浙江省温州市平阳二中学年高二数学上学期期末考试试卷 理
- 格式:doc
- 大小:209.51 KB
- 文档页数:7
浙江省温州市平阳县第二中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在平行四边形中,为一条对角线,( )A.(2,4) B.(3,5) C.(—2,—4) D.(—1,—1)参考答案:D2. 正四面体中,分别为棱的中点,则异面直线与所成的角为A.B.C.D.参考答案:B3. 如下图,该程序运行后输出的结果为( )A.36B.56C.55D.45参考答案:D4. 已知函数有大于零的极值点,则实数a的取值范围为A. (-3,0)B.(-∞,-3)C. (-3,+∞)D. (-∞,0)参考答案:A【分析】求导函数,利用函数在x∈R上有大于零的极值点,可得在上有解,从而可求参数a的范围.【详解】,显然当时是单调函数,由题意可得在上有解,即在上有解,因为,所以.故选A.【点睛】本题考查导数知识的运用,考查函数的极值,考查不等式有解问题,属于中档题.5. 已知为虚数单位,为实数,复数在复平面内对应的点为M,则“”是“点M在第四象限”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:C6. 命题在上是增函数;命题若,则有:A. B. C. D.参考答案:D7. 已知函数,则A.是的极大值点 B.是的极小值点C.是的极小值点 D.是的极小值点参考答案:B略8. 空间直角坐标系中,点A(﹣3,4,0)与点B(x,﹣1,6)的距离为,则x等于()A.2 B.﹣8 C.2或﹣8 D.8或2参考答案:C【考点】空间两点间的距离公式.【分析】直接利用空间两点间的距离公式求解即可.【解答】解:因为空间直角坐标系中,点A(﹣3,4,0)与点B(x,﹣1,6)的距离为,所以=,所以(x+3)2=25.解得x=2或﹣8.故选C.【点评】本题考查空间两点间的距离公式的应用,基本知识的考查.9. 抛物线y2﹣8x=0的焦点坐标是()A.(0,2)B.(0,﹣2)C.(2,0)D.(﹣2,0)参考答案:C【考点】抛物线的简单性质.【分析】先把抛物线整理标准方程,进而可判断出焦点所在的坐标轴和p,进而求得焦点坐标.【解答】解:整理抛物线方程得抛物线y2=8x,所以焦点在x轴上,p=4,所以焦点(2,0).10. 已知动点在椭圆上,若点坐标为,,且,则的最小值是( )A. B. C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.参考答案:(0.5,1)12. 命题“?x∈R使x2+2x+1<0”的否定是.参考答案:x∈R,使x2+2x+1≥0【考点】命题的否定.【分析】根据命题“?x∈R使x2+2x+1<0”是特称命题,其否定为全称命题,即?x∈R,使x2+2x+1≥0.从而得到答案.【解答】解:∵命题“?x∈R使x2+2x+1<0”是特称命题∴否定命题为:?x∈R,使x2+2x+1≥0故答案为:?x∈R,使x2+2x+1≥0.13. .参考答案:略14. 某班有50名学生,一次考试的成绩ξ(ξ∈N)服从正态分布N.已知P(90≤ξ≤100)=0.3,估计该班数学成绩在110分以上的人数为.参考答案:10【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据考试的成绩ξ服从正态分布N.得到考试的成绩ξ关于ξ=100对称,根据P(90≤ξ≤100)=0.3,得到P=0.3,从而得到P=0.2,根据频率乘以样本容量得到这个分数段上的人数.【解答】解:∵考试的成绩ξ服从正态分布N.∴考试的成绩ξ关于ξ=100对称,∵P(90≤ξ≤100)=0.3,∴P=0.3,∴P=0.2,∴该班数学成绩在110分以上的人数为0.2×50=10故答案为:10.15. 若命题“”是假命题,则实数a的取值范围是______.参考答案:【分析】根据特称命题是假命题进行转化即可【详解】命题“”是假命题,则命题“”是真命题,则,解得则实数的取值范围是故答案为【点睛】本题主要考的是命题的真假判断和应用,熟练掌握一元二次不等式的解集与判别式的关系是解题的关键,属于基础题。
浙江省温州市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e﹣2i表示的复数在复平面中位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2019高二上·天河期末) 某校为了解学生的学习情况,采用分层抽样的方法从高一人、高二人、高三人中抽取人进行问卷调查,则高二抽取的人数是()A .B .C .D .3. (2分) (2019高二上·天河期末) 双曲线的渐近线方程是()A .B .C .D .4. (2分) (2019高二上·天河期末) 下列有关命题的说法错误的是()A . “若,则”的逆命题为假命题B . 命题“如果则”的否命题是真命题C . 若为假命题,则、均为假命题D . 若为假命题,则、均为假命题5. (2分) (2019高二上·天河期末) 已知向量且与互相垂直,则()A .B .C .D .6. (2分) (2019高二上·天河期末) 已知某算法的程序框图如图所示,则该算法的功能是()A . 求首项为,公比为的等比数列的前项的和B . 求首项为,公比为的等比数列的前项的和C . 求首项为,公比为的等比数列的前项的和D . 求首项为,公比为的等比数列的前项的和7. (2分) (2019高二上·天河期末) “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数列结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为的大正方形,若直角三角形中较大的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A .B .C .D .8. (2分) (2019高二上·天河期末) 二面角为60°,A、B是棱上的两点,AC、BD分别在半平面内,,,且AB=AC=,BD=,则CD的长为()A .B .C .D .9. (2分) (2019高二上·天河期末) 某校100名学生的数学测试成绩的频率分布直方图如图所示,分数不低于a即为优秀,如果优秀的人数为20,则a的估计值是()A . 130B . 140C . 133D . 13710. (2分) (2019高二上·天河期末) 已知椭圆与双曲线有相同的焦点、,点是与的一个公共点,是一个以为底的等腰三角形,,的离心率是,则的离心率是()A .B .C .D .11. (2分) (2019高二上·天河期末) 已知命题,;命题,,则命题是命题的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件12. (2分) (2019高二上·天河期末) 已知双曲线,过原点作直线与双曲线交于、两点,点为双曲线上异于、的动点,且直线、的斜率分别为、,若双曲线的离心率为,则()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高二下·珠海期末) 用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)•(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”表示把红球和蓝球都取出来,以此类推,下列各式中,其展开式可用来表示从3个无区别的红球、3个无区别的蓝球、2个有区别的黑球中取出若干个球,且所有蓝球都取出或都不取出的所有取法的是________①(1+a+a2+a3)(1+b3)(1+c)2②(1+a3)(1+b+b2+b3)(1+c)2③(1+a)3(1+b+b2+b3)(1+c2)④(1+a3)(1+b)3(1+c+c2)14. (1分)已知随机变量X服从正态分布且则 ________.15. (1分) (2018高三上·西安模拟) 从集合中任选一个元素,则满足的概率为________.16. (1分) (2019高二上·天河期末) 如图,在棱长为的正方体中,、分别是线段、上的点,是直线上的点,且,平面,,则的长为________.三、解答题 (共6题;共60分)17. (10分) (2019高二下·上海月考) 已知平面与平面的交线为直线,为平面内一条直线;为平面内一条直线,且直线互不重合.(1)若直线与直线交于点,判断点与直线的位置关系并证明;(2)若,判断直线与直线的位置关系并证明.18. (10分)(2020·天津模拟) 如图,在四棱锥P一ABCD中,已知,点Q为AC中点,底面ABCD, ,点M为PC的中点.(1)求直线PB与平面ADM所成角的正弦值;(2)求二面角D-AM-C的正弦值;(3)记棱PD的中点为N,若点Q在线段OP上,且平面ADM,求线段OQ的长.19. (10分)(2018·孝义模拟) 如图,三棱柱中,,平面 .(1)证明:;(2)若,,求二面角的余弦值.20. (10分) (2019高二下·湖州期末) 已知,为抛物线上的相异两点,且.(1)若直线过,求的值;(2)若直线的垂直平分线交x轴与点P,求面积的最大值.21. (10分) (2019高二上·天河期末) 设椭圆的一个焦点为,且椭圆过点,为坐标原点,(1)求椭圆的标准方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点、,且?若存在,写出该圆的方程,并求的最大值,若不存在说明理由.22. (10分) (2019高二上·天河期末) 已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标方程为,直线l的参数方程为(t为参数),射线OM的极坐标方程为 .(1)求圆C和直线l的极坐标方程;(2)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。
2023-2024学年浙江省温州市高二(上)期末数学试卷(A 卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x +y +1=0的倾斜角为( ) A .135°B .120°C .60°D .45°2.在空间四边形ABCD 中,点M ,G 分别是BC 和CD 的中点,则AB →+12(BD →+BC →)=( )A .AD →B .GA →C .AG →D .MG →3.已知函数f (x )满足f(x)=f ′(π3)sinx −cosx ,则f ′(π3)的值为( )A .√3B .√32C .−√3D .−√324.已知S n 为等比数列{a n }的前n 项和,S n =m ⋅2n −1,则a 4=( ) A .2B .4C .8D .165.已知圆锥有一个内接圆柱,当圆柱的侧面积最大时,圆柱与圆锥的高之比为( ) A .13B .12C .23D .√226.传说古希腊毕达哥拉斯学派的数学家用沙粒或小石子来研究数.他们根据沙粒或小石头所排列的形状把数分成许多类,如图的1,5,12,22称为五边形数,若五边形数所构成的数列记作{a n },下列不是数列{a n }的项的是( )A .35B .70C .145D .1707.已知F 为椭圆x 24+y 23=1的左焦点,过点F 的直线l 交椭圆于A ,B 两点,|AF |•|BF |=125,则直线AB 的斜率为( ) A .±2B .±√3C .±√2D .±18.若函数f (x )=a x +b x 在(0,+∞)上单调递增,则a 和b 的可能取值为( ) A .a =ln 1.1,b =10 B .a =ln 11,b =0.1 C .a =e 0.2,b =0.8D .a =e﹣0.2,b =1.8二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.以下选项中的两个圆锥曲线的离心率相等的是( ) A .x 24−y 22=1与x 24+y 22=1 B .x 24−y 22=1与y 22−x 24=1C .x 24+y 22=1与x 22+y 24=1D .y 2+4x =0与x 2+2y =010.已知函数f (x )=x 3+3x 2,则( ) A .f ′(﹣1)=﹣3B .f (x )有两个极值点C .f (x )在区间(﹣3,3)上既有最大值又有最小值D .f(−52)+f(−1)+f(12)=611.已知数列{a n }的前n 项和为S n ,且a 1<0,a 1+a 2>0,则下列命题正确的是( ) A .若{a n }为等差数列,则数列{S n }为递增数列 B .若{a n }为等比数列,则数列{S n }为递增数列 C .若{a n }为等差数列,则数列{|a n |}为递增数列D .若{a n }为等比数列,则数列{|a n |}为递增数列12.已知在直三棱柱ABC ﹣A 1B 1C 1中,AA 1=4,AC =BC =2,AC ⊥BC ,点E ,F ,T 分别为棱A 1A ,C 1C ,AB 上的动点(不含端点),点M 为棱BC 的中点,且A 1E =FC =√2BT ,则( )A .A 1B ∥平面EFTB .M ∈平面EFTC .点A 到平面EFT 距离的最大值为√142 D .平面B 1EF 与平面ABC 所成角正弦值的最小值为√22三、填空题:本大题共4小题,每小题5分,共20分.13.等差数列{a n }的前n 项和为S n ,已知3S 3=S 2+2S 4,且a 4=1,则公差d = .14.已知圆C 1:x 2+y 2﹣8x +7=0和圆C 2:x 2+y 2+6y +m =0外离,则整数m 的一个取值可以是 . 15.两个正方形ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直,M 和N 分别是对角线AC 和BF 上的动点,则MN 的最小值为 .16.已知双曲线C :x 2a 2−y 2b2=1的左、右焦点分别为F 1,F 2,l :y =√3x 是C 的一条渐近线,P 是C 第一象限上的点,直线PF 1与l 交于点Q ,QF 1⊥QF 2,则tan∠F 1PF 22= . 四、解答题:本大题共6小题,共70分.解答应写出文字说明.证明过程或演算步骤.17.(10分)如图,四棱锥P ﹣ABCD 的底面是边长为1的菱形,∠ABC =23π,PD ⊥平面ABCD ,PD =1,M 为PB 的中点.(1)求证:平面MAC ⊥平面PDB ; (2)求CP 与平面MAC 所成角的正弦值.18.(12分)已知圆满足: ①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1; ③圆心到直线l :x ﹣2y =0的距离为√55.求该圆的方程.19.(12分)已知数列{a n }满足a n+1=a n a n +1,a 1=12. (1)求证:数列{1a n}为等差数列; (2)设数列{a n }前n 项和为S n ,且S 2n ﹣S n >k 对任意的n ∈N *恒成立,求k 的取值范围. 20.(12分)已知函数f (x )=lnx ﹣ax . (1)讨论f (x )的单调性; (2)求证:当a >0时,f(x)+44√a. 21.(12分)已知点A(−√5,2)在双曲线C :x 2a 2−y 2a 2=1上,(1)求C 的方程;(2)如图,若直线l 垂直于直线OA ,且与C 的右支交于P 、Q 两点,直线AP 、AQ 与y 轴的交点分别为点M 、N ,记四边形MPQN 与三角形APQ 的面积分别为S 1与S 2,求S 1S 2的取值范围.22.(12分)设函数f(x)=(x﹣2)e ax.(1)若曲线y=f(x)在点(0,f(0))处的切线方程为y﹣3x+b=0,求a,b的值;(2)若当x>0时,恒有f(x)>﹣x﹣2,求实数a的取值范围;(3)设n∈N*时,求证:312+22+522+32+⋯+2n+1n2+(n+1)2<ln(n+1).2023-2024学年浙江省温州市高二(上)期末数学试卷(A 卷)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x +y +1=0的倾斜角为( ) A .135°B .120°C .60°D .45°解:直线x +y +1=0的向量为﹣1,直线的倾斜角为α,∴tan α=﹣1,∴α=135°. 故选:A .2.在空间四边形ABCD 中,点M ,G 分别是BC 和CD 的中点,则AB →+12(BD →+BC →)=( )A .AD →B .GA →C .AG →D .MG →解:由题意可知,12CD →=CG →,故AB →+12(BD →+BC →)=AB →+12(BC →+CD →+BC →)=AB →+BC →+12CD →=AC →+CG →=AG →.故选:C .3.已知函数f (x )满足f(x)=f ′(π3)sinx −cosx ,则f ′(π3)的值为( )A .√3B .√32C .−√3D .−√32解:f ′(x)=f ′(π3)cosx +sinx ,∴f ′(π3)=12f′(π3)+√32,∴f ′(π3)=√3.故选:A .4.已知S n 为等比数列{a n }的前n 项和,S n =m ⋅2n −1,则a 4=( ) A .2B .4C .8D .16解:因为S n 为等比数列{a n }的前n 项和,S n =m ⋅2n −1, 根据等比数列的求和公式S n =a 11−q −a11−q⋅q n ,可知,q =2,m =1, 则q =2,m =1,a 1=1,则a 4=a 1q 3=8. 故选:C .5.已知圆锥有一个内接圆柱,当圆柱的侧面积最大时,圆柱与圆锥的高之比为( ) A .13B .12C .23D .√22解:根据题意,画出轴截面△ABC ,DEFG 为内接矩形,如图所示: 设圆柱的高为h ,圆柱的底面半径为r ,圆锥的高为H ,底面半径为R ,则ℎH=R−r R,所以h =H(R−r)R, 所以圆柱的侧面积为S 侧=2πrh =2πr •H(R−r)R =2πH(Rr−r 2)R;则当r =−R 2×(−1)=R2时,圆柱的侧面积最大,此时ℎH=R−R2R=12. 故选:B .6.传说古希腊毕达哥拉斯学派的数学家用沙粒或小石子来研究数.他们根据沙粒或小石头所排列的形状把数分成许多类,如图的1,5,12,22称为五边形数,若五边形数所构成的数列记作{a n },下列不是数列{a n }的项的是( )A .35B .70C .145D .170解:由题意可知,a 1=1,a 2=5,a 3=12,a 4=22,则数列{a n }的后项与前项的差依次为4,7,10,13,16,19,22,25,28,31,34,…, 所以a 5=35,a 6=51,a 7=70,a 8=92,a 9=117,a 10=145,a 11=176,a 12=210,…. 故选:D . 7.已知F 为椭圆x 24+y 23=1的左焦点,过点F 的直线l 交椭圆于A ,B 两点,|AF |•|BF |=125,则直线AB 的斜率为( ) A .±2B .±√3C .±√2D .±1解:根据题意可得a =2,b =√3,c =1,设直线AB 的倾斜角为θ,A 到左准线的距离为d , 则|AF|d=e ,∴|AF |=ed =e (a 2c−c +|AF |cos θ),∴|AF |=e (b 2c+|AF |cos θ),∴(1﹣e cos θ)|AF |=b2a ,∴|AF |=b 2a1−ecosθ,同理可得|BF |=b 2a1+ecosθ,∴|AF |•|BF |=b 4a 21−e 2cos 2θ=125, ∴941−14cos 2θ=125,解得cos 2θ=14,∴cos θ=±12,又θ∈[0,π),∴θ=π3或2π3,∴k =tan θ=±√3. 故选:B .8.若函数f (x )=a x +b x 在(0,+∞)上单调递增,则a 和b 的可能取值为( ) A .a =ln 1.1,b =10 B .a =ln 11,b =0.1 C .a =e 0.2,b =0.8D .a =e﹣0.2,b =1.8解:f (x )=a x +b x ,a >0且a ≠1,b >0且b ≠1,f ′(x )=a x lna +b x lnb , 令g (x )=f ′(x ),则g ′(x )=a x (lna )2+b x (lnb )2>0恒成立, 故f ′(x )=a x lna +b x lnb 在(0,+∞)上单调递增, 要想f (x )=a x +b x 在(0,+∞)上单调递增, 只需f ′(0)=lna +lnb ≥0,即只需ab ≥1, A 选项,ab =10ln 1.1, 令h (x )=x ﹣1﹣lnx ,x >1,则h ′(x )=1−1x =x−1x>0在(1,+∞)上恒成立,故h (x )=x ﹣1﹣lnx 在(1,+∞)上单调递增, 故h (1.1)>h (1)=0,即0.1>ln 1.1>0, 故ab =10ln 1.1<10×0.1=1,A 错误; B 选项,由于ln 11<10,故ab =0.1ln 11=ln1110<1,B 错误; C 选项,ab =0.8e 0.2,令q (x )=(1﹣x )e x ,x ∈(0,1),则q ′(x )=﹣e x +(1﹣x )e x =﹣xe x <0恒成立, 故q (x )=(1﹣x )e x 在(0,1)上单调递减, 故q (0.2)<q (0)=1,即0.8e 0.2<1,C 错误; D 选项,ab =1.8e﹣0.2,令w (x )=e x ﹣x ﹣1,x ∈(﹣1,0),则w ′(x )=e x ﹣1<0恒成立,故w (x )=e x ﹣x ﹣1在(﹣1,0)上单调递减, 故w (﹣0.2)>w (0)=0,即e ﹣0.2>1﹣0.2=0.8,故ab =1.8e ﹣0.2>1.8×0.8=1.44>1,D 正确.故选:D .二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 9.以下选项中的两个圆锥曲线的离心率相等的是( ) A .x 24−y 22=1与x 24+y 22=1 B .x 24−y 22=1与y 22−x 24=1C .x 24+y 22=1与x 22+y 24=1D .y 2+4x =0与x 2+2y =0解:对于A :双曲线的离心率e =c a =√4+24=√62,椭圆的离心率e =c a =√4−24=√22,故A 错误; 对于B :第一个双曲线的离心率e =c a =√4+24=√62,第二个双曲线的离心率e =c a =√2+42=√3,故B 错误;对于C :第一个椭圆的离心率e =c a =√4+24=√62,第二个椭圆的离心率e =c a =√4+24=√62,故C 正确;对于D :所以抛物线的离心率都为1,故D 正确. 故选:CD .10.已知函数f (x )=x 3+3x 2,则( ) A .f ′(﹣1)=﹣3B .f (x )有两个极值点C .f (x )在区间(﹣3,3)上既有最大值又有最小值D .f(−52)+f(−1)+f(12)=6解:A .由f (x )=x 3+3x 2,得f ′(x )=3x 2+6x ,所以f ′(﹣1)=3﹣6=﹣3,故A 正确; B .由f ′(x )>0,可得x <﹣2或x >0,所以f (x )在(﹣∞,﹣2)上单调递增,在(0,+∞)上单调递增;由f ′(x )<0,可得﹣2<x <0,所以f (x )在(﹣2,0)上单调递减. 所以f (x )在x =﹣2处取得极大值,在x =0处取得极小值,故B 正确; C .由B 知,f (x )在x =﹣2处取得极大值,在x =0处取得极小值.f (﹣3)=﹣27+27=0,f (﹣2)=﹣8+12=4,f (0)=0,f (3)=27+27=54.显然f (3)>f (﹣2),所以f (x )在区间(﹣3,3)上没有最大值,故C 错误;D .因为f(−52)=(−52)3+3×(−52)2=258,f(−1)=−1+3=2,f(12)=(12)3+3×(12)2=78.所以f(−52)+f(−1)+f(12)=6.故D 正确.故选:ABD .11.已知数列{a n }的前n 项和为S n ,且a 1<0,a 1+a 2>0,则下列命题正确的是( ) A .若{a n }为等差数列,则数列{S n }为递增数列 B .若{a n }为等比数列,则数列{S n }为递增数列 C .若{a n }为等差数列,则数列{|a n |}为递增数列D .若{a n }为等比数列,则数列{|a n |}为递增数列 解:因为a 1<0,a 1+a 2>0, 所以a 2>﹣a 1>0,若{a n }为等差数列,则公差d =a 2﹣a 1>0,则{a n }为递增数列,数列{S n }也为递增数列,A 正确; 若{a n }为等比数列,则公比q =a 2a 1<−1,则{a n }为摆动数列,则数列{S n }不具有单调性,B 错误; 若{a n }为等差数列,则公差d =a 2﹣a 1>0,则a n >a n ﹣1>…>a 2>|a 1|,即{|a n |}为递增数列,C 正确; 若{a n }为等比数列,则q =a 2a 1<−1, 故对于数列{|a n |},|a n ||a n−1|>1,|a 1|>0,即数列{|a n |}为递增数列,D 正确.故选:ACD .12.已知在直三棱柱ABC ﹣A 1B 1C 1中,AA 1=4,AC =BC =2,AC ⊥BC ,点E ,F ,T 分别为棱A 1A ,C 1C ,AB 上的动点(不含端点),点M 为棱BC 的中点,且A 1E =FC =√2BT ,则( )A .A 1B ∥平面EFTB .M ∈平面EFTC .点A 到平面EFT 距离的最大值为√142 D .平面B 1EF 与平面ABC 所成角正弦值的最小值为√22解:如图,以点C 为原点,建立空间直角坐标系,设CF =t (0<t <4),则AE =4−t ,BT =√22t ,AB =2√2,故BT BA =t 4,所以BT =t4BA , 则E (2,0,4﹣t ),F (0,0,t ),A (2,0,0),B (0,2,0),故BT →=t 4BA →=t 4(2,−2,0)=(t 2,−t2,0),所以T (t 2,2−t 2,0),对于A ,A 1(2,0,4),则A 1B →=(−2,2,−4),ET →=(t 2−2,2−t 2,t −4)=(1−t 4)⋅(−2,2,4)=(1−t 4)A 1B →,所以ET →∥A 1B →,则ET ∥A 1B ,又ET ⊂平面EFT ,A 1B ⊄平面EFT ,所以A 1B ∥平面EFT ,故A 正确; 对于B ,M (0,1,0),则FM →=(0,1,−t),FT →=(t 2,2−t2,−t),FE →=(2,0,4−2t),假设M ∈平面EFT ,则M ,E ,F ,T 四点共面, 所以存在唯一实数对(λ,μ),使得FT →=λFE →+μFM →, 即(12t ,2−12t ,−t)=λ(2,0,4−2t)+μ(0,1,−t), 所以{12t =2λ2−12t =μ−t =(4−2t)λ−tμ,解得{λ=14tμ=2−12t ,所以M ,E ,F ,T 四点共面,即M ∈平面EFT ,故B 正确; 对于C ,AE →=(0,0,4−t),设平面EFT 的一个法向量为m →=(x ,y ,z),则有{m →⋅FE →=2x +(4−2t)z =0m →⋅FM →=y −tz =0,令z =1,则y =t ,x =t ﹣2,所以m →=(t −2,t ,1),所以点A 到平面EFT 的距离为|m →⋅AE →||m →|=22,令4﹣t =p ,p ∈(0,4),则t =4﹣p , 故|m →⋅AE →||m →|=22=22=2=√2−p +p 2,当1p =27,即p =72时,(|m →⋅AE →||m →|)max =1√2−12×27+127=√142,所以点A 到平面EFT 距离的最大值为√142,故C 正确; 对于D ,因为AA 1⊥平面ABC ,所以AA 1→=(0,0,4)即为平面ABC 的一个法向量, 又B 1(0,2,4),则FB 1→=(0,2,4−t), 设平面B 1EF 的法向量为n →=(a ,b ,c),则有{n →⋅FE →=2a +(4−2t)c =0n →⋅FB 1→=2b +(4−t)c =0,令c =1,则a =t −2,b =12t −2,故n →=(t −2,12t −2,1),设平面B 1EF 与平面ABC 所成的角为θ, 则|cosθ|=|cos〈AA 1→,n →〉|=|AA 1→⋅n →||AA 1→||n →|=44√(t−2)2+(12t−2)2+1=1√54t 2−6t+9,则sinθ=√1−cos 2θ=√1−154t 2−6t+9, 当t =125时,(sinθ)min =23, 所以平面B 1EF 与平面ABC 所成角正弦值的最小值为23,故D 错误.故选:ABC .三、填空题:本大题共4小题,每小题5分,共20分.13.等差数列{a n }的前n 项和为S n ,已知3S 3=S 2+2S 4,且a 4=1,则公差d = ﹣1 . 解:设等差数列{a n } 的公差为d ,因为3S 3=S 2+2S 4,a 4=1,可得3(3a 1+3d )=2a 1+d +2(4a 1+6d ),即且a 4=a 1+3d =1,解得d =﹣1.故答案为:﹣1.14.已知圆C 1:x 2+y 2﹣8x +7=0和圆C 2:x 2+y 2+6y +m =0外离,则整数m 的一个取值可以是 7(答案不唯一) .解:根据题意,圆C 1:x 2+y 2﹣8x +7=0,即(x ﹣4)2+y 2=9,其圆心为(4,0),半径为3; 圆C 2:x 2+y 2+6y +m =0,即x 2+(y +3)2=9﹣m ,必有m <9, 其圆心为(0,﹣3),半径为√9−m ,若两圆外离,则有3+√9−m <5,解可得:m >5, 综合可得:5<m <9,又由m 为整数,则m 的值为6、7、8,则m 的一个取值可以是7. 故答案为:7(答案不唯一).15.两个正方形ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直,M 和N 分别是对角线AC 和BF 上的动点,则MN 的最小值为√33. 解:∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,BC ⊥AB ,BC ⊂平面ABCD , 根据面面垂直的性质定理知CB ⊥平面ABEF ,∴BC ⊥BE ,从而BC ,AB ,BE 两两垂直,如图建立空间直角坐标系,设A (1,0,0),C (0,0,1),F (1,1,0),E (0,1,0), ∵CM =a ,BN =b ,(a ,b ∈[0,√2]),∴M(a √20,1−a √2),N(b √2b√20), MN =√(a √2b √2)2+(0−b √2)2+(1a √2)2=√a 2−√2a +1+b 2−ab =√(b −a 2)2+34(a −2√23)+13,当a =2√23,b =√23时,MN 最小,最小值为√33. 故答案为:√33. 16.已知双曲线C :x 2a 2−y 2b 2=1的左、右焦点分别为F 1,F 2,l :y =√3x 是C 的一条渐近线,P 是C 第一象限上的点,直线PF 1与l 交于点Q ,QF 1⊥QF 2,则tan∠F 1PF 22= √3−1 .解:设∠F1PF2=α,y=√3x的倾斜角为60°,即∠QOF2=60°,由双曲线的渐近线方程可得ba=√3,则c=√a2+b2=2a,即e=c a=2,由QF1⊥QF2,可得∠PF1F2=30°,∠PF2F1=150°﹣α,在△PF1F2中,由正弦定理可得|PF1|sin∠PF2F1=|PF1|sin(150°−α)=|PF2|sin30°=|F1F2|sinα,则|PF1|−|PF2|sin(150°−α)−12=12cosα+√32sinα−12=2csinα,即有e=ca=12cosα+√32sinα−12=2,化为1﹣cosα=(√3−1)sinα,即1−cosαsinα=2sin2α22sinα2cosα2=tanα2=tan∠F1PF22=√3−1.故答案为:√3−1.四、解答题:本大题共6小题,共70分.解答应写出文字说明.证明过程或演算步骤.17.(10分)如图,四棱锥P﹣ABCD的底面是边长为1的菱形,∠ABC=23π,PD⊥平面ABCD,PD=1,M为PB的中点.(1)求证:平面MAC⊥平面PDB;(2)求CP与平面MAC所成角的正弦值.解:(1)证明:∵PD⊥平面ABCD,AC⊂平面ABCD,∴PD⊥AC,∵四边形ABCD是菱形,∴AC⊥BD,∵BD∩PD=D,∴AC⊥平面PDB,∵AC⊂平面AMC,∴平面MAC⊥平面PDB;(2)过点P作PH⊥平面AMC,交平面AMC于点H,连接CH,则∠PCH是CP与平面MAC所成角,连接BD ,交AC 于O ,连接OM ,∵PD ∥OM ,∴PD ∥平面AMC ,∴PH 是点D 到平面AMC 的高, ∵PD ⊥平面ABCD ,∴OM ⊥OD ,∵平面AMC ⊥平面PDB ,平面AMC ∩平面PDB =OM , ∴OD ⊥平面AMC ,∴PH =OD =12,PC =√2,设CP 与平面MAC 所成角为θ,则CP 与平面MAC 所成角的正弦值为sin θ=ODPC =122=√24.18.(12分)已知圆满足: ①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1; ③圆心到直线l :x ﹣2y =0的距离为√55.求该圆的方程.解:设所求圆心为P (a ,b ),半径为r ,则圆心到x 轴,y 轴的距离分别为|b |、|a |,因圆P 截y 轴得弦长为2,由勾股定理得r 2=a 2+1,又圆被x 轴分成两段圆弧的弧长的比为3:1, ∴劣弧所对的圆心角为90°, 故r =√2b ,即r 2=2b 2, ∴2b 2﹣a 2=1①,又∵P (a ,b )到直线x ﹣2y =0的距离为√55, 即√5=√55,即a ﹣2b =±1.② 解①②组成的方程组得:{a =1b =1或{a =−1b =−1,于是即r 2=2b 2=2, ∴所求的圆的方程为(x +1)2+(y +1)2=2或(x ﹣1)2+(y ﹣1)2=2. 19.(12分)已知数列{a n }满足a n+1=a n a n +1,a 1=12. (1)求证:数列{1a n}为等差数列; (2)设数列{a n }前n 项和为S n ,且S 2n ﹣S n >k 对任意的n ∈N *恒成立,求k 的取值范围. 解:(1)证明:由a n+1=a n a n +1,a 1=12,可得1a n+1=1a n+1, 即有数列{1a n}是首项为2,公差为1的等差数列; (2)1a n=2+n ﹣1=n +1,则a n =1n+1,数列{a n}前n项和S n=12+13+...+1n+1,S2n=12+13+...+1n+1+1n+2+...+12n+12n+1,S2n﹣S n=1n+2+...+12n+12n+1,由S2n﹣S n>k对任意的n∈N*恒成立,可得k<(S2n﹣S n)min.设b n=1n+2+...+12n+12n+1,b n+1=1n+3+1n+4+...+12n+1+12n+2+12n+3,b n+1﹣b n=12n+2+12n+3−1n+2=3n+4(2n+2)(2n+3)(n+2)>0,则n∈N*,S2n﹣S n递增,可得n=1时,(S2n﹣S n)min=1 3,则k<13,即k的取值范围是(﹣∞,13).20.(12分)已知函数f(x)=lnx﹣ax.(1)讨论f(x)的单调性;(2)求证:当a>0时,f(x)+44√a.解:(1)因为f′(x)=1x−a,所以当a≤0时,f′(x)≥0,f(x)在(0,+∞)上单调递增,当a>0时,令f′(x)=0,得x=1 a ,在(0,1a)上f′(x)>0,f(x)单调递增,在(1a,+∞)上f′(x)<0,f(x)单调递减.综上所述,当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,1a)上单调递增,在(1a,+∞)上单调递减.(2)证明:由(1)知当a>0时,f(x)max=f(1a )=ln1a−1,只需要证(ln 1a −1)+44√a,即证√a+lna﹣3>0,令g(a)=4√alna﹣3,则g′(a)=√a−2a√a,所以g(a)在(0,4)上单调递减,在(4,+∞)上单调递增,所以g(a)≥g(4)=ln4﹣1>0,所以f(x)+44√a .21.(12分)已知点A(−√5,2)在双曲线C:x2a2−y2a2=1上,(1)求C 的方程;(2)如图,若直线l 垂直于直线OA ,且与C 的右支交于P 、Q 两点,直线AP 、AQ 与y 轴的交点分别为点M 、N ,记四边形MPQN 与三角形APQ 的面积分别为S 1与S 2,求S 1S 2的取值范围.解:(1)由点A(−√5,2)在双曲线C :x 2a 2−y 2a 2=1上,可得5a 2−4a2=1,解得a 2=1, 所以双曲线C 的方程为x 2﹣y 2=1.(2)由直线l 垂直于OA ,可得直线l 的斜率k =−1k OA =√52, 设直线l 的方程为y =√52x +m 且P (x 1,y 1),Q (x 2,y 2),联立方程组{y =√52x +m x 2−y 2=1,整理得x 2+4√5mx +4(m 2+1)=0,因为直线l 与双曲线C 的右支交于P ,Q 两点,所以{Δ=(4√5m)2−16(m 2+1)>0x 1+x 2=−4√5m >0x 1x 2=4(m 2+1)>0,解得m <−12,所以x 1+x 2=−4√5m ,x 1x 2=4(m 2+1), 则|PQ|=√1+k 2|x 1−x 2|=√1+(√52)2√(x 1+x 2)2−4x 1x 2=√1+(√52)2√(−4√5m)2−4×4(m 2+1)=6√4m 2−1,又由点A 到直线l :√5x −2y +2m =0的距离为d =√5×√5−2×2+2m|√(√5)+(−2)=13|2m −9|, 所以S 2=12|PQ|⋅d =√4m 2−1⋅|2m −9|,直线AP 的方程为y −2=1x 1+√5+√5),令x =0,可得y M =√5⋅(1x 1+√5)+2, 直线AQ 的方程为y −2=2x 2+5+√5),令x =0,可得y N =√5⋅(2x 2+5)+2, 则|MN|=|y M −y N |=√5|1x 1+52x 2+5=√5|√52x 1+m−2x 1+5√52x 2+m−2x 2+5=√5|122(x 1+√5)(x 2+√5)=√5|√22x 1x 2+2√5(x 1+x 2)+10=√5|(2m−9)√(−4√5m)−16(m 2+1)8(m 2+1)+2√5⋅(−4√5m)+10=2√5⋅√4m 2−1|2m−1|,所以△AMN 的面积S 3=5⋅√4m 2−1|2m−1|,又由S 1S 2=S 2−S 3S 2=1−S 3S 2,得S 1S 2=1−5|(2m−1)(2m−9)|=1−5|4m 2−20m+9|,m <−12,令f(m)=4m 2−20m +9=4(m −52)2−16,可得函数f (m )在(−∞,−12)上单调递减,且f(−12)=20,所以f (m )>20,所以S 1S 2∈(34,1),即S 1S 2的取值范围为(34,1).22.(12分)设函数f (x )=(x ﹣2)e ax .(1)若曲线y =f (x )在点(0,f (0))处的切线方程为y ﹣3x +b =0,求a ,b 的值; (2)若当x >0时,恒有f (x )>﹣x ﹣2,求实数a 的取值范围; (3)设n ∈N *时,求证:312+22+522+32+⋯+2n+1n 2+(n+1)2<ln(n +1).解:(1)由f (x )=(x ﹣2)e ax ,得f ′(x )=e ax +a (x ﹣2)e ax ,则f (0)=﹣2,f ′(0)=1﹣2a ,即切点坐标为(0,﹣2),切线的斜率k =1﹣2a , 由曲线y =f (x )在点(0,f (0))处的切线方程为y ﹣3x +b =0, 可得{−2−3×0+b =01−2a =3,解得a =﹣1,b =2.(2)由g (x )=f (x )+x +2=(x ﹣2)e ax +x +2, 得g ′(x )=e ax +a (x ﹣2)e ax +1=(ax ﹣2a +1)e ax +1, 由题意可知,当x >0时,恒有g (x )>0,且g (0)=0, 则g ′(0)=1﹣2a +1≥0,解得a ≤1,若a ≤1,则当a <0时,g(x)=(x −2)e ax +x +2=(x +2)e ax (x−2x+2+e −ax )=(x +2)e ax (1−4x+2+e −ax ),因为x >0,所以(x +2)e ax >0, 令ℎ(x)=1−4x+2+e −ax ,则h (x )>h (0)=0,即g (x )=(x +2)e ax h (x )>0,符合题意; 当a =0时,则g (x )=x ﹣2+x +2=2x >0在(0,+∞)内恒成立,符合题意;当0<a ≤1时,令φ(x )=g ′(x ),则φ′(x )=ae ax +a (ax ﹣2a +1)e ax =a (ax ﹣2a +2)e ax , 因为x >0,则ax ﹣2a +2>﹣2a +2≥0,e ax >0,可知φ′(x)=a(ax﹣2a+2)e ax>0在(0,+∞)内恒成立,则φ(x)在(0,+∞)内单调递增,可得φ(x)>φ(0)=2﹣2a≥0,则g(x)在(0,+∞)内单调递增,可得g(x)>φ(0)=0,符合题意;综上,实数a的取值范围为(﹣∞,1].(3)证明:由(2)可知,当a≤1,x>0时,(x﹣2)e ax+x+2>0,令a=1,可得(x﹣2)e x+x+2>0,令t=e 12x>1,则t2=e x,x=2lnt,则(2lnt﹣2)t2+2lnt+2>0,所以t2−11+t2<lnt,令t=n+1n>1,n∈N∗,则(n+1n)2−11+(n+1n)2<lnn+1n,所以2n+1n2+(n+1)2<ln(n+1)−lnn,则312+22<ln2−ln1,522+32<ln3−ln2,⋯,2n+1n2+(n+1)2<ln(n+1)−lnn,所以312+22+522+32+⋯+2n+1n2+(n+1)2<ln(n+1)−ln1=ln(n+1).。
2023学年第一学期温州市高二期末教学质量统一检测数学试题(A 卷)(答案在最后)本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.考生注意:1.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.2.选择题的答案须用2B 铅笔将答题卷上对应题目的答案涂黑,如要改动,须将原填涂处用橡皮擦净.3.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题卷上相应区域内,答案写在本试题卷选择题部分上无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线方程10x y ++=,则倾斜角为()A.45° B.60°C.120°D.135°【答案】D 【解析】【分析】求出直线的斜率,进而得到直线的倾斜角.【详解】直线10x y ++=的斜率为-1,设直线的倾斜角为θ,则tan 1θ=-,因为[)0,πθ∈,所以3π1354θ== .故选:D.2.在空间四边形ABCD 中,点M ,G 分别是BC 和CD 的中点,则()12AB BD BC ++=()A.ADB.GAC.AGD.MG【答案】C 【解析】【分析】根据已知可得2BD BC BG +=,代入即可得出答案.【详解】因为,点G 是CD 的中点,所以,2BD BC BG +=,所以,()12AB BD BC AB BG AG ++=+=.故选:C.3.已知函数()f x 满足()πsin cos 3f x f x x ⎛⎫=-⎪⎝⎭',则π3f ⎛⎫' ⎪⎝⎭的值为()A.B.2C.D.2【答案】A 【解析】【分析】求出导函数,代入π3x =,即可得出答案.【详解】由已知可得,()πcos sin 3f x f x x ⎛⎫'+⎪⎝⎭'=,则ππππ1πcos sin 3333232f f f ⎛⎫⎛⎫⎛⎫'''=+=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,π3f ⎛⎫'= ⎪⎝⎭.故选:A.4.已知n S 为等比数列{}n a 的前n 项和,21nn S m =⋅-,则4a =()A.2B.4C.8D.16【答案】C 【解析】【分析】根据n a 与n S 的关系,求出当2n ≥时,12n n a m -=⋅,以及12n na a +=,22a m =.由等比数列的可得212221a m a m ==-,求出m 的值,代入得出12n n a -=,48a =.【详解】由已知可得,1121a S m ==-,当2n ≥时,()11121212nn n n n n a S S m m m ---=-=⋅--⋅-=⋅,所以,11222nn n n a m a m +-⋅==⋅,且22a m =.由{}n a 为等比数列,可知212221a ma m ==-,解得1m =.所以,11122n n n a --=⋅=,48a =.故选:C.5.已知圆锥有一个内接圆柱,当圆柱的侧面积最大时,圆柱与圆锥的高之比为()A.13B.12C.23D.2【答案】B 【解析】【分析】画出圆锥及其内接圆柱的轴截面,利用条件结合圆柱的侧面积公式求圆柱的侧面积,利用二次函数的图象和性质求解即可.【详解】设圆锥的底面半径为R ,高为h ;圆柱的底面半径为r ,高为x ,画出圆锥及其内接圆柱的轴截面,如图则r h x R h-=,∴h x xr R R R h h-==-.∴圆柱侧面积22π2π·2π·2π(0)x R S r x R R x x Rx x h h h ⎛⎫==-=-+<< ⎪⎝⎭.22ππ(0)22R h Rh x x h h ⎛⎫=--+<< ⎪⎝⎭∴当2hx =时,圆柱侧面积最大,此时圆柱与圆锥的高之比为21x h =.故选:B.6.传说古希腊毕达哥拉斯学派的数学家用沙粒或小石子来研究数.他们根据沙粒或小石头所排列的形状把数分成许多类,如图的1,5,12,22称为五边形数....,若五边形数所构成的数列记作{}n a ,下列不是数列{}n a 的项的是()A.35B.70C.145D.170【答案】D 【解析】【分析】根据已知得出的前几项,进而得出递推公式11,132,2n n n a a n n -=⎧=⎨+-≥⎩.根据累加法求得通项公式为232n n na -=.分别令n a 取35,70,145,170,求出n 的正整数解的情况,即可得出答案.【详解】由已知可得,11a =,21154322a a a ==+=+⨯-,322127332a a a ==+=+⨯-,4332210331a a a ==+=+⨯+,所以,132,2n n a a n n -=+-≥.当2n ≥时,累加法求和如下11a =,214a a =+,327a a =+,L132n n a a n -=+-,两边同时相加可得,12312114732n n a a a a a a a n -++++=+++++++- ,整理可得,()232131473222n n n n na n -+-=++++-==.对于A 项,令23352n n-=可得,23700n n --=,解得5n =或143n =-(舍去).所以,535a =,故A 项错误;对于B 项,令23702n n -=可得,231400n n --=,解得7n =或203n =-(舍去).所以,770a =,故B 项错误;对于C 项,令231452n n-=可得,232900n n --=,解得10n =或293n =-(舍去).所以,10145a =,故C 项错误;对于D 项,令231702n n -=可得,233400n n --=,解得*16n +=∉N (舍去)或*16n =∉N (舍去).所以,170不是数列{}n a 的项,故D 项正确.故选:D.7.已知F 为椭圆22143x y +=的左焦点,过点F 的直线l 交椭圆于A ,B 两点,125AF BF ⋅=,则直线AB 的斜率为()A.2± B. C. D.1±【答案】B 【解析】【分析】求出F 坐标,设()()1122,,,A x y B x y ,直线斜率为k ,倾斜角为θ,结合图象得出12,sin sin y y AF BF θθ==,表示出直线的方程为()1y k x =+,与椭圆联立,根据韦达定理得出2122943k y y k -=+,进而推得222129sin 543k k θ=+,根据三角函数基本关系式化简,得出方程,求解即可得出答案.【详解】易知2a =,b =,1c =,点()1,0F -.不妨设()()1122,,,A x y B x y ,120,0y y ><,直线斜率为k ,倾斜角为θ,易知12,sin sin y y AF BF θθ==,且直线的方程为()1y k x =+,联立直线与椭圆的方程()221143y k x x y ⎧=+⎪⎨+=⎪⎩,消去x 可得,()22243690k y ky k +--=.根据韦达定理可得,2122943k y y k -=+.又1212122212sin sin sin sin 5y y y y y y AF BF θθθθ-⋅=⋅===,所以有12212sin 5y y θ=-,所以,222129sin 543k k θ=+.又22tan k θ=,代入可得,()()22222222129tan 12sin 12tan sin 54tan 35sin cos 5tan 1θθθθθθθθ===+++所以,()22229tan 12tan 4tan 35tan 1θθθθ=++,解得2tan 3θ=,所以23k =,k =.故选:B.8.若函数()xxf x a b =+在()0,∞+上单调递增,则a 和b 的可能取值为()A.ln1.1a =,10b =B.ln11a =,0.1b =C.0.2e a =,0.8b =D.0.2e a -=, 1.8b =【答案】D 【解析】【分析】二次求导得到()ln ln xxf x a a b b '=+在()0,∞+上单调递增,要想()xxf x a b =+在()0,∞+上单调递增,只需()0ln ln 0f a b '=+≥,A 选项,构造()1ln h x x x =--,1x >,求导得到单调性,求出0.1ln1.10>>,得到10ln1.1100.11ab =<⨯=;B 选项,ln110.1ln11110ab ==<;C 选项,令()()1e x q x x =-,()0,1x ∈,求导得到其单调性,求出0.210.8e ab =<;D 选项,构造()e 1x w x x =--,()1,0x ∈-,求导得到单调性,得到0.2e 0.8->,从而求出0.21.8e 1.80.81ab -=>⨯>.【详解】()xxf x a b =+,0a >且1a ≠,0b >且1b ≠,()ln ln x x f x a a b b '=+,令()()g x f x '=,则()()()22ln ln 0x x g x a a b b '=+>恒成立,故()ln ln xxf x a a b b '=+在()0,∞+上单调递增,要想()xxf x a b =+在()0,∞+上单调递增,只需()0ln ln 0f a b '=+≥,即只需1≥ab ,A 选项,10ln1.1ab =令()1ln h x x x =--,1x >,则()1110x h x x x='-=->在()1,+∞上恒成立,故()1ln h x x x =--在()1,+∞上单调递增,故()()1.110h h >=,即0.1ln1.10>>,故10ln1.1100.11ab =<⨯=,A 错误;B 选项,由于ln1110<,故ln110.1ln11110ab ==<,B 错误;C 选项,0.20.8e ab =,令()()1e xq x x =-,()0,1x ∈,则()()e 1e e 0xxxq x x x '=-+-=-<恒成立,故()()1e xq x x =-在()0,1x ∈上单调递减,故()()0.201q q <=,即0.210.8e ab =<,C 错误;D 选项,0.21.8e ab -=,令()e 1xw x x =--,()1,0x ∈-,则()e 10xw x '=-<恒成立,故()e 1xw x x =--在()1,0x ∈-上单调递减,故()()0.200w w ->=,即0.2e 10.20.8->-=,故0.21.8e 1.80.8 1.441ab -=>⨯=>,D 正确.故选:D【点睛】比较大小或证明不等式常用的不等式放缩如下:e e x x ≥,e 1x x ≥+,()ln 10x x x ≤->,11ln1x x ≤-,111ln 11x x x⎛⎫<+< ⎪+⎝⎭等,根据不等式特征,选择合适的函数进行求解.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.以下选项中的两个圆锥曲线的离心率相等的是()A.22142x y -=与22142x y += B.22142x y -=与22124y x -=C.22142x y +=与22124x y += D.240y x +=与220x y +=【答案】CD 【解析】【分析】根据椭圆、双曲线以及抛物线的离心率公式,分别求出各个圆锥曲线的离心率,即可得出答案.【详解】对于A 项,双曲线22142x y -=的离心率为2e ===;椭圆22142x y +=的离心率为22e ===≠,故A 错误;对于B 项,双曲线22142x y -=的离心率为2e ===;双曲线22124y x -=的离心率为2e ===≠,故B 错误;对于C 项,椭圆22142x y +=的离心率为22e ===;椭圆22124x y +=的离心率为2e ===,故C 项正确;对于D 项,方程240y x +=可化为抛物线24y x =-,方程220x y +=可化为抛物线22x y =-,而且抛物线的离心率均为1,故D 项正确.故选:CD.10.已知函数()323f x x x =+,则()A.()13f ¢-=-B.()f x 有两个极值点C.()f x 在区间()3,3-上既有最大值又有最小值D.()()()511622f f f -+-+=【答案】ABD 【解析】【分析】求导得出导函数,代入=1x -,即可判断A 项;根据导函数得出函数的单调性,即可得出函数的极值,进而判断B 项;根据B 项的单调性与极值,结合函数的极值以及()3f -、()3f ,即可判断C 项;求出()51,1,22f f f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值,即可判断D 项.【详解】对于A 项,由已知可得,()236f x x x '=+,所以()1363f -=-=-'.故A 正确;对于B 项,解()0f x '=可得,0x =或2x =-.解()0f x '>可得,<2x -或0x >,所以()f x 在(),2∞--上单调递增,在()0,∞+上单调递增;解()0f x '<可得,20x -<<,所以()f x 在()2,0-上单调递减.所以,()f x 在2x =-处取得极大值,在0x =处取得极小值.故B 正确;对于C 项,由B 知,()f x 在2x =-处取得极大值,在0x =处取得极小值.因为()327270f -=-+=,()28124f -=-+=,()00f =,()3272754f =+=.显然()()32f f >-,所以,()f x 在区间()3,3-上没有最大值.故C 错误;对于D 项,因为325552532228f ⎛⎫⎛⎫⎛⎫-=-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1132f -=-+=,32111732228f ⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以,()511622f f f ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.故D 项正确.故选:ABD.11.已知数列{}n a 的前n 项和为n S ,且10a <,120a a +>,则下列命题正确的是()A.若{}n a 为等差数列,则数列{}n S 为递增数列B.若{}n a 为等比数列,则数列{}n S 为递增数列C.若{}n a 为等差数列,则数列{}n a 为递增数列D.若{}n a 为等比数列,则数列{}n a 为递增数列【答案】ACD 【解析】【分析】AC 选项,得到公差0d >,110a d a +>->,结合等差数列求和公式得到110n n S S a nd +-=+>对1n ≥恒成立,A 正确,推出()11n n a a n +>≥得到C 正确;BD 选项,得到公比211a q a =<-,举出反例得到C 错误,由10a >,且11n na q a +=>,得到D 正确.【详解】因为10a <,120a a +>,所以20a >,且211a a a >=-,AC 选项,若{}n a 为等差数列,则公差210d a a =->,110a d a +>->,则()112n n n S na d -=+,110n n S S a nd +-=+>对1n ≥恒成立,则数列{}n S 为递增数列,A 正确;由于21a a >,故21a a >,又0d >,故()102n n a a n +>>≥,则()11n n a a n +>≥,数列{}n a 为递增数列,C 正确;BD 选项,若{}n a 为等比数列,则公比211a q a =<-,不妨设2q =-,11a =-,则232,4a a ==-,故1313S S =->=-,则数列{}n S 不为递增数列,B 错误;由于1q >,故11n na q a +=>,又10a >,故数列{}n a 为递增数列,D 正确.故选:ACD12.已知在直三棱柱111ABC A B C -中,14AA =,2AC BC ==,ACBC ⊥,点,,E F T 分别为棱1A A ,1C C ,AB 上的动点(不含端点),点M 为棱BC的中点,且1A E FC ==,则()A.1//A B 平面EFTB.M ∈平面EFTC.点A 到平面EFT距离的最大值为2D.平面1B EF 与平面ABC所成角正弦值的最小值为2【答案】ABC 【解析】【分析】以点C 为原点建立空间直角坐标系,设()04CF t t =<<,利用向量法逐一分析判断即可.【详解】如图,以点C 为原点建立空间直角坐标系,设()04CF t t =<<,则4,2AE t BT t =-=,AB =,故4BT t BA =,所以4tBT BA =,则()()()()2,0,4,0,0,,2,0,0,0,2,0E t F t A B -,故()112,2,0,,04422t t BT BA t t ⎛⎫==-=- ⎪⎝⎭ ,所以11,2,022T t t ⎛⎫-⎪⎝⎭,对于A ,()12,0,4A ,则()12,2,4A B =-- ,()111112,2,412,2,412244ET t t t t t A B ⎛⎫⎛⎫⎛⎫=---=-⋅-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1//ET A B,则1//ET A B ,又ET ⊂平面EFT ,1A B ⊄平面EFT ,所以1//A B 平面EFT ,故A 正确;对于B ,()0,1,0M ,则()()110,1,,,2,,2,0,4222FM t FT t t t FE t ⎛⎫=-=--=- ⎪⎝⎭,假设M ∈平面EFT ,则,,,M E F T 四点共面,所以存在唯一实数对(),λμ,使得FT FE FM λμ=+,即()()11,2,2,0,420,1,22t t t t t λμ⎛⎫--=-+-⎪⎝⎭,所以()12212242t t t t t λμλμ⎧=⎪⎪⎪-=⎨⎪-=--⎪⎪⎩,解得14122t t λμ⎧=⎪⎪⎨⎪=-⎪⎩,所以,,,M E F T 四点共面,即M ∈平面EFT ,故B 正确;对于C ,()0,0,4AE t =-,设平面EFT 的法向量为(),,m x y z =,则有()2420m FE x t z m FM y tz ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令1z =,则,2y t x t ==-,所以()2,,1m t t =-,所以点A 到平面EFT 距离为m AEm⋅= 令()4,0,4p t p =-∈,则4t p =-,故m AEm⋅====,当127p =,即72p =时,max142m AEm ⎛⎫⋅ ⎪== ⎪⎝⎭ ,所以点A 到平面EFT 距离的最大值为2,故C 正确;对于D ,因为1AA ⊥平面ABC ,所以()10,0,4AA =即为平面ABC 的一条法向量,()10,2,4B ,则()10,2,4FB t =-,设平面1B EF 的法向量为(),,n a b c =,则有()()12420240n FE a t c n FB b t c ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩ ,令1c =,则12,22a t b t =-=-,故12,2,12n t t ⎛⎫=-- ⎪⎝⎭,设平面1B EF 与平面ABC 所成的角为θ,则111cos cos ,AA n AA n AA nθ⋅===,则sin θ==,当125t =时,()min 2sin 3θ=,所以平面1B EF 与平面ABC 所成角正弦值的最小值为23,故D 错误.故选:ABC.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.非选择题部分三、填空题:本大题共4小题,每小题5分,共20分.13.等差数列{}n a 的前n 项和为n S ,已知32432S S S =+,且41a =,则公差d =______.【答案】1-【解析】【分析】根据已知可推得3422a a ==,进而得出答案.【详解】由32432S S S =+可得,()32432S S S S -=-,即342a a =,又41a =,所以32a =,431d a a =-=-.故答案为:1-.14.已知圆1C :22870x y x +-+=和圆2C :2260x y y m +++=外离,则整数m 的一个取值可以是______.【答案】6(答案不唯一,或7或8)【解析】【分析】写出两圆的圆心及半径,利用两点之间坐标公式求出圆心的距离,利用两圆相离的关系列出不等式,求出整数m 的值.【详解】由题意,将两圆的方程化为标准方程:得:圆1:C ()2249x y -+=,圆2:C 22(3)9x y m ++=-,圆1C 的圆心为()4,0,圆2C 的圆心为()0,3-,圆1C 的半径为3,圆2C ,5=.所以3590m <->⎪⎩,解得59m <<,所以整数m 的取值可能是6,7,8.故答案为:6(答案不唯一,或7或8).15.两个正方形ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直,M 和N 分别是对角线AC 和BF 上的动点,则MN 的最小值为______.【答案】3【解析】【分析】建立空间坐标系,设点坐标的得到线段长度表达式,配方利用二次函数最小值.【详解】因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,BC AB ⊥,BC ⊂平面ABCD ,根据面面垂直的性质定理知CB ⊥平面ABEF ,BC BE ∴⊥,从而BC ,AB ,BE 两两垂直,如图建立空间直角坐标系,设()()()()1,0,0,0,0,1,1,1,0,0,1,0A C F E (),,,0,2CM a BN b a b ⎡⎤==∈⎣⎦ ,∴(,0,1)22a a M -,(,,0)22b b N .22222()(0)(1)212222b a ab a b MN a a b =-+-+-=+--+=223221()2433a b a ⎛⎫-+-+ ⎪⎝⎭,当222,33a b ==时,MN 最小,最小值为33;故答案为:3316.已知双曲线C :22221x y a b-=的左、右焦点分别为1F ,2F ,l :3y x =是C 的一条渐近线,P 是C 第一象限上的点,直线1PF 与l 交于点Q ,12QF QF ⊥,则12tan 2F PF ∠=______.【答案】31-##13-+【解析】【分析】作出图形,合理转化条件,硬解出P 点的纵坐标,利用焦点三角形面积相等求解即可.【详解】如图连接2PF 设(3)Q x ,易知3y x =是C 的一条渐近线,3ba=,则3b a =,而2()1312b ce a a=+=+==,故2c a =,则双曲线的方程为222213x y a a -=,1(2,0)F a -,2(2,0)F a ,则1(23)F Q x a += ,2(23)Q F x a x =-,由12QF QF ⊥得222x a x -4+3=0,解得x a =,则()Q a ,故133F Q k a ==,则1FQ的方程为(2)3y x a =+2a x -=,联立方程组2x a =-,222213x y a a-=,设22(,)P x y ,11(,)T x y ,可得22890y a -+=,故122y y +=,21298y y a =,由图易得21y y >,则2132y y a -==,解得234y a =,易知12122F PF S c =⨯=V ,由焦点三角形面积公式得12212123tan tan 22F PFb a S F PF F PF ==∠∠V ,22123tan2a F PF =∠,解得12tan 12F PF∠=.1四、解答题:本大题共6小题,共70分.解答应写出文字说明.证明过程或演算步骤.17.如图,四棱锥P ABCD -的底面是边长为1的菱形,2π3ABC ∠=,PD ⊥平面ABCD ,1PD =,M 为PB的中点.(1)求证:平面MAC ⊥平面PDB ;(2)求CP 与平面MAC 所成角的正弦值.【答案】(1)证明过程见讲解.(2)24【解析】【分析】(1)利用直线与平面的垂直的性质,平面与平面的判断定理进行证明.(2)利用空间向量求解.【小问1详解】因为四边形ABCD 为菱形,所以AC BD ⊥.因为PD⊥平面ABCD ,因为AC ⊂平面ABCD ,所以PD AC ⊥,因为PD BD D ⋂=,,PD BD ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面MAC ,所以平面MAC ⊥平面PDB .【小问2详解】连接BD ,交AC 于O ,因为四边形ABCD 为菱形,所以O 为BD 的中点,因为M 为PB 的中点,所以MO 为PBD △的中位线,所以MO PD ∥,因为PD⊥平面ABCD ,所以MO ⊥平面PBD ,如图建立空间直角坐标系.根据题意有0,,02C ⎛⎫ ⎪ ⎪⎝⎭,1,0,12P ⎛⎫- ⎪⎝⎭,所以13,,122CP ⎛⎫=-- ⎪ ⎪⎝⎭,易知平面MAC 的一个法向量为()1,0,0n =,设CP 与平面MAC 所成角为θ,则·sin cos ,4CP n CP n CP n θ==== ,所以CP 与平面MAC所成角的正弦值4.18.已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:-=5,求该圆的方程.x y20【答案】或【解析】【详解】(法一)设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题意可知圆P截x轴所得劣弧对的圆心角为90°圆P截x轴所得的弦长为,2|b|=,得r2=2b2,圆P被y轴所截得的弦长为2,由勾股定理得r2=a2+1,得2b2-a2=1.又因P(a,b)到直线x-2y=0的距离为,得d=,即有综前述得,解得,,于是r2=2b2=2所求圆的方程是,或(法二)设圆的方程为,令x=0,得,所以,得再令y=0,可得,所以,得,即,从而有2b2-a2=1.又因为P (a ,b )到直线x -2y=0的距离为,得d=,即有综前述得,解得,,于是r 2=2b 2=2所求圆的方程是,或19.已知数列{}n a 满足11n n n a a a +=+,112a =.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)设数列{}n a 前n 项和为n S ,且2n n S S k ->对任意的*N n ∈恒成立,求k 的取值范围.【答案】(1)证明见解析(2)13k <【解析】【分析】(1)证明111n na a +-为定值即可;(2)先求出数列{}n a 的通项,要使2n n S S k ->对任意的*N n ∈恒成立,只需要()2min n n k S S <-即可,令2n n nb S S =-,利用单调法求出数列{}n b 的最小项即可得解.【小问1详解】因为11n n n a a a +=+,所以11111n n n n a a a a ++==+,即1111n na a +-=,所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为112a =,公差为1的等差数列;【小问2详解】由(1)得11n n a =+,所以11n a n =+,要使2n n S S k ->对任意的*N n ∈恒成立,只需要()2min n n k S S <-即可,令2n n n b S S =-,则()1221222211n n n n n n n n n b b S S S S a a a ++++++-=---=+-11111111023222232422324n n n n n n n n =+->+-=->++++++++,所以数列{}n b 是递增数列,所以()1212min 13n b b S S a ==-==,即()2min 13n n S S -=,所以13k <.20.已知函数()ln f x x ax =-.(1)讨论()f x 的单调性;(2)求证:当0a >时,()4f x+<【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求导,再分0a ≤和0a >两种情况讨论即可得解;(2)由(1)可得当0a >时,()max 1f x f a ⎛⎫= ⎪⎝⎭,要证()4f x +<,只需要证明()max 4f x +<即可,即ln 30a+>,令()()ln 30g a a a =+>,利用导数求出()g a 的最小值即可得证.【小问1详解】函数()ln f x x ax =-的定义域为()0,∞+,()11ax f x a x x'-=-=,当0a ≤时,()0f x '>,所以函数()f x 在()0,∞+上单调递增,当0a >时,令()0f x '>,则10x a<<,令()0f x '<,则1x a >,所以函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减,综上所述,当0a ≤时,函数()f x 在()0,∞+上单调递增;当0a >时,函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减;【小问2详解】由(1)可得当0a >时,()max 1ln 1f x f a a ⎛⎫==-- ⎪⎝⎭,要证()4f x +<()max 4f x +<即可,即ln 30a -+-,即ln 30a +->,令()()ln 30g a a a =+>,则()1g a a '==,当04a <<时,()0g a '<,当4a >时,()0g a '>,所以函数()g a 在()0,4上单调递减,在()4,∞+上单调递增,所以()()min 4ln 423ln 410g a g ==+-=->,所以ln 30a +>,所以当0a >时,()4f x +<21.已知点()2A 在双曲线C :22221x y a a -=上,(1)求C 的方程;(2)如图,若直线l 垂直于直线OA ,且与C 的右支交于P 、Q 两点,直线AP 、AQ 与y 轴的交点分别为点M 、N ,记四边形MPQN 与三角形APQ 的面积分别为1S 与2S ,求12S S 的取值范围.【答案】(1)221x y -=(2)3(,1)4【解析】【分析】(1)由点()2A在双曲线C上,代入求得a的值,即可求解;(2)根据题意,设直线l为2y x m=+,联立方程组,由0∆>,求得12m<-,且21212,4(1)x x x x m+=-=+,利用弦长公式求得则PQ=,进而得到229S m=-,再由直线AP和AQ的方程,得到21MNm=-,求得AMN的面积3521Sm=-,进而得到122511,24209S mS m m=-<--+,结合函数的性质,即可求解.【小问1详解】解:由点()2A在双曲线2222:1x yCa a-=上,可得22541a a-=,解得21a=,所以双曲线C的方程为221x y-=.【小问2详解】解:由直线l垂直于OA,可得直线l的斜率为12OAkk=-=,设直线l的方程为2y x m=+,且1122(,),(,)P x y Q x y,联立方程组2221y x mx y⎧=+⎪⎨⎪-=⎩,整理得224(1)0x m+++=,因为直线l与双曲线C的右支交于,P Q两点,则()()2212212Δ16(1)0410mx xx x m⎧=-+>⎪⎪+=->⎨⎪=+>⎪⎩,解得12m<-,可得21212,4(1)x x x x m+=-=+,则12PQ x=-===又由点A到直线220l y m -+=的距离为1293d m ==-,所以21292S PQ d m =⋅=-,直线AP的方程为2y x -=+,令0x =,可得2M y =+,直线AQ的方程为2y x -=+,令0x =,可得2N y =+则M N MN y y =-===21m==-,所以AMN 的面积3521S m =-,又由23312221S S S S S S S -==-,则12255111,(21)(29)24209S m S m m m m =-=-<----+,令()22542094(162f m m m m =-+=--,可得函数()f m 在1(,2-∞-上单调递减,且1(202f -=,所以()20f m >,所以123(,1)4S S ∈,即12S S 的取值范围为3(,1)4.【点睛】方法点睛:解答圆锥曲线的最值与范围问题的方法与策略:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:①配方法;②基本不等式法;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围;(3)涉及直线与圆锥曲线的综合问题:通常设出直线方程,与圆锥曲线联立方程组,结合根与系数的关系,合理进行转化运算求解,同时抓住直线与圆锥曲线的几何特征应用.22.设函数()()2e axf x x =-.(1)若曲线()y f x =在点()()0,0f 处的切线方程为30y x b -+=,求a ,b 的值;(2)若当0x >时,恒有()2f x x >--,求实数a 的取值范围;(3)设*n ∈N 时,求证:()()2222223521ln 112231n n n n +++⋅⋅⋅+<+++++.【答案】(1)1,2a b =-=(2)(],1-∞(3)证明见解析【解析】【分析】(1)求导,根据题意结合导数的几何意义列式求解;(2)构建()()2g x f x x =++,由题意可知:当0x >时,恒有()0g x >,且()00g =,结合端点效应分析求解;(3)由(2)可知:当1,0a x ≤>时,()2e 20ax x x -++>,令1a =,12e x t =,可得221ln 1t t t -<+,再令1n t n +=,可得()()2221ln 1ln 1n n n n n +<+-++,利用累加法分析证明.【小问1详解】因为()()2e ax f x x =-,则()()e 2e ax ax f x a x =+-',则()02f =-,()012f a '=-,即切点坐标为()0,2-,斜率12k a =-,由题意可得:2300123b a --⨯+=⎧⎨-=⎩,解得1,2a b =-=.【小问2详解】令()()()22e 2axg x f x x x x =++=-++,则()()()e 2e 121e 1ax ax axg x a x ax a =+-+=-++',由题意可知:当0x >时,恒有()0g x >,且()00g =,则()01210g a =+'-≥,解得1a ≤,若1a ≤,则有:①当a<0时,()()()()242e 22e e 2e 1e 22ax ax ax ax ax x g x x x x x x x ---⎛⎫⎛⎫=-++=++=+-+ ⎪ ⎪++⎝⎭⎝⎭,因为0x >,可知()2e0ax x +>,令()41e 2ax h x x -=-++,因为41,e 2ax y y x -=-=+在()0,∞+内单调递增,可得()h x 在()0,∞+内单调递增,则()()00h x h >=,即()()()2e 0axg x x h x =+>,符合题意;②当0a =时,则()2220g x x x x =-++=>在()0,∞+内恒成立,符合题意;③当01a <≤时,令()()x g x ϕ=',则()()()e 21e 22e ax ax ax x a a ax a a ax a ϕ=+-+=-+',因为0x >,则22220ax a a -+>-+≥,e 0ax >,可知()()22e 0ax x a ax a ϕ+'=->在()0,∞+内恒成立,则()x ϕ在()0,∞+内单调递增,可得()()0220x a ϕϕ>=-≥,则()g x 在()0,∞+内单调递增,可得()()00g x ϕ>=,符合题意;综上所述:实数a 的取值范围为(],1-∞.【小问3详解】由(2)可知:当1,0a x ≤>时,()2e 20axx x -++>,令1a =,可得()2e 20xx x -++>,令12e 1x t =>,则2e ,2ln x t x t ==,则()22ln 22ln 20t t t -++>,整理得221ln 1t t t -<+,令*11,n t n n +=>∈N ,则22111ln 11n n n n n n +⎛⎫- ⎪+⎝⎭<+⎛⎫+ ⎪⎝⎭,整理得()()2221ln 1ln 1n n n n n +<+-++,则()()2222223521ln 2ln1,ln 3ln 2,,ln 1ln 12231n n n n n +<-<-⋅⋅⋅<+-++++,所以()()()2222223521ln 1ln1ln 112231n n n n n +++⋅⋅⋅+<+-=+++++.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.。
2020-2021学年温州市高二上学期期末数学试卷一、单选题(本大题共10小题,共40.0分) 1.命题“若a >b ,则2a >2b ”的逆否命题是( )A. 若a ≤b ,则2a ≤2bB. 若a >b ,则2a ≤2bC. 若2a ≤2b ,则 a ≤bD. 若2a ≤2b ,则 a >b2.球面上有三个点A 、B 、C. A 和B ,A 和C 间的球面距离等于大圆周长的. B 和C 间的球面距离等于大圆周长的.如果球的半径是R ,那么球心到截面ABC 的距离等于( )A.B.C.D.3.已知a ,b ∈R +,且直线ax +by −6=0与直线2x +(b −3)y +5=0互相平行,则2a +3b 的最小值为( )A. 12B. 25C. 13+2√6D. 12+4√34.下列命题中正确命题的个数是( )①和同一平面垂直的两个平面平行; ②和同一平面垂直的两条直线平行;③两条直线与一个平面所成的角相等,则这两条直线平行.A. 0B. 1C. 2D. 35. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,过左焦点F 1(−c,0)作圆x 2+y 2=a 2的切线,切点为E ,延长F 1E 交抛物线y 2=4cx 于P ,Q 两点,则|PE|+|QE|的值为( )A. 10√2aB. 10aC. (5+√5)aD. 12√2a6.已知函数f(x)=e x x−t(lnx +x +2x )仅有一个极值点为x =1,则实数t 的取值范围是( )A. (−∞,13]∪{e3}B. (−∞,13]C. (−∞,12]D. (−∞,12]∪{e3}7.椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点为F 1(−c,0)、F 2(c,0),P 为直线x =a 2c上一点,F 1P 的垂直平分线恰过F 2点,则e 的取值范围为( )A. (0,√33)B. (0,√33]C. (√33,1)D. [√33,1)8.如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点,AC=BC=4,PA=4√2,则二面角A−PB−C的大小的正弦值为()A. √22B. √23C. √63D. √339.已知函数y=x3−x2−ax+b在(0,1)处的切线方程为y=2x+1,则a+b=()A. −1B. 0C. 1D. 210.若动点P(x1,y1)在曲线y=2x2+1上移动,则点P与点(0,−l)连线中点的轨迹方程为()A. y=2x2B. y=4x2C. y=6x2D. y=8x2二、单空题(本大题共3小题,共12.0分)11.抛物线C1:x²=2py(p>0)与双曲线C2:x²−3y²=λ有一个公共焦点F,过C2上一点P(3√5,4)向C1作两条切线,切点分别为A、B,则|AF|⋅|BF|=______.12.已知正三棱柱(底面是正三角形,侧棱垂直于底面)ABC−A1B1C1的底面边长为2,侧棱AA1=2,则异面直线AB1与BC1所成角的余弦值为______.13.如图:抛物线y2=4x的焦点为F,原点为O,直线AB经过点F,抛物线的准线与x轴交于点C,若∠OFA=135°,则tan∠ACB=______ .三、多空题(本大题共4小题,共16.0分)14.已知圆锥的母线与底面所成的角等于60°,该圆锥内接于球O,过此圆锥顶点的截面三角形的最大顶角等于(1);球O与圆锥的表面积之比为(2).15.已知函数f(x)=xe x,则f′(x)=(1);函数f(x)图象在点(0,f(0))处的切线方程为(2)16.一个三棱锥的三视图如图所示,则其体积是(1);此三棱锥的最长棱的长度为(2).17.已知直线l:y=kx+2经过点A(m,5),B(5,7),则m=(1),直线l1:x−ay+6=0与直线l垂直的充要条件是a=(2).四、解答题(本大题共5小题,共60.0分)18.求过点A(0,1)且被圆C:(x−4)2+y2=25所截的弦长为6的直线方程.19.已知函数f(x)=(2x+1)e x+ax,g(x)=|f(x)|.(Ⅰ)当a=0时,求g(x)的单调区间;(Ⅱ)若g(x)的值域为[0,+∞),求实数a的取值范围.20.如图,在四棱锥中,底面为矩形,侧面底面,.(1)求证:面;(2)设为等边三角形,求直线与平面所成角的大小.21. 在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO (Ⅰ)求证直线A、B恒过定点(0,1)(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.22. 已知函数f(x)=x−alnx+a3−1(a>0).(1)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;,+∞)上的单调性;(2)讨论函数f(x)在(1a(3)若函数g(x)=2x3−x2lnx−16x+20,求证:g(x)>0.参考答案及解析1.答案:C解析:解:命题“若a>b,则2a>2b”的逆否命题是“若2a≤2b,则a≤b”,故选:C.根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,写出即可.本题考查了命题与它的逆否命题的应用问题,是基础题.2.答案:B解析:试题分析:如图所示,圆O是球的大圆,且大圆所在平面与面ABC垂直,其中弦EF是过A、B、C的小圆的直径,弦心距OD就是球心O到截面ABC的距离,OE是球的半径,因此,欲求OD,需先求出截面圆ABC的半径.下一个图是过A、B、C的小圆.AB、AC、CB是每两点之间的直线段.它们的长度要分别在△AOB、△AOC、△COB中求得(O是球心).由于A、B间球面距离是大圆周长的,所以∠AOB=×2π=,同理∠AOC=,∠BOC=.∴|AB|=R,|AC|=R,|BC|=.在△ABC中,由于AB2+AC2=BC2.∴∠BAC=90°,BC是小圆ABC的直径.∴|ED|=,从而|OD|=.故应选B.考点:点到平面的距离;球的有关性质。
浙江省温州市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、填空题: (共14题;共14分)1. (1分)命题“若x>2,则3x>9”的否命题为________.2. (1分)(2018·杨浦模拟) 若双曲线()的左焦点在抛物线的准线上,则________.3. (1分)(2020·昆山模拟) 已知复数z满足(1+ i) z=2i ,其中i 是虚数单位,则z的模为________.4. (1分) (2016高一下·河南期末) 已知以F为焦点的抛物线y2=4x上的两点A、B满足 =3 ,则弦AB的中点到准线的距离为________.5. (1分) (2018高二下·阿拉善左旗期末) 曲线在点处的切线方程为________.6. (1分) (2016高二下·凯里开学考) 在约束条件下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于________.7. (1分)(2020·连城模拟) 已知双曲线 - =1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为________.8. (1分) (2016高一下·烟台期中) 在平面直角坐标系xOy中,已知直线y=x+2与x轴、y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2(a>0)上运动,若∠MPN恒为锐角,则实数a的取值范围是________.9. (1分) (2017高二下·延安期中) 观察下列不等式1+ <,1+ + <,1+ + +<,…照此规律,第五个不等式为________.10. (1分)命题:“ 或”的否定是________.11. (1分)(2019高二下·吉林期末) 设,过下列点分别作曲线的切线,其中存在三条直线与曲线相切的点是________.12. (1分) (2016高一上·陆川期中) 已知下列四个命题:①函数f(x)= x﹣lnx(x>0),则y=f(x)在区间(,1)内无零点,在区间(1,e)内有零点;②函数f(x)=log2(x+ ),g(x)=1+ 不都是奇函数;③若函数f(x)满足f(x﹣1)=﹣f(x+1),且f(1)=2,则f(7)=﹣2;④设x1、x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1,其中正确命题的序号是________.13. (1分)已知a>b,椭圆C1的方程为 =1,双曲线C2的方程为 =1,C1与C2的离心率之积为,则C2的渐近线方程为________14. (1分) (2019高一上·河南月考) 已知函数的零点,则整数m的值为________.二、解答题: (共6题;共50分)15. (5分) (2016高二上·重庆期中) 直线过点P(﹣3,1),且与x轴,y轴分别交于A,B两点.(Ⅰ)若点P恰为线段AB的中点,求直线l的方程;(Ⅱ)若 = ,求直线l的方程.16. (5分)已知数列中,,求,并判断97是否为数列中的项.17. (10分) (2019高三上·柳州月考) 已知过点的直线l的参数方程是(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于 , 两点,试问是否存在实数,使得?若存在,求出实数的值;若不存在,说明理由.18. (10分)某渔业公司今年初用98万元购进一艘鱼船用于捕捞,第一年需要各种费用12万元,从第二年起包括维修费在内每年所需费用比上一年增加4万元,该船每年捕捞总收入50万元.(1)问捕捞几年后总盈利最大,最大是多少?(2)问捕捞几年后年平均利润最大,最大是多少?19. (10分) (2018高二上·万州期末) 已知椭圆C:上的点到左焦点的最短距离为,长轴长为 .(1)求椭圆的标准方程;(2)过椭圆的右焦点作斜率存在且不等于零的直线与椭圆相交于两点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.20. (10分) (2017高三上·邯郸模拟) 已知函数f(x)=lnx﹣ ax2+bx+1的图象在x=1处的切线l过点(,).(1)若函数g(x)=f(x)﹣(a﹣1)x(a>0),求g(x)最大值(用a表示);(2)若a=﹣4,f(x1)+f(x2)+x1+x2+3x1x2=2,证明:x1+x2≥ .参考答案一、填空题: (共14题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题: (共6题;共50分)15-1、16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、。
浙江省温州二中高二上学期期末考试试题(数学理)温馨提示:1.本试卷满分100分,答题时间100 分钟,不使用计算器! 2.遇到暂时不会的题,勇敢地跳过去,后面容易题等着你呢。
一、选择题(本大题共10小题, 每小题4分, 共40分。
在每小题给出的四个选项中, 只有一项是符合题目要求的)1.下列抛物线中,开口最大的是 ( ▲ )A .x y 212=B .x y =2C .x y 22=D .x y 42=2. “0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的 ( ▲ ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 3. 下图程序输出的结果是4,则输入的x 的值是 ( ▲ ) A. 1 B. 2 C. 3 D.44.在右面的程序框图表示的算法中,输入三个不相等的实数c b a ,,,要求输出的x 是这三个数中最大的数,那么在空白的判断框中,应该填入( ▲ )A .x c >B . c x <C .c b >D .c a > 5. 下列三句叙述中正确的是 ( ▲ ) ①对于命题,p p ⌝就是p 的否命题。
第4题图第3题图②命题“若1,0232==+-x x x 则”的逆命题是真命题。
③命题“所有的互斥事件都是对立事件”的逆否命题是真命题。
A . ①B .②C .③D .① ② ③6.若20092009012009(12)()x a a x a xx R -=+++∈,则20091222009222a a a +++的值为( ▲)(A )2(B )0(C )1-(D) 2-7.过椭圆)0(12222>>=+b a b x a y 的上焦点F 作圆222b y x =+的切线FM (切点为M ), 交x 轴于点P . 若M 为线段FP 的中点, 则椭圆的离心率是( ▲ )A . 31B . 32C . 33D . 368. 12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( ▲ )A .155 B .355 C .14 D .139.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。
浙江省温州市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)命题p:∀x∈R,sinx<1;命题q:∃x∈R,cosx≤﹣1,则下列结论是真命题的是()A . p∧qB . ¬p∧qC . p∨¬qD . ¬p∧¬q2. (2分)如图,三棱柱A1B1C1—ABC中,侧棱AA1⊥底面A1B1C1 ,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是().A . AE、B1C1为异面直线,且AE⊥B1C1B . AC⊥平面A1B1BAC . CC1与B1E是异面直线D . A1C1∥平面AB1E3. (2分)一人在打靶时,连续射击两次,事件“至少中靶一次”的对立事件是A . 至多有一次中靶B . 两次都中靶C . 两次都不中靶D . 只有一次中靶4. (2分) (2017高一下·福州期中) 某程序框图如图所示,若输出的S=57,则判断框内为()A . k>4?B . k>5?C . k>6?D . k>7?5. (2分)(2017·山东模拟) 若x1 , x2 ,…,x2017的平均数为4,标准差为3,且yi=﹣3(xi﹣2),i=1,2,…,2017,则新数据y1 , y2 ,…,y2017的平均数和标准差分别为()A . ﹣6 9B . ﹣6 27C . ﹣12 9D . ﹣12 276. (2分)(2017·潮州模拟) 一个几何体的三视图如图所示,则这个几何体的表面积为()A . 24+8 +8B . 20+8 +4C . 20+8 +4D . 20+4 +47. (2分)(2020·日照模拟) 两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A .B .C .D .8. (2分)(2017·宝清模拟) 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a、b、c三家酒店选择一家,且这三家至少有一个参会国入住,则这样的安排方法共有()A . 96种B . 124种C . 130种D . 150种9. (2分) (2017高三上·韶关期末) 设双曲线以椭圆 =1长轴的两个端点为焦点,以椭圆的焦点为顶点,则双曲线的渐近线的斜率为()A . ±B . ±C . ±D . ±10. (2分) (2017高一下·河北期末) 设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为()A . (1,)B . (,+∞)C . (1,3)D . (3,+∞)11. (2分) (2017高二下·肇庆期末) 已知x,y的取值如下表所示:x234y645如果y与x呈线性相关,且线性回归方程为,则b=()A .B .C .D .12. (2分) (2018高二上·泸县期末) “ ”是“ ”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件二、填空题: (共4题;共4分)13. (1分) (2015高一下·万全期中) 过点A(1,2)且与原点距离最大的直线方程是________14. (1分)(2017·鞍山模拟) 已知四面体ABCD,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球半径为________.15. (1分) (2017高三上·珠海期末) 若展开式中所有二项式系数之和是64,常数项为15,则实数a的值是________.16. (1分) (2018高一下·桂林期中) 若圆上至少有三个不同的点到直线的距离为,则取值范围为________三、解答题: (共6题;共45分)17. (10分) (2019高一上·郏县期中) 近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器(百台),其总成本为(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数的解析式(利润=销售收入-总成本);(2)工厂生产多少百台产品时,可使利润最多?18. (5分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=.(1)求角C的大小;(2)若c=2,且ab=,求证:sinA=sinB.19. (5分)(2017·衡阳模拟) 为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.优秀人数非优秀人数总计甲班乙班30总计60(Ⅱ)现已知A,B,C三人获得优秀的概率分别为,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).附:,n=a+b+c+dP(K2>k0)0.1000.0500.0250.0100.005k0 2.706 3.841 5.024 6.6357.87920. (5分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,AB=2a,E为C1D1的中点.(1)求证:DE⊥平面BEC;(2)求三棱锥C﹣BED的体积.21. (10分) (2016高二下·潍坊期末) 设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足≤0,(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.22. (10分) (2019高二下·吉林月考) 己知圆的参数方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7、答案:略8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14、答案:略15-1、16-1、三、解答题: (共6题;共45分)17-1、17-2、18、答案:略19-1、20-1、21-1、21-2、22-1、22-2、第11 页共11 页。
高二期末考试数学(理科)试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1.若复数21(1)()z a a i a R =-++∈是纯虚数,则||z 等于( )A .0B .2C .0或2D 2.在空间直角坐标系中,若向量13(2,1,3)(1,1,1)(1,)22a b c =-=-=-- ,,,,则它们之间的关系是( ) A .//a b a c ⊥ 且 B .a b a c ⊥⊥ 且 C .//a b a c ⊥ 且 D .////a b a c 且3.对任意x R ∈,不等式|||1|a x x ≤+-恒成立的一个充分不必要条件是( ) A .1a > B .1a ≥ C .1a < D .1a ≤4.曲线12y x=和2y ax =在它们的交点处的两条切线互相垂直,则实数a 的值是( ) AB .-C .±D .不存在5.如图,长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A .1010 B .1030 C .1060 D .101036.函数 y = )A B .3 C .D 7.如图是从事网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推.若2013是第m 行从左至右算的第n 个数字,则(m ,n )为( )A .(63,60)B .(63,4)C .(64,61)D .(64,4)8.已知双曲线22221(0,0)x y a b a b-=>>的两焦点为21,F F ,过2F 作x 轴的垂线交双曲线于B A ,两点,若1ABF ∆内切圆的半径为a ,则此双曲线的离心率为( )A B C D9.已知0t >,关于x 的方程31x =有相异实根的个数情况是( )A .0或1或2或3B .0或1或2或4C .0或2或3或4D .0或1或2或3或410.若对可导函数()f x ,恒有2()()0f x xf x '+>,则()f x ( )A .恒大于0B .恒小于0C .恒等于0D .和0的大小关系不确定二、填空题(本大题共6小题,每小题4分,共24分)11.命题“若x <0,则20x >”的逆否命题是 命题.(填“真”或“假”)12.记复数12ω=-+,则2ωω+等于 . 13.对于函数)(x f ,在使()f x M ≥成立的所有常数M 中,我们把M 的最大值称为函数)(x f 的“下确界”,则函数21()(0)f x x x x=+>上的“下确界”为 . 14.已知命题:在平面直角坐标系中,ABC ∆的顶点(,0)A c -和(,0)C c ,顶点B 在椭圆 22221(0,x y a b c a b +=>>=上,椭圆的离心率是e ,则e B C A 1sin sin sin =+,类比 上述命题有:在平面直角坐标系中,ABC ∆的顶点(,0)A c -和(,0)C c ,顶点B 在双曲线 22221(0,0,x y a b c a b-=>>=上,双曲线的离心率是e ,则 . 15.平面α、β、γ两两垂直,定点A α∈,A 到β、γ距离都是1,P 是α上动点,P 到β的距离等于P 到点A 的距离,则P 点轨迹上的点到β距离的最小值是 .16.使关于x 的不等式a x ≥x ≥log a x (a >0且a ≠1)在区间(0,)+∞上恒成立的实数a 的取值范围是 .三、解答题(本大题共3小题,共36分,解答应写出文字说明、证明过程或演算步骤)17.(10分)如图,在组合体中,ABCD —A 1B 1C 1D 1是一个长方体,P —ABCD是一个四棱锥.AB =2,BC =3,点P ∈平面CC 1D 1D ,且PC =PD(Ⅰ)证明:PD ⊥平面PBC ;(Ⅱ)求PA 与平面ABCD 所成的角的正切值;(Ⅲ)若1AA a =,当a 为何值时,PC //平面1AB D .18.(12分)如图,已知抛物线2:2(0)C y px p =>上横坐标为4的点到焦点的距离为5. (Ⅰ)求抛物线C 的方程;(Ⅱ)设直线y kx b =+与抛物线C 交于两点11(,)A x y ,22(,)B x y ,且12||y y a -=(a 为正.常数..).过弦AB 的中点M 作平行于x 轴的 直线交抛物线C 于点D ,连结AD 、BD 得到ABD ∆.(i )求实数a ,b ,k 满足的等量关系;(ii )ABD ∆的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.19.(14分)已知函数()ln f x x x =,()1g x x =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意正实数x ,不等式()()f x kg x ≥恒成立,求实数k 的值;(Ⅲ)求证:22ln !(1)(*)n n n n N ≥-∈.(其中!123(1)n n n =⨯⨯⨯⋅⋅⋅⨯-⨯) 2012学年第一学期温州中学高二期末考试数学(理科)答题卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1 2 3 4 5 6 7 8 9 10二、填空题(本大题共6小题,每小题4分,共24分)11. 12.13. 14.15. 16.三、解答题(本大题共3小题,共36分,解答应写出文字说明、证明过程或演算步骤)17.(10分)18.(12分)19.(14分)2012学年第一学期温州中学高二期末考试数学(理科)参考答案一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1 2 3 4 5 6 7 8 9 10B AC C BD B D B A 二、填空题(本大题共6小题,每小题4分,共24分)11. 真 12. -1 13. sin sin 1sin A C B e -= 15. 1216. 1e a e ≥ 三、解答题(本大题共3小题,共36分,解答应写出文字说明、证明过程或演算步骤)17.方法一:(Ⅰ)证明:因为2==PC PD ,2==AB CD ,所以PCD ∆为等腰直角三角形,所以PC PD ⊥.因为1111D C B A ABCD -是一个长方体,所以D D CC BC 11面⊥,而D D CC P 11平面∈,所以D D CC PD 11面⊂,所以PD BC ⊥.因为PD 垂直于平面PBC 内的两条相交直线PC 和BC ,由线面垂直的判定定理,可得PBC PD 平面⊥.(Ⅱ)解:过P 点在平面D D CC 11作CD PE ⊥于E ,连接AE .因为PCD ABCD 面面⊥,所以ABCD PE 面⊥,所以PAE ∠就是PA 与平面ABCD 所成的角.因为1=PE ,10=AE ,所以1010101tan ===∠AE PE PAE . 所以PA 与平面ABCD 所成的角的正切值为1010. (Ⅲ)解:当2=a 时,D AB PC 1//平面.当2=a 时,四边形D D CC 11是一个正方形,所以0145=∠DC C ,而045=∠PDC ,所以0190=∠PDC ,所以PD D C ⊥1.而PD PC ⊥,D C 1与PC 在同一个平面内,所以D C PC 1//.而D C AB D C 111面⊂,所以D C AB PC 11//面,所以D AB PC 1//平面.方法二:(Ⅰ)证明:如图建立空间直角坐标系,设棱长a AA =1则有),0,0(a D ,)1,1,0(+a P ,),2,3(a B ,),2,0(a C .于是(0,1,1)PD =-- ,(3,1,1)PB =- ,(0,1,1)PC =- ,所以0PD PB ⋅= ,0PD PC ⋅= .所以PD 垂直于平面PBC 内的两条相交直线PC 和BC ,由线面垂直的判定定理,可得PBC PD 平面⊥.(Ⅱ)解:),0,3(a A ,所以(3,1,1)PA =-- ,而平面ABCD 的一个法向量为1(0,0,1)n = .所以1cos ,PD n <= .所以PA 与平面ABCD 所成的角的正切值为1010. (Ⅲ)解:)0,2,3(1=B ,所以)0,0,3(=,),2,0(1a AB -=.设平面D AB 1的法向量为),,(2z y x n =,则有⎪⎩⎪⎨⎧=-=⋅==⋅0203212az y n AB x n ,令2=z ,可得平面D AB 1的一个法向量为)2,,0(2a n =.若要使得D AB PC 1//平面,则要2n ⊥,即022=-=⋅a n ,解得2=a . 所以当2=a 时,D AB PC 1//平面.18.解:(Ⅰ)依题意:452p +=,解得2p =.∴抛物线方程为24y x =. (Ⅱ)(i )由方程组2,4,y kx b y x =+⎧⎨=⎩消去x 得:2440ky y b -+=.(※) 依题意可知:0k ≠. 由已知得124y y k +=,124b y y k=. 由12y y a -=,得221212()4y y y y a +-=,即221616b a k k -=,整理得221616kb a k -=. 所以2216(1)a k kb =- .(ii )由(i )知AB 中点222(,)bk M k k -,所以点212(,)D k k,依题意知12211122ABD bk S DM y y a k -=-=⨯⨯ . 又因为方程(※)中判别式16160kb =-> ,得10kb ->. 所以2112ABD bk S a k -=⨯⨯ ,由(Ⅱ)可知22116a k bk -=,所以23121632ABD a a S a =⨯⨯= . 又a 为常数,故ABD S 的面积为定值.19. (Ⅰ)解:定义域:(0,)+∞11()1ln ()(0,)(,)f x x f x e e'=+∴+∞ 在上,在上 ; (Ⅱ)解法一:(1)1;x =当时,显然成立ln (2)11x x x k x >≤-当时, 22ln (1ln )(1)ln 1ln ()()1(1)(1)x x x x x x x x h x h x x x x +----'===---令,则 1()1ln ()10()(1)0t x x x t x t x t x '=--=->∴>=令,则, ()(1,)h x ∴+∞ 在上 11ln lim =lim(1ln )11x x x x x x →→+=-由洛比达法则可知: ()11h x k ∴>≤,由题意:;(3)1(2)1x k <≥当时,类似可得;综上:1k =;解法二:()ln ()1ln h x x x kx k h x x k '=-+=+-令,则 11()(0,)(,)k k h x e e --∴+∞ 在上,在上 11()()k k h x h e k e --∴≥=- 由题意10k k e --≥,11()()1k k t k k e t k e --'=-=-令,则, ()(0,1)(1,)()(1)=0t k t k t ∴+∞∴≤ 在上,在上10k k e -∴-≤, 101k k e k -∴-=∴=(Ⅲ)证法一:()111ln 1ln 1x x x x x x x x ->>-∴>=-由知:当时,Ⅱ 2(*,2)x k k N k =∈≥令, 211112ln 111()(1)1k k k k k k>->-=----则 2,3,,1,k n n =⋅⋅⋅-取,并累加得:21(1)2ln !(1)(1)n n n n n->---= 22ln !(1)n n n ∴>- 212ln !=(1)n n n n =-又当时,22ln !(1)(*)n n n n N ∴≥-∈证法二:数学归纳法(略)。
平阳二中2014学年第一学期期末考试高二数学(理)一、选择题(共10小题,每小题4分,共40分)1.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为 ( ) A.-3B .-6C .-32D .232.已知a ∈R ,则“22a a >”是“2a >”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.设x 为实数,命题p :x ∀∈R ,20x ≥,则命题p 的否定是( )A.p ⌝:∈∃0x R,020<xB.p ⌝:∈∃0x R,020≤x C.p ⌝:x ∀∈R,20x < D.p ⌝:x ∀∈R,20x ≤4.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β, 有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( ) A. ①是真命题,②是假命题 B. ①是假命题,②是真命题C. ①②都是真命题D. ①②都是假命题5.若直线x -y +1=0与圆(x -a)2+y2=2有公共点,则实数a 的取值范围是 ( ) A. [-3,-1] B. [-1,3] C. [-3,1] D. (-∞,-3]∪[1,+∞)6.如图,在正方体ABCD -A1B1C1D1中,E 为线段A1C1的中点,则异面直线DE 与B1C 所成角的大小为( ) A. 15° B. 30° C. 45° D. 60°7.已知圆O :x2+y2=5和点A(1,2),则过A 且与圆O三角形的面积为 ( ) A.5B. 10C. 252D. 2548.分别以直角三角形的斜边和两直角边所在直线为轴,将三角形旋转一周所得旋转体的体积 依次为V1、V2、V3,则( ) A. V1=V2+V3 B. V12=V22+V32C.222123111V V V =+D. 123111V V V =+9.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN|≥23, 则k 的取值范围是( )1D CA 1AA. ⎣⎡⎦⎤-34,0 B. ⎣⎡⎦⎤-23,0C. []-3,3D. ⎣⎢⎡⎦⎥⎤-33,33 10.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,,设BP x =,MN y =,则函数()y f x =的图象大致是( )二、填空题(共7小题,每小题4分,共28分) 11.一个几何体的三视图如图所示, 则该几何体的体积为 _________12.如图所示,已知空间四边形OABC 中, OB =OC ,且∠AOB =∠AOC =π3, 则cos 〈OA →,BC →〉的值为______________13.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是_____________14. 命题:p 方程052422=+-++m y mx y x 表示圆, 命题:q 向量)2,1,(-= m a的模小于2, 若p q ∧为真命题,则实数m 的取值范围是________________15.设A 、B 是直线3x +4y +2=0与圆x2+y2+4y =0的两个交点,则线段AB 的垂直平分线的方程是__________________16.已知圆C 的方程为x2+y2-8x +15=0,若直线y =kx -2上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 17.在平行四边形ABCD 中,AB=AC=1,∠ACD=900,将它沿对角线AC 折起, 使AB 与CD 成600角,则此时BD 的长度是_____________ 三、解答题(共4小题, 共52分) 18.(本小题12分)ABCD MN P A 1B 1C 1D 1已知两直线l1:2x -y -2=0与l2:x +y +3=0(1)直线l 经过l1与l2的交点且与l2垂直,求直线l 的方程; (2)过点P(3,0)作一直线l ',使它夹在两直线l1:2x -y -2=0与l2:x +y +3=0之间的线段AB恰被点P 平分,求此直线l '的方程.19.(本小题12分)在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 当D 为PB 的中点(1)求证:平面PBC ⊥平面PAC ;(2)求AD 与平面PAC 所成的角的正弦值;20.(本小题14分)四棱锥P —ABCD 的底面ABCD 是直角梯形,AD ∥BC ,∠BAD=90°,侧面PAB ⊥底面ABCD ,△PAB 为正三角形,AB=BC=21AD=2,E 为PD 中点(1) 求证:CE ∥平面PAB ;(2) 求二面角E —AC —D 的余弦值;(3) 在线段BC 上存在点Q 使AQ ⊥PD ,求点Q 到平面EAC 的距离。
21.(本小题14分)已知圆O :x2+y2=1和定点A(2,1),由圆O 外一点P(a ,b)向圆O 引切线PQ ,切点为Q , 且|PQ|=|PA|.(1) 求a 、b 间关系; (2) 求|PQ|的最小值;(3) 以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程.平阳二中2014学年第一学期期末考试 高二数学(理)参考答案一、选择题(共10小题,每小题4分,共40分) BBADC BDCDB二、填空题(共7小题,每小题4分,共28分)335, 0, π50,411<<-m , 4x-3y-6=0, 34, 22或 三、解答题(共4小题, 共52分)18.(本小题12分)解:(1)035=--y x(2) 设点A(x ,y)在l1上, 由题意知⎩⎪⎨⎪⎧x +xB 2=3,y +yB2=0,∴点B(6-x ,-y),解方程组⎩⎪⎨⎪⎧2x -y -2=0,-+-+3=0,得⎩⎨⎧x =113,y =163,∴k =163-0113-3=8.(12分)∴所求的直线方程为y =8(x -3),即8x -y -24=0. 19.(本小题12分) (1)BC ⊥平面PAC(2)取PC 的中点E ,42sin =∠DAE20.(本小题14分)解法一:(Ⅰ)取AP 中点P ,连EF ,BF∵E 为PD 中点,∴EF ∥AD 且EF=21AD , 又BC ∥AD 且BC=21AD ,∴EF ∥BC 且EF=BC ,∴四边形EFBC 为平行四边形, ∴CE ∥BF ,∴CE ∥平面PAB(Ⅱ)作PG ⊥AB 于G ,EH ⊥DG 于H ,则EH ∥PG∵平面PAB ⊥底面ABCD ,∴PG ⊥底面ABCD ,又EH ∥PG ,∴EH ⊥底面ABCD 过H作HM ⊥AC 于M ,连EM ,则EM ⊥AC ,∠EMH 为二面角E —AC —D 的平面角,可求得EH=21PG=23,MH=CH ·sin45°=23·42322=. ∴tan ∠EMH=MH EH =3642323=,∴二面角E —AC —D 的余弦值为1053(Ⅲ)∵PG ⊥底面ABCD ,要使AQ ⊥PD ,只需要AQ ⊥DG 即可。
在直角梯形ABCD 中,由△ABQ ∽△DAG ,可得BQ=21,Q 为BC 的四等分点。
设Q 到平面EAC 的距离为h ,可证BF ⊥平面PAD ,∵CE ∥BF ,∴△EAC 为直角三形,S EAC △=2153·5·21·21==CE AE , 又S AQC ∆=2323221=∙∙由S EAC Q -△=S AQC E -△得:h ·S EAC △=AQCS △·23,∴h=1053解法二:(向量法)如图建立这空间直角坐标系O —xyz ,(Ⅰ)容易得A(-1,0,0),C(1,2,0), B(1,0,0),P(0,,0,3)D(-1,4,0),E(-,212,23)∴AP 中点M(-,210,23),计算得)23023(,,-==,∥ ∴CE ∥平面PAB(也可以证明平面PAB 的法向量与垂直) (Ⅱ)设平面ACE 的法向量)1,(y x ,=022·=+=y x023221·=++=y x AE n解得:3333-==y x ,∴=(33,-33,1)设二面角E —AC —D 的平面角为θ,则cos θ10533153==21.(本小题14分)解 (1)连接OQ 、OP ,则△OQP 为直角三角形, 又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a -2)2+(b -1)2,故2a +b -3=0. (2)由|PQ|2=|OP|2-1=a2+b2-1 =a2+9-12a +4a2-1 =5a2-12a +8=5(a -1.2)2+0.8, 得|PQ|min =255.(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点且与l 垂直的直线l′与l 的交点P0,所以r =322+12-1=355-1,又l′:x -2y =0,联立l :2x +y -3=0得P0(65,35). 所以所求圆的方程为 (x -65)2+(y -35)2=(355-1)2.。