使树木的伸长和分枝,提高树木的生长速度。
此外,赤霉素还可以调节树木的木材纹理和强度,改善木材的质量和价值。
园艺领域赤霉素在园艺领域的应用主要体现在繁殖和育苗方面。
赤霉素可以促进植物的生根和生长,提高繁殖的成功率。
在育苗过程中,赤霉素可以加快幼苗的生长速度,提高苗木的质量。
食品加工领域赤霉素在食品加工领域的应用主要体现在食品保鲜和加工方面。
赤霉素具有抑制果实的成熟和腐烂的作用,可以延长果蔬的保鲜期。
此外,赤霉素还可以用于食品的加工,如酿造啤酒、面包等。
赤霉素市场的发展现状市场规模赤霉素市场的规模逐年扩大。
随着人们对农产品质量和产量的要求不断提高,对赤霉素的需求也在增加。
根据市场研究报告,2019年全球赤霉素市场的规模达到了X亿美元,预计到2025年将达到X亿美元。
主要市场目前,全球赤霉素市场的主要消费地区包括亚太地区、北美地区和欧洲地区。
亚太地区是全球赤霉素市场的主要消费地区,占据了市场份额的X%。
中国是亚太地区最大的赤霉素生产和消费国家。
市场竞争态势赤霉素市场存在一定的竞争。
目前,全球赤霉素市场的主要供应商包括国内外的农药和化肥企业,如拜耳、辉丰、万华等。
这些企业通过不断开发新产品和改进现有产品,提高产品质量,扩大产能规模,来满足市场需求并提升市场竞争力。
赤霉素是把“双刃剑”,合理使用有益,不合理使用害处挺大~今天北京傲禾测土给大家说一说赤霉素这种植物生长调节剂吧!(严格来说,赤霉素属于低毒性的植物激素,作物体内自己分泌的赤霉素属于植物内源激素,我们购买使用的赤霉素属于植物外源激素)。
赤霉素这种植物生长调节剂,北京傲禾测土相信咱们种植果树和种植瓜果蔬菜的农民朋友绝大部分人都很熟悉,即使你没用过,也一定听过说它的名字(赤霉素的另一个名字叫做GA3或920)。
赤霉素本身是一种低毒、广谱、高效的好东西,了解赤霉素特性且会正确使用赤霉素能够提高种植收益,不懂赤霉素而随意盲目乱用或错误使用赤霉素则会带来农业种植损失。
为了帮助大家了解赤霉素与正确合理用好赤霉素,今天北京傲禾测土就给大家简单讲一讲赤霉素吧!一、哪些情况下田间作物不能使用赤霉素?赤霉素有哪些使用注意事项?赤霉素的普遍适用性好且综合使用效果好,但不意味着它就能够随意性使用(随意滥用药是大忌),如果使用的时间、方法、用量、浓度以及使用环境条件不合适,也非常容易诱发作物发生很多不良的药物危害,比如说促进茎叶生长时用量过大会造成叶片生长迟缓、变大变薄,比如说促花期用药过晚不仅不能促进花芽分化反而会抑制花芽分化、减少次年花芽数量,比如说膨果期使用浓度过高会推迟果实成熟期、果皮变厚变粗糙、果肉变差,比如说留种地使用赤霉素会造成作物难形成种子或种子不孕不育(如很多无籽葡萄就是用赤霉素进行处理的),比如说土壤贫瘠水肥不足的地块使用后会造成作物长势更差、减产更严重等。
(一)赤霉素必须在土壤深厚水肥供应充足且作物长势良好(普通长势及以上)的情况下使用,凡是土层贫瘠浅薄水肥供应不足且作物长势不良的田间作物不适合使用赤霉素,否则会造成作物长势更差或出现黄叶、早衰等问题。
(二)赤霉素可以在绝大数常见农作物上使用,但不同作物品种对赤霉素的敏感度不一样(要重点注意哟),在开花结果类农作物(花期)使用赤霉素时,一般前期坐果率低但后期坐果稳定不宜落果不容易落果的品种可以使用赤霉素,而前期坐果率高但膨果期容易大量落果的品种不适合使用赤霉素。
赤霉素在植物生长调节和抗逆中的作用研究赤霉素是一种重要的植物激素,它可以调节植物的生长发育和抗逆能力。
在植物生长过程中,赤霉素对于细胞分化、生长节律、适应环境、抵御外界胁迫等方面都有着重要的作用。
本文将从植物生长发育和抗逆两个方面对赤霉素的作用进行研究。
一、赤霉素对植物生长发育的影响赤霉素对于植物生长发育有着重要的调节作用。
它能够促进植物茎和叶的生长,增加细胞大小和数量,提高植物的生物量和产量。
赤霉素还可以影响植物的花芽分化和开花过程,使植物早开花、长茎、大叶、增加果实数量和品质。
此外,赤霉素还能够影响植物的光合过程和根系发育。
赤霉素可以促进植物光合作用的进行,增加叶绿素含量和光合速率,提高植物对光能的利用效率。
同时,赤霉素也可以促进植物根系的生长和分化,增加根系的吸收和运输能力,更好地适应不同的环境条件。
二、赤霉素在植物抗逆中的作用研究赤霉素在植物抗逆中也有着重要的作用。
植物在遭受外界环境胁迫时,体内的赤霉素含量会发生变化,进而调节植物对环境的适应和抵御能力。
以下是赤霉素在植物抗逆中的作用:1. 调节植物的抗氧化能力植物在遭受氧化胁迫时,体内会出现氧自由基的积累,从而对细胞造成伤害。
而赤霉素可以调节植物的抗氧化能力,增加超氧化物歧化酶等抗氧化酶活性,从而保护细胞免受氧化伤害。
2. 调节植物的渗透调节能力植物在遭受干旱、盐胁迫等情况时,会出现水分流失和渗透调节失衡等现象。
而赤霉素可以调节植物的渗透调节能力,提高细胞的稳定性和耐受性,从而适应不同的环境条件。
3. 调节植物的抗病能力赤霉素还可以调节植物的抗病能力。
它可以抑制病原菌的生长和繁殖,阻断病原菌对植物细胞的侵染,并增加植物的免疫力,从而降低植物发生病害的概率。
三、结论从以上研究可以看出,赤霉素在植物的生长发育和抗逆中都有着重要的作用。
因此,在植物生产过程中,科学合理地使用赤霉素,既可以促进植物生长和发育,又可以提高植物的抗逆能力,从而更好地适应不同的环境条件,获得更好的生产效益。
赤霉素在植物生长调节中的作用机制研究植物生长调节剂是一类化合物,可以促进或抑制植物生长和发育。
赤霉素是植物生长调节剂中的一种,主要通过调节植物生长发育的代谢途径和基因表达来发挥作用。
一、赤霉素的分类和多样性赤霉素是一种类似激素的天然化合物,具有多种活性,并被广泛应用于植物生长调节、抗病防治和果实后熟等方面。
赤霉素可以被分为生理活性的GA1和GA4,以及其他较为不活性的GA9、GA19和GA20等。
由于不同的制备方法和来源,不同类型的赤霉素可能表现出不同的活性和作用。
二、赤霉素的生物合成途径赤霉素的生物合成途径包括三个主要步骤:初步合成、酸性环境下的切伐和遗传调控。
初步合成是由到植物生长物质源头的大分子前体合成的,其中的酶包括赤霉素前体 GPP/GPPS、赤霉素酸缩酮合成酶 KS、出芽酮合成酶 KO 和赤霉素酸 20-氧化酶 GA20ox。
赤霉素酸缩酮合成酶 KS 是一个关键酶,它是控制赤霉素生物合成的限速因素。
在酸性环境下,可以通过酸性酯酶和酸性加羟酶来切伐赤霉素酸缩酮合成酶,从而释放赤霉素酸。
赤霉素的遗传调控包括调控赤霉素生物合成途径上关键酶的转录和翻译过程,以及赤霉素生物合成途径中代表植物反应的基因表达调节。
三、赤霉素的作用机制赤霉素在植物生长发育中的作用机制主要可以归结为以下几个方面:1.促进细胞分裂和伸长赤霉素可以刺激植物的细胞分裂和伸长过程。
在细胞分裂中,赤霉素会促进细胞核DNA 合成和数量的增加。
此外,赤霉素还可以影响植物细胞壁的层次和成分,增加其弹性和可塑性,促进细胞伸长。
2.调节植物生长发育代谢途径赤霉素还能通过调节植物代谢途径发挥效应。
例如,赤霉素可以促进减数分裂和花粉粒的产生,影响果实发育和品质,促进树叶的形成和生长。
3.调控植物形态和结构赤霉素的作用还可以通过影响植物形态和结构来实现。
例如,它可以使植物节点伸长,叶片绿色素的合成和叶片表面积增加。
此外,它还可以促进子叶的生长和发育,影响幼苗的生长和成熟。
赤霉素粉剂市场调查报告1. 前言赤霉素是一种植物生长调节剂,广泛应用于农业领域。
赤霉素粉剂是赤霉素的一种常见剂型,具有便携、易保存等特点。
本文通过对赤霉素粉剂市场进行调查,分析市场现状、竞争态势以及发展前景,旨在为相关企业提供市场洞察和决策支持。
2. 市场现状2.1 市场规模根据调查数据显示,赤霉素粉剂市场的规模不断扩大。
近年来,赤霉素粉剂市场年均增长率超过10%,预计今年市场规模将达到X亿元。
这主要归因于农业生产的发展和对植物生长调节剂需求的增加。
2.2 市场需求赤霉素粉剂主要应用于植物生长调节领域,能够促进作物的生长和发育,提高产量和品质。
近年来,随着人们对食品质量的要求提高,农民和种植户对赤霉素粉剂的需求也不断增加。
此外,赤霉素粉剂还被广泛应用于观赏植物的育苗和栽培过程中。
2.3 市场竞争目前赤霉素粉剂市场存在着一定的竞争。
主要竞争对手包括国内外农化企业和植物生长调节剂生产商。
一些大型农化企业凭借其品牌影响力和营销网络在市场上占据一定份额。
同时,一些小型植物生长调节剂生产商也通过技术创新和价格竞争不断提升市场份额。
3. 市场发展前景3.1 市场机遇赤霉素粉剂在提高作物产量和品质方面发挥着重要作用,成为农业领域的热门产品。
政府对农业的支持力度加大,对植物生长调节剂的需求也随之增加。
此外,随着农药使用量减少的趋势,对植物生长调节剂的需求有望进一步增加。
3.2 市场挑战赤霉素粉剂市场也面临一些挑战。
首先,技术创新方面的竞争日益激烈,需要企业不断升级产品和提高品质,以获得竞争优势。
其次,一些低质低价产品的出现可能会影响市场的整体价值。
此外,市场准入门槛较低,可能会带来一定的市场混乱。
3.3 发展趋势随着农业的现代化和可持续发展要求的增加,赤霉素粉剂市场有望迎来更大的发展机遇。
市场将向高品质、高效益的产品发展,技术创新将成为企业竞争的关键。
此外,市场整合和提高行业准入门槛将帮助市场规范化发展。
4. 总结赤霉素粉剂市场具有广阔的发展前景。
Mol Genet Genomics (2014) 289:1–9DOI 10.1007/s00438-013-0797-xMolecular basis and evolutionary pattern of GA–GID1–DELLA regulatory moduleYijun Wang · Dexiang DengReceived: 16 October 2013 / Accepted: 3 December 2013 / Published online: 10 December 2013 © Springer-Verlag Berlin Heidelberg 2013interactions are not only beneficial to addressing basic bio-logical questions, but also have practical implications for developing crops with ideotypes to meet the future demand.Keywords Gibberellin · Receptor GID1 · Repressor DELLA · Molecular interaction · Evolutionary behaviorIntroductionDiterpenoid acids gibberellins (GAs) were first isolated from the necrotrophic fungus Gibberella fujikuroi which causes rice ‘Bakanae ’ disease, characteristic of elongated seedlings, slender leaves, and stunted roots (Tamura 1991). Actually, GAs are biosynthesized not only in fungi, but also in bacteria and plants. There is evidence supporting that GAs production in microorganisms is involved in plant immune responses (Navarro et al. 2008). In plants, phyto-hormones GAs modulate diverse biological events, from seed dormancy and germination, embryogenesis, plant stat-ure determination, floral organ morphogenesis, fertility, and flowering time to fruit development (Rodrigues et al. 2012).Over the past decade, tremendous research efforts have been made to elucidate the mechanisms of GA metabolism and signaling. The GA metabolic process is triggered at multiple hierarchical levels. For one thing, bioactive GAs are synthesized through diverse enzymes and intermediates (Silverstone et al. 1997; Williams et al. 1998; Fleet et al. 2003; Sun 2008; Yamaguchi 2008). For another, GAs deac-tivation is mediated by both genetic and epigenetic factors (Varbanova et al. 2007; Sun 2008; Yamaguchi 2008). In the GA signaling cascade, phytohormone GA, receptor GID1 together with repressor DELLA constitute a GA–GID1–DELLA regulatory module to integrate environmental and endogenous cues, which is beneficial to the enhancementAbstract The tetracyclic diterpenoid carboxylic acids, gibberellins (GAs), orchestrate a broad spectrum of bio-logical programs. In nature, GAs or GA-like substance is produced in bacteria, fungi, and plants. The function of GAs in microorganisms remains largely unknown. Phyto-hormones GAs mediate diverse growth and developmental processes through the life cycle of plants. The GA biosyn-thetic and metabolic pathways in bacteria, fungi, and plants are remarkably divergent. In vascular plants, phytohormone GA, receptor GID1, and repressor DELLA shape the GA–GID1–DELLA module in GA signaling cascade. Sequence reshuffling, functional divergence, and adaptive selection are main driving forces during the evolution of GA path-way components. The GA–GID1–DELLA complex inter-acts with second messengers and other plant hormones to integrate environmental and endogenous cues, which is beneficial to phytohormones homeostasis and other bio-logical events. In this review, we first briefly describe GA metabolism pathway, signaling perception, and its second messengers. Then, we examine the evolution of GA path-way genes. Finally, we focus on reviewing the crosstalk between GA–GID1–DELLA module and phytohormones. Deciphering mechanisms underlying plant hormonalCommunicated by J. Graw.Electronic supplementary material The online version of this article (doi:10.1007/s00438-013-0797-x ) contains supplementary material, which is available to authorized users.Y . Wang (*) · D. DengKey Laboratory of Crop Genetics and Physiologyof Jiangsu Province, Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China e-mail: yjwang61@of stress tolerance, higher fertility, and yield benefits (Murase et al. 2008; Shimada et al. 2008; Plackett et al. 2012; Saville et al. 2012). In this review, we first briefly introduce GA metabolism pathway, signaling perception, and its second messengers. After the description, we aim to unravel the evolution of GA pathway genes. Finally, we highlight recent findings of interactions between the GA–GID1–DELLA complex and phytohormones, including abscisic acid (ABA), auxin (Aux), brassinosteroids (BRs), cytokinins (CKs), ethylene (ET), jasmonic acid (JA), and salicylic acid (SA).GA metabolism and signaling perceptionGA metabolismThe GA biosynthetic and metabolic pathways are diversi-fied in nature. In bacteria, a diterpenoid operon is respon-sible for GA biosynthesis, which contains ferredoxin-, alcohol dehydrogenase-, trans-geranylgeranyl diphosphate synthase (GGPS)-, terpene synthases-, and cytochrome P450 mono-oxygenases (P450s)-encoding genes (Morrone et al. 2009).In fungi, a single bifunctional ent-copalyl diphosphate synthase (CPS)/ent-kaurene synthase (KS) enzyme func-tions in the conversion of precursor trans-geranylgeranyl diphosphate (GGPP) to ent-kaurene (Kawaide et al. 1997). P450s combined with desaturase are necessary for the con-version of intermediates to bioactive GAs. The 13-hydrox-ylation of GA7 to GA3 is the last step in the production of GA3 (Tudzynski et al. 2003).In vascular plants, GAs are biosynthesized from precur-sor GGPP catalyzed by three types of enzymes, includ-ing terpene synthases (TPSs), P450s, and 2-oxoglutarate-dependent dioxygenases (ODDs) (Fig. 1a), reviewed in Yamaguchi (2008). The conversion of GGPP to ent-kau-rene is promoted by two monofunctional TPSs, CPS and KS. ent-kaurene is converted to intermediate GA12 through two P450s ent-kaurene oxidase (KO) and ent-kaurenoic acid oxidase (KAO). Inactive precursor GA12 is then con-verted to bioactive GAs by GA 20-oxidase (GA20ox) and GA 3-oxidase (GA3ox) enzymes which belong to ODDs. The GAs deactivation is through 2β-hydroxylation cata-lyzed by another ODD enzyme GA 2-oxidase (GA2ox). In addition, GAs turnover could be achieved through epoxida-tion and methylation modifications (Zhu et al. 2006; Var-banova et al. 2007).GA signaling perceptionThe DELLA proteins, member of GRAS (for GAI, RGA, and SCARECROW) superfamily, serve as negative regulators in the GA signaling cascade. Rice GA INSEN-SITIVE DWARF1 (GID1) was identified as a GA receptor, which marks a milestone in the investigation of GA percep-tion (Ueguchi-Tanaka et al. 2005). The GA–GID1–DELLA module has been proposed to decipher the molecular mech-anisms of GA perception (Fig. 1b). Briefly, when the GA level is low, receptor GID1 is not bound by GA. Repres-sor DELLAs bind with target genes and inhibit genes tran-scription. When the GA level is high, GA combines with a pocket of receptor GID1 and causes GID1 conforma-tion change, which makes it possible to interact with the N-terminal domain of DELLAs and form the GA–GID1–DELLA complex. The DELLA proteins are polyubiquit-inated by SCF SLY1/GID2 E3 ubiquitin ligase and then prote-olyzed via the 26S proteasome. The DELLA degradation relieves the suppression of GA-responsive genes (Hedden 2008; Murase et al. 2008; Shimada et al. 2008).Intriguingly, Arabidopsis GA receptor AtGID1B can interact with DELLA in a GA-independent manner simi-lar to that of rice OsGID1 substitution mutant (Yamamoto et al. 2010). Sun (2011) believes that GA-dependent and GA-independent GIDs may separately respond to a certain developmental or environmental stimulations.GA and its second messengersThe environmental conditions and plant hormones are effectively linked by second messengers, which can finely tune diversified biological programs. Second messengers Ca2+, guanosine 3′,5′-cyclic monophosphate (cGMP), and nitric oxide (NO) have been proved to be involved in the GA signaling transduction. In rice aleurone cells, Ca2+ binds to calmodulin (CAM) and forms the Ca2+/CAM complex. The Ca2+/CAM complex regulates the intracel-lular Ca2+ level and functions in the GA signaling through modulating the expression of GA-responsive Ca2+-ATPase gene (Chen et al. 1997). As a second messenger, cGMP timely responds to GA stimulation and plays an important role in GA-dependent transcriptional regulation (Bastian et al. 2010). During Arabidopsis seed germination, NO acts upstream of GA and modulates both GA biosynthesis and signaling pathways (Bethke et al. 2007). There is evidence demonstrating that NO antagonizes GA in controlling light-regulated photomorphogenesis by increasing the content of DELLA proteins (Lozano-Juste and León 2011). Evolutionary patterns of GA pathway componentsThe conversion of GGPP to ent-kaurene in vascular plants is catalyzed by monofunctional TPSs. There appears no TPS-like gene in green algae (Table S1). Plant TPSsoriginated from the larger diterpene synthase whose inter-nal domain loss produces the precursor of TPSs (Hill-wig et al. 2011). Evolutionary patterns of TPSs involved in general and specialized metabolisms are divergent. In general metabolism, TPS in moss remains bifunctional with sequence divergence from the ancestral gene. Sub-functionalization of ancestral gene after duplication gives rise to two monofunctional TPSs, CPS and KS in vascu-lar plants. In specialized metabolism, the production of bifunctional TPSs in vascular plants is ascribed to neo-functionalization of duplicated ancestral gene (Keeling et al. 2010). The diversification of TPS family is mainly ascribed to sequence reshuffling and functional diver-gence. De novo and re-sequencing of multiple species using next-generation sequencing technologies are help-ful for the elucidation of sequence atlas in genome scale, which will shed new insights into the TPS family evolution.The ent -kaurene is converted to GA 12 via KO and KAO enzymes. The KO- and KAO-like proteins were identified in algae and moss (Table S1). The catalytic steps of P450 enzymes are shared in fungi and plants, suggesting the con-vergent evolution of P450-mediated GA biosynthetic path-ways in nature.The pathways downstream from GA 12 in vascular plants are catalyzed by three types of enzymes GA20ox, GA3ox, and GA2ox which belong to ODDs. Compared withenzymes TPSs and P450s, GA20ox, GA3ox, and GA2oxFig. 1 GA metabolism and signaling perception in vascular plants. a GA metabolism pathway. Phytohormones GAs are biosynthesized from precursor GGPP which is converted to ent -kaurene by CPS and KS enzymes. The ent -kaurene is converted to GA 12 via KO and KAO enzymes. GA 12 is then converted to bioactive GAs through GA20ox and GA3ox enzymes. The GAs deactivation is catalyzed by GA2ox enzymes. b GA signaling perception. The carboxy-terminal core domain of receptor GID1 shapes a GA-binding pocket. The NH 2-terminal extension domain (simplified as N-Ex in Figure) forms a lid of the pocket. Plant hormones GAs are positioned in the cavityin receptor GID1. When the GA level is low, receptor GID1 is not bound by GA. The DELLA proteins inhibit the expression of GA-responsive genes. When the GA level is high, GA combines with GID1 and forms the GA–GID1–DELLA complex. The DELLA pro-teins are ubiquitinated by SCF SLY1/GID2 E3 ubiquitin ligase and prote-olyzed through the 26S proteasome. The DELLA degradation relieves the suppression of GA-responsive genes. c Number of GA pathway genes. Detailed information of GA pathway genes is presented in Table S1enzymes are relatively diversified. Some GA20ox, GA3ox, and GA2ox enzymes may be directly or indirectly respon-sible for GA responses, others may be recruited for other biological events. The ODD-like sequences from algae and moss were identified and positioned in distinct clades of the dendrogram (Table S1, Figure S1c), their exact role in biological systems remains to be investigated. The P450s and desaturase instead of ODD enzymes are responsible for the conversion of intermediate to bioactive GAs in fungi. In addition, the final step in the production of GA 3 in fungi is 13-hydroxylation (Tudzynski et al. 2003). The GA biosyn-thetic and metabolic pathways in fungi and vascular plants have evolved independently (Fig. 2), reviewed in Hedden et al. (2002).Overall structure of rice nuclear GA receptor OsGID1 is similar to that of a hormone-sensitive lipase (HSL) family member AeCXE1 from kiwi fruit. The GA recep-tor GID1 originated from one member of the HSL fam-ily and evolved to adapt to the GA signaling pathway by sequence reshuffling (Murase et al. 2008; Shimada et al. 2008). The DELLA proteins, member of GRAS superfam-ily, are master repressors of the GA signaling. The GRAS family contains DELLA proteins, which is regarded as unique in plants. Based on bioinformatic evidence, Zhang et al. (2012) hypothesized that GRAS proteins could first appear in bacteria and are horizontally transferred to land plant. Undoubtedly, further experimental data should be collected to test the hypothesis. By homologous search-ing, GID1- and DELLA-like proteins were detected in moss (Table S1). However, there is still no bioactive GAs and functionally orthologous GID1–DELLA components reported in moss, although the GA-like tetracyclic diter-pene was identified in moss (V on Schwartzenberg et al. 2004). Moreover, the GA–GID1–DELLA complex was found in spikemoss (Hayashi et al. 2010). The GID1-medi-ated GA signaling cascade appeared after the divergence of vascular plants from the moss (Hirano et al. 2007). TheGA–GID1–DELLA signaling pathway is gradually shapedFig. 2 Production, function, and evolution atlas of GA. The GAs and GA-like compounds are produced in bacteria, fungi, and plants, which play diverse roles in nature. In bacteria, diterpenoid operon is responsible for GA biosynthesis. In fungi and moss, a bifunctional CPS/KS enzyme functions in the GA production. P450 and desatu-rase enzymes are involved in the conversion of intermediates to bio-active GAs in fungi. In vascular plants, monofunctional CPS and KS, P450s, as well as ODDs participate in the GA biosynthesis. The GID1-mediated GA signaling cascade appeared after the divergence of vascular plants from moss. The HSL, as progenitor of receptor GID1, together with GRAS, as progenitor of repressor DELLA, may first emerge in bacteria and is horizontally transferred to land plants. Ancestors of GID1 and DELLA evolved to adapt to the GA signaling pathway by sequence reshuffling and functional divergenceby modifications of DELLA and GID proteins (Yasumura et al. 2007).Crosstalk between GA–GID1–DELLA moduleand phytohormonesThe GA–GID1–DELLA regulatory module is fine-tuned by various feedback loops. On one hand, GAs regulate the expression of GA–GID1–DELLA components, such as bio-synthetic ODD genes GA20ox and GA3ox, receptor GID1, and repressor DELLA (Middleton et al. 2012). On the other hand, DELLA proteins modulate the transcription of GA bio-synthetic and receptor genes (Zentella et al. 2007). Of note, GA–GID1–DELLA module interacts with various phytohor-mones in the maintenance of homeostasis in plant life (Fig. 3).GAs and ABAPhytohormones, GAs and ABA, antagonistically func-tion in guiding the transition from embryogenesis to seed germination (Gómez-Cadenas et al. 2001). Physiologi-cal mechanisms of the antagonistic relationship between GAs and ABA have recently been elucidated. During rice seed germination, ascorbic acid (ASC) has been proved to mediate the antagonism (Ye and Zhang 2012). Molecu-lar basis of the crosstalk between GAs and ABA remains largely unknown, although there is evidence indicating that APETALA 2 (AP2)-like transcription factor gene OsAP2-39 mediates GAs’ interactions with ABA in rice. Overex-pression of OsAP2-39 leads to an increase in endogenous ABA levels through up-regulating of ABA biosynthetic gene OsNCED-I. The Elongation of Upper most InternodeFig. 3 Crosstalk betweenGA–GID1–DELLA module and phytohormones. Synergis-tic and antagonistic interac-tions between GAs and other phytohormones abscisic acid (ABA), auxin (Aux), brassinos-teroids (BRs), cytokinins (CKs), ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) are mediated by various effectors BRASSINAZOLE RESIST-ANT1 (BZR1), HvWRKY3, JA ZIM-domain (JAZ), OsCPS2, OsEATB (for rice E RF protein a ssociated with t illering and panicle b ranching), SPIN-DLY (SPY), and XERICO. In addition, GA–GID1–DELLA module is fine-tuned by feed-back loops. GAs regulate the expression of GA biosynthetic genes, receptor GID1, and repressor DELLA. DELLA pro-teins modulate the transcription of GA biosynthetic and receptor genes. Arrows denote positive regulation, and T bars indicate negative regulation(EUI) gene encoding enzyme that deactivates bioactive GAs is simultaneously up-regulated in OsAP2-39 overex-pression line. OsAP2-39 gene acts as orchestrator to main-tain the homeostasis of GAs and ABA in rice (Yaish et al. 2010).The DELLA proteins modulate GA-related processes by regulating the ABA pathway. An ubiquitin E3 ligase gene XERICO serves as target for DELLA proteins and is involved in ABA metabolism. The DELLA promotes the expression of XERICO and then enhances ABA lev-els (Zentella et al. 2007). The DELLA proteins may rep-resent a hub for the maintenance of GAs/ABA balance in response to abiotic stress.GAs and AuxThe synergistic crosstalk between GAs and Aux has been observed in many developmental processes (O’Neill et al. 2010). Genetic basis of the interplay between GAs and Aux has been elucidated by surveying the behavior of Aux transport in GA-defective mutant. Aux transport is severely inhibited in GA-defective mutant. The reduction of Aux transport mainly attributes to a decrease in the levels of PIN-FORMED (PIN) proteins, promoters of Aux trans-port. GAs govern the Aux efflux through an adjustment in PIN proteins abundance (Willige et al. 2011). Moreover, GAs regulate the transcription of Aux signaling gene Auxin Response Factor7 (ARF7), which converges the GA–Aux crosstalk during fruit development (de Jong et al. 2011). GAs and BRsThe crosstalk between phytohormones GAs and BRs is involved in biotic stress responses (De Vleesschauwer et al. 2012). Genetic mechanisms of the interplay between GA and BR signaling cascades have been dissected at the transcrip-tional level. Transcription factor BRASSINAZOLE RESIST-ANT1 (BZR1) triggers the expression of BR-responsive genes, whose regulatory activity is directly repressed by Arabidopsis DELLA protein GA INSENSITIVE (GAI). The GA and BR signaling pathways are integrated by the cross-talk between DELLA protein GAI and modulator BZR1 (Gallego-Bartolomé et al. 2012). The interaction between another Arabidopsis DELLA protein REPRESSOR OF GA1-3 (RGA) and BZR1 has been confirmed by two inde-pendent groups (Bai et al. 2012; Li et al. 2012).Evidently, multiple Arabidopsis DELLA proteins are involved in the interactions between GA and BR signaling.A total of five DELLA proteins GAI, RGA, RGA-LIKE 1 (RGL1), RGL2, and RGL3 are in the Arabidopsis genome (Table S1). Exact role of the remaining three DELLA pro-teins in the convergence of Arabidopsis GA and BR path-ways warrants future elucidation.GAs and CKsThe mutual antagonistic interactions between plant hor-mones GAs and CKs have been well characterized. On one hand, GAs suppress the CK signaling in a DELLA-inde-pendent way. On the other hand, CKs affect the GA signal-ing (Fleishon et al. 2011). The SPINDLY (SPY) gene serves as a repressor in the GA signaling. In contrast, SPY posi-tively regulates CK responses. SPY serves as a key regula-tor in the GA–CK crosstalk which occurs early in the CK signaling and relates to abiotic stress adaption (Qin et al. 2011).GAs and ETPlant hormones GAs and ET participate in diverse bio-logical processes, such as seed germination, nodulation, emergence, plant height determination, and submergence responses (Dubois et al. 2011; Ferguson et al. 2011). Plant hormone ET inhibits plant growth through the modula-tion of GAs levels via altering the expression of GA bio-synthetic and metabolic genes (Kim et al. 2012). A recent study has demonstrated that an interaction between GAs and ET, which is mediated by one member of AP2/ethylene-responsive element binding factor (ERF) family, restrains rice internode elongation by decreasing transcript levels of GA biosynthetic gene OsCPS2 (Qi et al. 2011). Moreover, ET triggers plant growth by regulating the status of DELLA proteins (Achard et al. 2003). Evidently, the crosstalk between ET and GAs could be achieved by regulating GAs abundance and/or the stability of DELLA proteins.GAs and JAThe crosstalk between Arabidopsis GA and JA signal-ing is mediated by the interaction between DELLA pro-tein RGL3 and JA signaling repressor JA ZIM-domain 1 (JAZ1), which inhibits the transcription of JA-responsive genes through binding to a basic helix-loop-helix (bHLH) transcription factor MYC2, the important transcriptional activator of JA responses (Wild et al. 2012). Similarly, GAs interaction with JA during plant defense over growth is also mediated by the crosstalk between DELLA protein and JA signaling repressor JAZ. The coronatine insensitive 1 (COI1) is a component of the SCF E3 ubiquitin ligase. JA promotes the degradation of JAZ1 through interaction with COI1. Besides, JA delays GA-mediated DELLA deg-radation. JA signaling repressor JAZ9 represses the cross-talk between DELLA protein RGA and growth-promoting transcription factor PHYTOCHROME-INTERACTING FACTOR3 (PIF3). The COI1, JAZ, DELLA, and PIF modulators cooperatively function in JA-mediated defense over growth (Yang et al. 2012). Collectively, GA andJA pathways are interconnected to form a complicated network, which needs to be dissected by an integrative approach in the future.GAs and SAPhytohormone SA, similar to JA, plays fundamental role in inducible defenses against biotic and abiotic stress (An and Mou 2011). Moreover, SA inhibits GA-induced seed ger-mination by inducing the expression of barley HvWRKY38 gene (Xie et al. 2007). During Arabidopsis seed germina-tion and seedling establishment, exogenous application of bioactive GA3 counteracts inhibitory effects of abiotic stress by the enhancement of SA levels through promoting the expression of isochorismate synthase1 and nonexpres-sor of PR1 genes, which is necessary for SA biosynthesis and function, respectively. In addition, overexpression of GA-responsive gene FsGASA4, one member of GA3 stimu-lated in Arabidopsis (GASA) family, results in a decrease in GA-dependent growth and an increase in endogenous SA levels. The crosstalk between GA and SA pathways may play a central role in abiotic stress responses (Alonso-Ramírez et al. 2009).Conclusions and perspectivesPhytohormones GAs are vital in various aspects of plant growth and development. Diversified exogenous and endogenous cues are recruited by the GA–GID1–DELLA regulatory module at multiple hierarchical levels, which are required for meeting the constantly changing conditions with high plasticity and flexibility. Current challenge is to dissect the converging node of complicated GA-involved network using fruitful omic-based and systems biology approaches. Furthermore, plant hormones, GA, ABA, Aux, BRs, CKs, ET, JA, SA, and Strigolactones pathways are interwoven to establish a complex network in the modu-lation of plant growth and development. Elucidation of mechanisms underlying plant hormonal network is impor-tant yet challenging opportunities for biologists.Molecular modification based on our deepening knowl-edge of GA-related network opens new avenues for posi-tively affecting plant stature without penalty on yield and other agronomic values of crops. The most well-known example is the success of ‘Green Revolution’ which mainly attributes to plant stature manipulation via the utility of GA homeostasis genes semidwarf1 (sd1) and Reduced height (Rht) (Khush 2001). However, over the past decades, ‘Green Revolution’ genes sd1 and Rht have been extensively used to breed modern semidwarf cultivars. Extensive use of lim-ited dwarf resources undoubtedly results in genetic bottle-neck and vulnerability. To overcome this problem, mining, breeding values estimation, molecular mechanisms elucida-tion, and application of novel dwarf germplasms based on an integrative approach are urgent. With the flourishing of next-generation sequencing and high-throughput metabolite profiling platforms, molecular breeding and improvement with a goal of bolstering global food security is promising through the modulation of GA-related pathways.Acknowledgments We apologize for not being able to cite many relevant original papers owing to space limitations. This work was supported by grants from the National Natural Science Foundation of China (31201213), the National Basic Research Program (973 pro-gram) (2009CB118400), and the Priority Academic Program Devel-opment of Jiangsu Higher Education Institutions (PAPD). ReferencesAchard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modula-tion of DELLA protein growth repressor function. Plant Cell 15:2816–2825Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evi-dence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Phys-iol 150:1335–1344An C, Mou Z (2011) Salicylic acid and its function in plant immunity.J Integr Plant Biol 53:412–428Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817Bastian R, Dawe A, Meier S, Ludidi N, Bajic VB, Gehring C (2010) Gibberellic acid and cGMP-dependent transcriptional regulation in Arabidopsis thaliana. Plant Signal Behav 5:224–232Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188Chen X, Chang M, Wang B, Wu R (1997) Cloning of a Ca2+-ATPase gene and the role of cytosolic Ca2+ in the gibberellin-dependent signaling pathway in aleurone cells. Plant J 11:363–371de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gib-berellin signalling during tomato fruit set and development. J Exp Bot 62:617–626De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinoster-oids antagonize gibberellin- and salicylate-mediated root immu-nity in rice. Plant Physiol 158:1833–1846Dubois V, Moritz T, García-Martínez JL (2011) Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.Plant Signal Behav 6:134–136Ferguson BJ, Foo E, Ross JJ, Reid JB (2011) Relationship between gibberellin, ethylene and nodulation in Pisum sativum. New Phy-tol 189:829–842Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CJ, Kamiya Y, Sun TP (2003) Overexpression of AtCPS and AtKS in Arabidop-sis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839Fleishon S, Shani E, Ori N, Weiss D (2011) Negative reciprocal inter-actions between gibberellin and cytokinin in tomato. New Phytol 190:609–617Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locas-cio A, Thomas SG, Alabadí D, Blázquez MA (2012) Molecular mechanism for the interaction between gibberellin and brassi-nosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 109:13446–13451Gómez-Cadenas A, Zentella R, Walker-Simmons MK, Ho TH (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667–679Hayashi K, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander LN, Yamane H, Hasebe M, Nozaki H (2010) Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol 153:1085–1097Hedden P (2008) Plant biology: gibberellins close the lid. Nature 456:455–456Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2002) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:319–331Hillwig ML, Xu M, Toyomasu T, Tiernan MS, Wei G, Cui G, Huang L, Peters RJ (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant J 68:1051–1060Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks JA, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2007) The GID1-mediated gibberellin perception mechanism is con-served in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell 19:3058–3079 Kawaide H, Imai R, Sassa T, Kamiya Y (1997) ent-kaurene syn-thase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional dit-erpene cyclase in fungal gibberellin biosynthesis. J Biol Chem 272:21706–21712Keeling CI, Dullat HK, Yuen M, Ralph SG, Jancsik S, Bohlmann J (2010) Identification and functional characterization of mono-functional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evo-lution for primary and secondary metabolism in gymnosperms.Plant Physiol 152:1197–2208Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822Kim J, Wilson RL, Case JB, Binder BM (2012) A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.Plant Physiol 160:1567–1580Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5:ra72Lozano-Juste J, León J (2011) Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidop-sis. Plant Physiol 156:1410–1423Middleton AM, Úbeda-Tomás S, Griffiths J, Holman T, Hedden P, Thomas SG, Phillips AL, Holdsworth MJ, Bennett MJ, King JR, Owen MR (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci USA 109:7571–7576Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: sepa-rate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583:475–480Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellins receptor GID1.Nature 456:459–463Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulat-ing the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655O’Neill DP, Davidson SE, Clarke VC, Yamauchi Y, Yamaguchi S, Kamiya Y, Reid JB, Ross JJ (2010) Regulation of the gibberellin pathway by auxin and DELLA proteins. Planta 232:1141–1149 Plackett AR, Powers SJ, Fernandez-Garcia N, Urbanova T, Take-bayashi Y, Seo M, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips AL, Wilson ZA, Thomas SG, Hedden P (2012) Analysis of the developmental roles of the Arabidopsis gibber-ellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24:941–960Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ, Luo X, Yang J (2011) Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosyn-thetic gene. Plant Physiol 157:216–228Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LS, Fujita Y, Mori-moto K, Shinozaki K, Yamaguchi-Shinozaki K (2011) SPINDLY,a negative regulator of gibberellic acid signaling, is involved inthe plant abiotic stress response. Plant Physiol 157:1900–1913 Rodrigues C, Vandenberghe LP, de Oliveira J, Soccol CR (2012) New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol 32:263–273Saville RJ, Gosman N, Burt CJ, Makepeace J, Steed A, Corbitt M, Chandler E, Brown JK, Boulton MI, Nicholson P (2012) The ‘Green Revolution’ dwarfing genes play a role in disease resist-ance in Triticum aestivum and Hordeum vulgare. J Exp Bot 63:1271–1283Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gib-berellin recognition by its receptor GID1. Nature 456:520–523 Silverstone AL, Chang C, Krol E, Sun TP (1997) Developmental reg-ulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19Sun TP (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6:e0103Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21:R338–R345 Tamura S (1991) Historical aspects of gibberellins. In: Takahashi N, Phinney BO, Macmillan J (eds) Gibberellins. Springer, New York, pp 1–8Tudzynski B, Mihlan M, Rojas MC, Linnemannstons P, Gaskin P, Hedden P (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem 278:28635–28643Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kob-ayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a sol-uble receptor for gibberellin. Nature 437:693–698Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Boro-chov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, PicherskyE (2007) Methylation of gibberellins by Arabidopsis GAMT1and GAMT2. Plant Cell 19:32–45V on Schwartzenberg K, Schultze W, Kassner H (2004) The moss Phy-scomitrella patens releases a tetracyclic diterpene. Plant Cell Rep 22:780–786Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319。