广西北海市2019学年八年级下学期期末考试数学试卷【含答案及解析】
- 格式:docx
- 大小:414.06 KB
- 文档页数:23
广西北海市八年级下学期数学期末模拟试卷(3)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在代数式中,x的取值范围是()A . x≥﹣1B . x>﹣1C . x>﹣1且x≠0D . x≠02. (2分) (2019八上·东台月考) 下面图案中是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分) 9月初,某蔬菜价格为10元/千克。
由于部分菜农盲目扩大种植,至11月中旬,价格连续两次大幅下跌,现在价格为3元/千克。
如果平均每次下跌的百分率为x,根据题意,下面所列方程正确的是()A . 10(1+x)2=3B . 10(1-x)2=3C . 10(1-2x)=3D . 10(1-x)2=10-34. (2分)下列说法正确的是()A . 一个数的相反数一定是负数B . 若|a|=|b|,则a=bC . 若|m|=2,则m=±2D . ﹣a一定是负数5. (2分) (2016八下·番禺期末) 在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A .B .C .D .6. (2分) (2018九上·新乡月考) 一元二次方程配方后可化为()A .B .C .D .7. (2分) (2019九上·北京期中) 点A(x1 , y1),B(x2 , y2)都在反比例函数的图象上,若x1<x2<0,则()A . y2>y1>0B . y1>y2>0C . y2<y1<0D . y1<y2<08. (2分)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A . ﹣5<x<1B . 0<x<1或x<﹣5C . ﹣6<x<1D . 0<x<1或x<﹣69. (2分) (2017九上·梅江月考) 在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD 于F,则PE+PF的值为()A .B . 2C .D . 110. (2分) (2018八上·白城期中) 如图所示△ABC中,AB=AC,∠B=30°,AB⊥AD,AD=4cm,则BC的长为()A . 8cmB . c4mC . 12cmD . 6cm二、填空题 (共6题;共9分)11. (1分)已知3a-2b=5,则7-6a+4b的值为________.12. (1分) (2019八上·靖远月考) 计算的结果是________.13. (1分)(2020·拱墅模拟) 不等式组有2个整数解,则实数a的取值范围是________.14. (1分)(2019·青海模拟) 如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面积为________.15. (1分) (2020七下·淮阳期末) 如图,等边三角形ABC的边长为6cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在A′处,且点A′在△ABC外部,则阴影部分图形的周长为________cm.16. (4分) (2017八下·宁波期中) 顺次连接一个四边形的各边中点,所得到的四边形一定是________。
广西北海市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·石家庄模拟) 使有意义的x的取值范围是()A . x>5B . x≥5C . x≠5D . 全体实数2. (2分) (2019八上·宝安期末) 已知点P位于第二象限,则点P的坐标可能是A .B .C .D .3. (2分) (2020八下·涪陵期末) 某车间对甲、乙、丙、丁四名工人一天生产出的各自20个零件长度进行调查,每位工人生产的零件长度的平均值均为5厘米,方差分别为S甲2=0.51,S乙2=0.35,S丙2=1.5,S丁2=0.75.其中生产出的零件长度最稳定的工人是()A . 甲B . 乙C . 丙D . 丁4. (2分) (2018八上·兰州期末) 用图像法解二元一次方程组时,小英所画图像如图所示,则方程组的解为()A .B .C .D .5. (2分) (2020八下·焦作期末) 下列说法中错误的是()A . 四边相等的四边形是菱形B . 对角线相等的平行四边形是矩形C . 菱形的对角线互相垂直且相等D . 正方形的邻边相等6. (2分)(2017·罗山模拟) 如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A .B .C .D .7. (2分)(2018·天津) 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A .B .C .D .8. (2分)(2017·宁波模拟) 当m,n是实数且满足m﹣n=mn时,就称点Q(m,)为“奇异点”,已知点A、点B是“奇异点”且都在反比例函数y= 的图象上,点O是平面直角坐标系原点,则△OAB的面积为()A . 1B .C . 2D .二、填空题 (共6题;共6分)9. (1分)如果最简二次根式与能合并,那么a=________.10. (1分) (2019八下·包河期末) 面试时,某人的基本知识、表达能力、工作态度的成绩分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是________.11. (1分)(2017·绍兴) 如图,Rt△ABC的两个锐角顶点A,B在函数y= (x>0)的图象上,AC//x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为________.12. (1分) (2017八上·扶余月考) 在平行四边形ABCD中,∠A=65°,则∠C的度数是________.13. (1分)(2020·晋中模拟) 如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P 不与点B ,点C重合),过点P作直线PQ∥BD ,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,则∠CQP=________.14. (1分)如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.三、综合题 (共10题;共74分)15. (5分) (2019七上·右玉月考) 计算题(1) 12﹣(﹣16)+(﹣4)﹣5(2)(3)(4) (8a-7b)-(4a-5b)(5)(6)先化简再求值,,其中16. (10分) (2019八下·灌云月考) 如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.17. (5分)如图,直线y=kx+b分别交x轴、y轴于A(1,0)、B(0,﹣1),交双曲线y=于点C、D.(1)求k、b的值;(2)写出不等式kx+b>的解集.18. (10分)(2018·镇江) 如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.19. (10分)(2018·汕头模拟) 如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.20. (5分)为了从甲、乙、两名同学中选拔一人参加射击比赛,对他们的射击水平进行了测验,两个人在相同条件下各射击5次,命中的环数如下(单位:环)甲:6 10 5 10 9乙:5 9 8 10 8(1)求,, s甲2 , s乙2;(2)从稳定性的角度看,你认为该选拔哪名同学参加射击比赛,为什么?21. (2分)(2016·镇江) 如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数y= (x >0)的图象交于点B(4,b).(1) b=________;k=________;(2)点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐标是________.22. (10分)(2019·乌鲁木齐模拟) 已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=BC=5,AB=6,求四边形AMCN的面积.23. (15分) (2020八下·通州期末) 如图,菱形的边长是厘米,对角线相交于点且厘米,点分别在上,点从点出发,以每秒厘米的速度向终点运动,点从点出发,以每秒厘米的速度向点运动,点移动到点后,点停止运动.(1)当运动多少秒时,的面积是平方厘米;(2)如果的面积为,请你写出关于时间的函数表达式.24. (2分) (2017九上·召陵期末) 如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC 内,∠CAE+∠CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求CE的长.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共6分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、综合题 (共10题;共74分)答案:15-1、答案:15-2、答案:15-3、答案:15-4、答案:15-5、答案:15-6、考点:解析:答案:16-1、答案:16-2、答案:16-3、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、。
广西北海市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12个小题,每小题3分,共36分. (共12题;共34分)1. (3分) (2019八上·平遥期中) 下列二次根式中是最简二次根式是()A .B .C .D .2. (2分) (2017八上·江都期末) 下列各组数为三角形的边长,其中能构成直角三角形的是()A . ,,B . 3,4,5C . 6,7,8D . 2,3,43. (3分) (2017八下·青龙期末) 直线y=kx﹣1一定经过点()A . (1,0)B . (1,k)C . (0,k)D . (0,﹣1)4. (3分)如图,在△ABC中,CD⊥AB于点D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A . 5B . 6C . 7D . 85. (3分)计算的结果是()C . 1D . 2456. (3分)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的有()A . 0个B . 1个C . 2个D . 3个7. (3分)下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线相等的四边形是矩形④对角互补的四边形内接于圆A . ①②B . ②③C . ③④D . ①④8. (3分)(2019·抚顺) 一组数据1,3,,3,4的中位数是()A . 1B .C .D . 39. (3分) (2019七下·马龙月考) 已知实数x , y满足则yx的平方根是()A . 1D . ±210. (3分) (2019八下·十堰期中) 直角三角形两边长分别为为3和5,则另一边长为()A . 4B .C . 或4D . 不确定11. (2分)如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCA的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°;②OE∥DA;③S▱ABCD=AC•AD;④CE⊥DBA . 1B . 2C . 3D . 412. (3分)图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3) 块纸板的周长为Pn,则Pn-Pn-1的值为()A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分) (共6题;共18分)13. (3分)(2019·巴彦模拟) 函数y=的自变量x的取值范围是________.14. (3分) (2020八下·新昌期末) 对于任意不相等的两个实数a,b,定义运算:,如,那么的运算结果为________.15. (3分) (2017八下·容县期末) 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=- x上,则点B与其对应点B′间的距离为________.16. (3分)某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为150,那么由此求出的平均数比实际平均数多________.17. (3分)已知一次函数y=ax+b(a<0)的图象与x的交点坐标是(3,0),那么关于x的方程ax+b=0的解是 ________,关于x的不等式ax+b>0的解集是________ .18. (3分) (2020七下·高新期末) 猜数字游戏中,小明写出如下一组数:,小亮猜想出第六个数字是,根据此规律,第n个数是________.三、解答题:本大题共8个小题,共66分. (共8题;共58分)19. (4分)(2019·华容模拟) 计算:(﹣)﹣2﹣(2019﹣π)0﹣2sin45°+| ﹣1|20. (5分) (2017七下·江阴期中) 计算下列各小题:(1) =________,(2)=________.21. (5分) (2016八下·凉州期中) 已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.22. (10分) (2016八下·微山期中) 如图:在平行四边形ABCD中,对角线AC与BD交于点O,过点O的直线EF分别与AD、BC交于点E、F,EF⊥AC,连结AF、CE.(1)求证:OE=OF;(2)请判断四边形AECF是什么特殊四边形,请证明你的结论.23. (10分) (2019七下·芷江期末) 芷江二中为了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:(1)这次抽查了多少名学生?(2)所抽查的学生一周平均参加体育锻炼多少小时?(3)已知该校有1200名学生,估计该校有多少名学生一周参加体有锻炼的时间超过6小时?24. (10分)(2020·中模拟) 如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且=,过点E作EF⊥BC于点F,延长FE和BA的延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=6 ,求⊙O的半径.25. (2分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.26. (12分) (2019八下·正定期末) 甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.参考答案一、选择题:本大题共12个小题,每小题3分,共36分. (共12题;共34分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题(本大题共6个小题,每小题3分,共18分) (共6题;共18分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题:本大题共8个小题,共66分. (共8题;共58分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
2019年八年级下期末考试数学试卷含答案(总12页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除人教版中小学精品教学资料第二学期期末考试八年级数学试卷一.选择题:(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个....是符合题意的,把“答题卡”上相应的字母处涂黑.1.下列图形中,是中心对称图形的是A. B. C. D.2.在平面直角坐标中,点P (-3,5)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若一个多边形的内角和等于720°,则这个多边形的边数是A. 8B. 7C. 6D. 54. 在一个不透明的盒子中放有2个黄色乒乓球和4个白色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出白色乒乓球的概率为A .12 B .13 C . 23 D .165. 在函数31-=x y 中,自变量x 的取值范围是( ) A. x ≠3 B.x ≠0 C. x >3 D. x ≠-36. 正方形具有而矩形没有的性质是( )A.对角线互相平分 B . 对边相等P M C B A D B CD A C .对角线相等 D .每条对角线平分一组对角7. 如图,函数y =a x -1的图象过点(1,2),则不等式a x -1>2的解集是A. x <1B. x >1C. x <2D. x >28.如图,矩形ABCD 中,AB =1,AD =2,M 是A D 的中点,点P 在矩形的边上,从点A 出发沿D C B A →→→运动,到达点D 运动终止.设APM △的面积为y ,点P 经过的路程为x ,那么能正确表示y 与x 之间函数关系的图象是 ( )A. B.C. D.二.填空题(本题共16分,每小题4分)9. 如图,在□ABCD 中,已知∠B =50°,那么∠C 的度数是 .10. 已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是 .11. 甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中的新手是 ;他们这10次射击成绩的方差的大小关系是s 2甲 s 2乙(填“<”、“>”或“=”).12. 如图所示,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1;又将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2;如此下去,得到线段OP 3,OP 4,…OP n (n 为正整数).那么点P 6 的坐标是 ,点P 2014的坐标是 .三.解答题:(本题共30分)13.用指定的方法解下列方程:(每小题5分,本题共10分)(1)x 2+4x -1=0(用配方法) (2)2x 2-8x +3=0(用公式法)14. (本题5分)已知:如图,E 、F 是□ABCD 对角线AC 上两点,AF=CE .求证:BE ∥DF .15. (本题5分)已知2514x x -=,求代数式()()()212111x x x ---++的值.16. (本题5分) 如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)判断四边形EFGH 是何种特殊的四边形,并说明你的理由;HG F D CB E A17. (本题5分)已知:关于x 的一元二次方程()02122=-+--m x m mx (m >0).(1)求证:方程总有两个不相等的实数根;(2)m 取何整数值时,此方程的两个实数根都为整数?四.解答题(本题共21分)18. (本题5分)判断A (1,3)、B (-2,0)、C (-4,-2)三点是否在同一直线上,并说明理由.19. (本题5分)据统计,2014年3月(共31天)北京市空气质量等级天数如下表所示:(1)请根据所给信息补全统计表;(2)请你根据“2014年3月北京市空气质量等级天数统计表”,计算2014年3月空气质量等级为优和良的天数出现的频率一共是多少(精确到0.01)(3)市环保局正式发布了北京PM2.5来源的最新研究成果,专家通过论证已经分析出汽车尾气排放是本地主要污染源.在北京市小客车数量调控方案中,将逐年增加新能源小客车的指标. 已知2014年的指标为2万辆,计划2016年的指标为6万辆,假设2014~2016年新能源小客车指标的年增长率相同且均为x ,求这个年增长率x . (参考数据:449.26236.25732.13414.12≈≈≈≈,,,)20. (本题5分) 已知:在平面直角坐标系中,点A 、B 分别在x 轴正半轴上,且线段OA 、OB (OA <OB )的长分别等于方程x 2-5x +4=0的两个根,点C 在y 轴正半轴上,且OB =2OC .(1)试确定直线BC 的解析式;(2)求出△ABC 的面积.21. (本题6分)如图,正方形ABCD 的两条对角线把正方形分割成四个等腰直角三角形,将这四个三角形分别沿正方形ABCD 的边向外翻折,可得到一个新正方形EFGH .请你在矩形ABCD 中天数(天) 5 11 3 7 2画出分割线,将矩形分割成四个三角形,然后分别将这四个三角形沿矩形的边向外翻折,使得图1得到菱形,图2得到矩形,图3得到一般的平行四边形(只在矩形ABCD中画出分割线,说明分割线的作法,不画出翻折后的图形).图1 图2 图3五.解答题(本题共21分)22. (本题6分)如图,直线5+-=xy分别与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;(3)请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在平面直角坐标系中作出图形,并求出点N的坐标.23. (本题7分)如图所示,在□ABCD 中,BC =2AB ,点M 是AD 的中点,CE ⊥AB 于E ,如果∠AEM=50°,求∠B 的度数.M DC B EA24. (本题8分)直线434+-=x y 与x 轴交于点A,与y 轴交于点B ,菱形ABCD 如图所示放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线m x y +=经过点C ,交x 轴于点E . ①请直接写出点C 、点D 的坐标,并求出m 的值;②点P (0,)是线段OB 上的一个动点(点P 不与0、B 重合),经过点P 且平行于x 轴的直线交AB 于M 、交CE 于N.设线段MN 的长度为d ,求d 与之间的函数关系式(不要求写自变量的取值范围);③点P (0,)是y 轴正半轴上的一个动点,为何值时点P 、C 、D 恰好能组成一个等腰三角形?房山区2013—2014学年度第二学期终结性试卷参考答案和评分参考八年级数学一、选择题(本题共32分,每小题4分)1.A 2.B 3.C 4.C 5.A 6.D 7.B 8.A二、填空题(本题共16分,每小题4分)9. 130° 10. 20 11. 乙 ;s 2甲 < s 2乙 (此题每空2分)12. (0,-64)或(0,-26) ;(0,-22014)(此题每空2分)三、解答题(本题共30分,每小题5分)13.(1)解: 142=+x x ……………………………1分5442=++x x ……………………………2分()522=+x ……………………………3分 52±=+x ……………………………4分 521+-=x 522--=x ……………………………5分(2) 解: 3,8,2=-==c b a ……………………………1分ac b 42-=∆∴()32482⨯⨯--= 40=>0 ……………………………2分HG F D C B E A 代入求根公式,得()4102822408242±=⨯±--=-±-=a ac b b x ……………………………4分 ∴方程的根是2104,210421-=+=x x ……………………………5分14.证明:∵□ABCD∴AB ∥DC, AB=CD ……………………………2分∴∠BAE=∠DCF ……………………………3分在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠=CF AE DCF BAE CDAB∴△ABE ≌ △CDF ……………………………4分∴BE =DF ……………………………5分15.解:原式=()11212222+++-+--x x x x x ……………………………2分=11213222+---+-x x x x ……………………………3分=152+-x x ……………………………4分∵1452=-x x∴原式=15 ……………………………5分16.(1)四边形EFGH 是平行四边形 ;……………………………1分证明: 在△ACD 中 ∵G 、H 分别是CD 、AC 的中点,∴GH ∥AD,GH=21AD 在△ABC 中 ∵E 、F 分别是AB 、BD 的中点, ∴EF ∥AD,EF=21AD ……………………………2分 ∴EF ∥GH,EF=GH ……………………………3分∴四边形EFGH 是平行四边形. ………………………4分 (2) 要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 AD=BC .……………………………5分17.解:(1) ()2,12,-=--==m c m b m aac b 42-=∆∴()[]()24122----=m m mm m m m 8448422+-+-= 4=>0……………………………1分∴此方程总有两个不等实根……………………………2分(2) 由求根公式得mm m x x 212,121-=-==……………………………3分 ∵方程的两个根均为整数且m 是整数 ∴m 2-1是整数,即m2是整数 ∵m >0 ∴m =1或2……………………………5分18.解:设A (1,3)、B (-2,0)两点所在直线解析式为b kx y +=∴⎩⎨⎧+-=+=b k bk 203 …………………1分解得⎩⎨⎧==21b k ……………………………3分∴2+=x y ……………………………4分 当=x -4时,2-=y∴点C 在直线AB 上,即点A 、B 、C 三点在同一条直线上.……………5分19.(1) 3 ……………………………1分(2) (5+11)÷31≈0.52,∴空气质量等级为优和良的天数出现的频率一共是0.52…………………………2分 (3)列方程得:()6122=+x ,…………………………3分解得311+-=x ,3-12-=x (不合题意,舍去)…………………4分 ∴732.0≈x 或2.73≈x %答:年增长率为73.2% …………………………5分20.解: (1) ∵OA 、OB 的长是方程x 2-5x +4=0的两个根,且OA <OB,解得1,421==x x …………………………1分 ∴OA =1,OB=4∵A 、B 分别在x 轴正半轴上,∴A (1,0)、B (4,0)…………………………2分 又∵OB =2OC ,且点C 在y 轴正半轴上FE FEADCBADCBBCDA∴OC =2,C (0,2)…………………………3分 设直线BC 的解析式为b kx y +=∴⎩⎨⎧=+=b b k 240,解得⎪⎩⎪⎨⎧=-=221b k∴直线BC 的解析式为221-+=x y …………………………4分(2)∵A (1,0)、B (4,0) ∴AB =3∵OC =2,且点C 在y 轴上 ∴3232121=⨯⨯=⋅=∆OC AB S ABC…………………………5分21.图1 图2 图3得到菱形的分割线做法:联结矩形ABCD 的对角线AC 、BD (把原矩形分割为四个全等的等腰三角形);得到矩形的分割线做法:联结矩形ABCD 的对角线BD,分别过点A 、C 作AE ⊥BD 于E,CF ⊥BD 于F (把原矩形分割为四个直角三角形);得到平行四边形的分割线做法:联结矩形ABCD 的对角线BD,分别过点A 、C 作AE ∥CF,分别交BD 于E 、 F (把原矩形分割为四个三角形).每图分割线画法正确各1分,每图分割线作法叙述基本正确各1分,共6分. 22. 解:(1) ∵直线5+-=x y 分别与x 轴、y 轴交于A 、B 两点令0=x ,则5=y ;令0=y ,则5=x∴点A 坐标为(5,0)、点B 坐标为(0, 5);…………………………2分C 关于直线AB 的对称点D (2) 点(5,1)…………………………3分的坐标为(3)作点C 关于y 轴的对称点C ′,则C ′的坐标为(-4,0) 联结C ′D 交AB 于点M ,交y 轴于点N ,…………………………4分 ∵点C 、C ′关于y 轴对称 ∴NC = NC ′,又∵点C 、D 关于直线AB 对称,∴CM=DM ,此时,△CMN 的周长=CM+MN+NC= DM +MN+ NC ′= DC ′周长最短;设直线C ′D 的解析式为b kx y +=∵点C ′的坐标为(-4,0),点D 的坐标为(5,1)∴⎩⎨⎧+=+=b k b k 4-051,解得⎪⎪⎩⎪⎪⎨⎧==9491b k ∴直线C ′D 的解析式为9491+=x y ,…………………………5分 与y 轴的交点N 的坐标为 (0,94) …………6分23.解:联结并延长CM ,交BA 的延长线于点N∵□ABCDD∴AB ∥CD, AB=CD …………………1分 ∴∠NAM=∠D ∵点M 是的AD 中点, ∴AM=DM在△NAM 和△CDM 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠DMC AMN DMAM D NMA ∴△NAM ≌ △CDM ……………………2分 ∴NM=CM,NA=CD …………………………4分 ∵AB=CD∴NA= AB, 即BN=2AB ∵BC=2AB∴BC= BN, ∠N=∠NCB …………………………5分 ∵CE ⊥AB 于E,即 ∠NEC=90°且NM=CM∴EM=21NC=NM …………………………6分∴∠N=∠NEM =50°=∠NCB∴∠B=80° …………………………7分24. 解:(1)点C 的坐标为(-5,4),点D 的坐标为(-2,0)…………………………2分∵直线m x y +=经过点C , ∴=m 9 …………………………3分(2) ∵MN 经过点P (0,t )且平行于x 轴∴可设点M 的坐标为(t x M ,),点N 的坐标为(t x N ,) …………………………4分 ∵点M 在直线AB 上,直线AB 的解析式为434+-=x y ,∴t 434+-=M x ,得343+-=t x M同理点N 在直线CE 上,直线CE 的解析式为9+=x y , ∴t 9+=N x ,得9-t x N =∵MN ∥x 轴且线段MN 的长度为d ,∴()1247-9-343+=-+-=-=t t t x x d N M …………………………5分(3) ∵直线AB 的解析式为434+-=x y∴点A 的坐标为(3,0),点B 的坐标为(0,4)AB=5 ∵菱形ABCD ∴AB=BC=CD=5∴点P 运动到点B 时,△PCD 即为△BCD 是一个等腰三角形,此时t =4;…………………………6分∵点P (0,t )是y 轴正半轴上的一个动点, ∴OP =t ,PB =4-t∵点D 的坐标为(-2,0) ∴OD=2,由勾股定理得22224t OP OD PD +=+=同理,()2222425-+=+=t BP BC CP当PD=CD=5时, 224t PD +==25,∴21=t (舍负)…………………7分 当PD=CP 时,PD 2=CP 2, 24t +()2425-+=t ∴t 837=……………………8分 综上所述,t =4,21=t ,t 837=时,△PCD 均为等腰三角形. 备注:此评分标准仅提供一种解法,其他解法仿此标准酌情给分。
2019年下学期期末考试八年级数学试卷一、选择题(本大题共10小题,每小题4分,共40分)在每小组题所给的四个选项中,只有一项是符合题目要求的。
1.下列计算错误的是()= ===3【分析】根据二次根式的运算法则分别计算,再作判断.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.13,【专题】计算题.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.实验学校八年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5B.5,4C.4,4D.5,5【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.故选:A.【点评】本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义.4. 若0x ≤,则化简|1x |P -的结果是( ) A. 12x - B.21x - C.-1 D.1【分析】利用二次根式的意义以及绝对值的意义化简. 【解答】解:∵x ≤0,故选:D .【点评】此题考查了绝对值的代数定义:①正数的绝对值是它本身;②负数的绝对值是它的相反数;③零的绝对值是零.5.根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A.队员1 B.队员2 C.队员3 D.队员4 【专题】常规题型;统计的应用.【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员1和2的方差最小,队员2平均数最小,所以成绩好, 所以队员2成绩好又发挥稳定. 故选:B .【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.如图,菱形ABCD 中,60B ∠=︒,AB=2cm ,E ,F 分别是BC 、CD 的中点,连结AE 、EF 、AF ,则AEF ∆的周长为( )A.【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等腰三角形三线合一的定理又可推出△AEF是等边三角形.根据勾股定理可求出AE的长继而求出周长.【解答】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD(等腰三角形底边上的中线与底边上的高线重合),∴∠BAE=∠DAF=30°,∴∠EAF=60°,∴△AEF是等边三角形.故选:C.【点评】此题考查的知识点:菱形的性质、等边三角形的判定和三角形中位线定理.7. 如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴,点D 在OA上,且D点的坐标为(2,0),P点是OB上一动点,则PA+PD的最小值为()A.【专题】压轴题;动点型.【分析】要求PD+PA 和的最小值,PD ,PA 不能直接求,可考虑通过作辅助线转化PD,PA 的值,从而找出其最小值求解.【解答】解:连接CD ,交OB 于P .则CD 就是PD+PA 和的最小值. ∵在直角△OCD 中,∠COD=90°,OD=2,OC=6,故选:A .【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用. 8. 如图是一次函数y kx b =+的图象,则k ,b 的符号是( ) A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>0【专题】数形结合.【分析】先根据一次函数y=kx+b 的图象过一、三象限可知k >0,由函数的图象与y 轴的正半轴相交可知b >0,进而可得出结论. 【解答】解:∵一次函数y=kx+b 的图象过一、三象限, ∴k >0,∵函数的图象与y 轴的正半轴相交, ∴b >0. 故选:D .x【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k ≠0)中,当k >0时,函数图象过一、三象限,当b >0时,函数图象与y 轴的正半轴相交.9. 如图,在一张ABC ∆纸片中,90C ∠=︒,60B ∠=︒,DE 是中位线。
广西北海市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题2分,共20分) (共10题;共20分)1. (2分)根式的值是()A . -5B . 5或-5C . 5D . 92. (2分)(2018·盘锦) 下列图形中是中心对称图形的是()A .B .C .D .3. (2分)(2017·西华模拟) 下列计算正确的是()A .B . (﹣3)2=6C . 3a4﹣2a2=a2D . (﹣a3)2=a54. (2分)(2017·西华模拟) 关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,则m 的取值范围是()A . m≥﹣B . m≤﹣C . m<﹣D . m>﹣5. (2分)(2018·庐阳模拟) 某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A . (1﹣20%)(1+x)2=1+15%B . (1+15%%)(1+x)2=1﹣20%C . 2(1﹣20%)(1+x)=1+15%D . 2(1+15%)(1+x)=1﹣20%6. (2分)(2017·南通) 一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A . 平均数B . 中位数C . 众数D . 方差7. (2分) (2019八下·丰润期中) 如图,的对角线与相交于点,,垂足为,,,,则的长为()A .B .C .D .8. (2分)(2018·柘城模拟) 所示,有一张一个角为的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A . 邻边不等的矩形B . 等腰梯形C . 有一个角是锐角的菱形D . 正方形9. (2分) (2019八上·施秉月考) 如图,△ABC的两条高BD、CE相交于点O,且OB=OC.则下列结论:①△BEC≌△CDB,②△ABC是等腰三角形,③AE=AD,④点O在∠BAC的平分线上,其中正确的有()A . 1个B . 2个C . 3个D . 4个10. (2分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A . 3:4B . 9:16C . 9:1D . 3:1二、填空题(每小题3分,共30分) (共10题;共30分)11. (3分)(2019·宣城模拟) 若有意义,则a的取值范围为________12. (3分)(2016·攀枝花) 如果一个正六边形的每个外角都是30°,那么这个多边形的内角和为________.13. (3分)请写出一个图象经过点(﹣1,1),并且在第二象限内函数值随着自变量的增大而增大的函数的表达式:________14. (3分)若x=2是一元二次方程ax2+bx﹣2=0的根,则2a+b=________.15. (3分)要证明一个三角形中不可能有两个钝角,采用的方法是________ ,应先假设________ .16. (3分)(2018·邵阳) 如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:________.17. (3分)(2017·高青模拟) 如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y= 的图象上,OA=1,OC=6,则正方形ADEF的边长为________.18. (3分)某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度的平均气温是________ ℃.温度(℃)262725天数1 3319. (3分)(2018·遵义模拟) 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点O到边AB的距离OH=________.20. (3分)(2017·襄阳) 如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE 沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为________.三、解答题(第21-25题每小题8分) (共6题;共50分)21. (8分)化简:.22. (8分)(2017·金乡模拟) 解方程:x2+4x﹣5=0.23. (8.0分)(2018·长沙) 为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了________名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?24. (8分)(2016·南山模拟) 如图,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连结EF.(1)证明:EF=CF;(2)当时,求EF的长.25. (8分)(2017·普陀模拟) 如图,在平面直角坐标系xOy中,二次函数y=x2﹣2x+m(m>0)的对称轴与比例系数为5的反比例函数图象交于点A,与x轴交于点B,抛物线的图象与y轴交于点C,且OC=3OB.(1)求点A的坐标;(2)求直线AC的表达式;(3)点E是直线AC上一动点,点F在x轴上方的平面内,且使以A、B、E、F为顶点的四边形是菱形,直接写出点F的坐标.26. (10.0分) (2019八上·利辛月考) 如图,已知火车站的位置是(2,3),汽车站的位置是(0,-5)(1)根据题意,画出相应的平面直角坐标系;(2)若表示游乐园的位置是(1,0),博物馆的位置是(-3,-3),请在图中分别标出游乐园和博物馆的位置四、附加题 (共4题;共20分)27. (3分)(2020·松滋模拟) 在平面直角坐标系中,二次函数y=﹣x2+2x+3的图象交x轴于点A、B(点A 在点B的左侧).若把点B向上平移m(m>0)个单位长度得点B1 ,若点B1向左平移n(n>0)个单位长度,将与该二次函数图象上的点B2重合;若点B1向左平移(n+2)个单位长度,将与该二次函数图象上的点B3重合.则n 的值为()A . 1B . 2C . 3D . 428. (3分)如图,二次函数y=ax2+bx+c图象的一部分,其中对称轴为x=﹣1,且过(﹣3,0),下列说法:①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是抛物线上的点,则y1<y2 ,其中说法正确的有()A . 4个B . 3个C . 2个D . 1个29. (3分) (2019八上·海安月考) 如图,四边形中,,在、上分别找一点,使周长最小时,则的度数为()A .B .C .D .30. (11.0分) (2016九上·余杭期中) 如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.(1)点A的坐标为________,点B的坐标为________;(2)抛物线的解析式为________;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题2分,共20分) (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题3分,共30分) (共10题;共30分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题(第21-25题每小题8分) (共6题;共50分)21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、四、附加题 (共4题;共20分) 27-1、28-1、29-1、30-1、30-2、30-3、30-4、。
广西北海市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列各式中,是最简二次根式的是()A .B .C .D .2. (2分) (2018九上·大冶期末) 若反比例函数y=﹣的图象经过点A(2,m),则m的值是()A .B . 2C . ﹣D . ﹣23. (2分) (2017八上·郑州期中) 下列说法正确的是()A . 点在第一象限B . 纵坐标为0的点在y轴上C . 已知一点到x轴的距离为2,到y轴的距离为5,则这个点的坐标为(5,2)D . 横坐标是负数,纵坐标是正数的点在第二象限4. (2分)(2019·香洲模拟) 一组数据:2,1,2,5,7,5,x,它们的众数为2,则这组数据的中位数是()A . 1B . 2C . 5D . 75. (2分) (2016九上·西湖期末) 如图,点A,B,C是⊙O上的三点,且AB=4,BC=3,∠ABC=90°,则⊙O 的直径为()A . 5B . 6C . 8D . 106. (2分)(2020·遵化模拟) 边长为5的菱形ABCD按如图所示放置在数轴上,其中A点表示数﹣2,C点表示数6,则BD=()A . 4B . 6C . 8D . 107. (2分)(2016·黔南) 王杰同学在解决问题“已知A、B两点的坐标为A(3,﹣2)、B(6,﹣5)求直线AB关于x轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组,解得,最后求得直线A′B′的解析式为y=x﹣1.则在解题过程中他运用到的数学思想是()A . 分类讨论与转化思想B . 分类讨论与方程思想C . 数形结合与整体思想D . 数形结合与方程思想8. (2分)已知反比例函数y=﹣,下列结论不正确的是()A . 图象必经过点(﹣1,2)B . y随x的增大而增大C . 图象在第二、四象限内D . 若x>1,则y>﹣2二、填空题 (共7题;共8分)9. (1分)若二次根式在实数范围内有意义,则x的取值范围是________.10. (2分) (2017八下·如皋期中) 已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是________.11. (1分) (2019八下·芜湖期中) 在ΔABC中,AB= ,AC=5,若BC边上的高等于4,则BC的长为________12. (1分) (2016九上·松原期末) 在△ABC中,∠C=90°,sinA=,则tanB=________.13. (1分) (2016七下·威海期末) 如图,直线y=x+1与直线y=ax+b相交于点A(m,3),则关于x的不等式x+1≤ax+b的解集是________.14. (1分) (2019八下·长兴期末) 如图,已知反比例函数y= (x>0)的图象经过点A(4,5),若在该图象上有一点P,使得∠AOP=45°,则点P的坐标是 ________。
12019八年级下学期数学期末试卷题 号 一 二 三 总 分得 分本试卷分第Ⅰ卷和第Ⅱ卷两部分。
考试时间90分钟,满分120分1.不等式21>+x 的解集是 A 、1>xB 、1<xC 、1≥xD 、1≤x2.要使分式242--x x 为零,那么x 的值是 A 、2-B 、2C 、±2D 、03.下列多项式能因式分解的是A 、x 2-yB 、x 2+1C 、x 2+xy +y 2D 、442+-x x4.若4x ²+m xy +9y ²是一个完全平方式,则m = A 、6 B 、12 C 、±6 D 、±125.下列化简正确的是 A 、b a ba b a +=++22B 、1-=+--ba baC 、1-=---ba b aD 、b a ba b a -=--22(密封线内不要答题)…………………………………密………………………………封…………………………………线………………………………………学校 班级 姓名 准考证号26.如果三角形三个外角度数之比是3∶4∶5,则此三角形一定是 A 、锐角三角形 B 、钝角三角形 C 、直角三角形D 、不能确定7.已知如图,一张矩形报纸ABCD 的长acm AB =,宽bcm BC =, E 、F 分别为AB 、CD 的中点。
若矩形AEFD 与矩形ABCD 相似, 则a ∶b 等于 A 、2∶ 1B 、1∶2C 、3∶1D 、1∶38.下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角为︒60,那么这个等腰三角形一定是等边三角形。
则以下结论正确的是A 、只有命题①正确B 、只有命题②正确C 、命题①②都正确D 、命题①②都不正确9.为了解我校八年级800名学生期中数学考试情况,从中抽取了200名 学生的数学成绩进行统计。
下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量。
广西省北海市2019-2020学年初二下期末质量检测数学试题 一、选择题(每题只有一个答案正确) 1.菱形的边长是2cm ,一条对角线的长是23cm ,则另一条对角线的长是( )A .4 cmB .3cmC .2 cmD .23cm 2.下列分式2410xy x ,22a b a b ++,22x y x y -+,221a a a +-最简分式的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列各式中,能用完全平方公式分解的个数为( )①21025x x -+;②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+. A .1个 B .2个 C .3个 D .4个4.如图,Rt △ABC 中,AC ⊥BC,AD 平分∠BAC 交BC 于点D,DE ⊥AD 交AB 于点E,M 为AE 的中点,BF ⊥BC 交CM 的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;②12DE DA = ;③AC BE=12;④3BF=4AC;其中正确结论的个数有( )A .1个B .2个C .3个D .4个5.某中学书法兴趣小组10名成员的年龄情况如下表,则该小组成员年龄的众数和中位数分别是( ) 年龄/岁14 15 16 17 人数3 4 2 1 A .15,15B .16,15C .15,17D .14,15 6.如果把分式中的、都扩大到10倍,那么分式的值( )A .扩大10倍B .不变C .扩大20倍D .是原来的7.某校组织数学学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表,如果从这四位同学中选出一名晋级(总体水平高且状态稳定)你会推荐( ) 甲 乙 丙 丁平均分 92 94 94 92 方差35 35 23 23 A .甲 B .乙 C .丙 D .丁8.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <29.下列计算正确的是( )A .13=33B .2(3)-=﹣3C .9=±3D .(﹣3)2=310.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+二、填空题11.如图,一艘渔船以30海里/h 的速度由西向东追赶鱼群.在A 处测得小岛C 在船的北偏东60°方向;40min 后渔船行至B 处,此时测得小岛C 在船的北偏东30︒方向.问:小岛C 于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).12.如图,在△ABC 中,AB =3cm ,BC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于_______cm.13.若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).14.某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占50%,语言表达成绩占30%,写作能力成绩占20%,则李丽最终的成绩是______分.15.菱形的两条对角线长分别是6和8,则菱形的边长为_____.16.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是______.17.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三、解答题18.如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.19.(6分)如图,直线y=3x与反比例函数y=(k≠0)的图象交于A(1,m)和点B.(1)求m,k的值,并直接写出点B的坐标;(2)过点P(t,0)(-1≤t≤1)作x轴的垂线分别交直线y=3x与反比函数y=(k≠0)的图象于点E,F.①当t=时,求线段EF的长;②若0<EF≤8,请根据图象直接写出t的取值范围.20.(6分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表). 统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.21.(6分)如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.22.(8分)已知平行四边形ABCD的两边AB、BC的长是关于x的方程x2-mx+-=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?23.(8分)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若BE=23,AE=2,求EF的长.24.(10分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在y轴负半轴、x轴正半轴上,点E是x轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.(1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.(2)如图2,若点E在线段OD上,且OE=1,求正方形CEFG的面积.(3)当点E在x轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由.25.(10分)矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=1.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.(1)矩形纸片ABCD的面积为(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?(1)M ,N 是AB 边上的两个动点,且不与点A ,B 重合,MN=1,求四边形EFMN 周长的最小值.(计算结果保留根号)参考答案一、选择题(每题只有一个答案正确)1.C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=3cm,在Rt △ABO 中,222AB AO BO =+,AB=2cm,BO=3cm,所以AO=1cm,故菱形的另一条对角线AC 长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO 的长是解题的关键.2.D【解析】【分析】直接利用分式的基本性质化简得出答案.【详解】解:242105xy y x x =,22a b a b ++不能约分,22x y x y x y -=-+,22(1)1(1)(1)1a a a a a a a a a ++==--+-, 故只有22a b a b++是最简分式.最简分式的个数为1. 故选:D .【点睛】 此题主要考查了最简分式,正确化简分式是解题关键.3.B【解析】【分析】分别利用完全平方公式分解因式得出即可【详解】①21025x x -+=()25x -,符合题意;②2441a a +-;不能用完全平方公式分解,不符合题意③221x x --;不能用完全平方公式分解,不符合题意 ④214m m -+-=-212m ⎛⎫- ⎪⎝⎭,符合题意; ⑤42144x x -+,不可以用完全平方公式分解,不符合题意 故选:B.【点睛】 本题考查因式分解,熟练掌握运算法则是解题关键.4.C【解析】【分析】选项①∠AED=90°-∠EAD ,∠ADC=90°-∠DAC ,∠EAD=∠DAC ;②易证△ADE ∽△ACD ,得DE :DA=DC :AC=3:AC ,AC 不一定等于6;③根据相似三角形的判定定理得出△BED ∽△BDA ,再由相似三角形的对应边成比例即可得出结论; ④连接DM ,可证DM ∥BF ∥AC ,得FM :MC=BD :DC=4:3;易证△FMB ∽△CMA ,得比例线段求解.【详解】∠AED=90°−∠EAD,∠ADC=90°−∠DAC ,∵AD平分∠BAC∴∠EAD=∠DAC,∴∠AED=∠ADC.故①选项正确;∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,故②不一定正确;由①知∠AED=∠ADC,∴∠BED=∠BDA,又∵∠DBE=∠ABD,∴△BED∽△BDA,∴DE:DA=BE:BD,由②知DE:DA=DC:AC,∴BE:BD=DC:AC,∴AC⋅BE=BD⋅DC=12.故③选项正确;连接DM,则DM=MA.∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,由DM∥BF得FM:MC=BD:DC=4:3;由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,∴3BF=4AC.故④选项正确.综上所述,①③④正确,共有3个.故选C.【点睛】此题考查相似三角形的判定与性质,角平分线的性质,解题关键在于作辅助线. 5.A【解析】【分析】众数:出现次数最多的数;中位数:从小到大排列,中间位置的数;【详解】众数:出现次数最多的数;年龄为15岁的人数最多,故众数为15;中位数:从小到大排列,中间位置的数;14,14,14,15,15,15,15,16,16,17;中间位置数字为15,15,所以中位数是(15+15)÷2=15故选A【点睛】本题考查了众数和中位数,属于基本题,熟练掌握相关概念是解答本题的关键.6.A【解析】【分析】利用分式的基本性质即可求出答案.【详解】用10x和10y代替式子中的x和y得:原式==∴分式的值扩大为原来的10倍.选A.【点睛】本题考查了分式的基本性质。
北海市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题3分,共36分) (共12题;共35分)1. (3分)(2020·海陵模拟) 在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是()A . (-3,2)B . (3,-2)C . (2,-3)D . (-2,3)2. (3分) (2019七下·南阳期末) 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A . 80°B . 85°C . 90°D . 95°3. (3分) (2019八下·乌兰浩特期末) 下列四组线段中,不能作为直角三角形三条边的是()A . 8,15,17B . 1,2,C . 7,23,25D . 1.5,2,2.54. (3分)(2018·永州) 下列命题是真命题的是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 任意多边形的内角和为360°D . 三角形的中位线平行于第三边,并且等于第三边的一半5. (3分) (2019八下·长春期中) 下列所述图形中,既是轴对称图形又是中心对称图形的是()A . 等腰三角形B . 平行四边形C . 正五边形D . 矩形6. (3分) (2019八上·长兴月考) 湖州与杭州之间的高速路程为s,汽车行驶的平均速度为v,驶完这段路程所需的时间为t,则s=vt,其中常量()A . 为vB . 为sC . 为tD . 没有7. (3分) (2019九上·黄埔期末) 如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A . 4B . 5C . 6D . 88. (2分)(2019·海门模拟) 一个不透明的信封中装有四张完全相同的卡片上分别画有等腰梯形、矩形、菱形、圆,现从中任取一张,卡片上画的恰好既是中心对称图形又是轴对称图形的概率是()A .B .C .D . 19. (3分) (2019九下·武冈期中) 在下列函数中,其图象与x轴没有交点的是()A . y=2xB . y=﹣3x+1C . y=x2D . y=10. (3分)如图,在△ABC中,已知∠ABC=70º,∠ACB=60º,BE⊥AC于E,CF⊥AB于F,H是BE和CF的交点,则∠EHF=()A . 100ºB . 110ºC . 120ºD . 130º11. (3分)菱形ABCD中,已知AC=6,BD=8,则此菱形的周长为()A . 5B . 10C . 20D . 4012. (3分)如图,⊙O的直径AB=4,点C在⊙O上,如果∠ABC=30°,那么AC的长是()A . 1B .C .D . 2二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13. (3分) (2019八下·闵行期末) 如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为________.14. (3分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=________cm.15. (3分) (2020八下·哈尔滨期中) 图中阴影部分是一个正方形,则此正方形的面积为________ .16. (3分)小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示________.17. (3分) (2017八下·怀柔期末) 阅读下面材料:在数学课上,老师提出如下问题:小凯的作法如下:老师说:“小凯的作法正确.”请回答:在小凯的作法中,判定四边形AECF是菱形的依据是________.18. (3分) (2019八上·吴兴期中) 如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为________.三、解答题(本大题共8小题,满分66分.) (共8题;共66分)19. (10分) (2019七下·江阴期中) 初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC=________°.(2)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD 也平分∠ODC的理由.(3)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.20. (5分)已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式,自变量x的取值范围;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.21. (6分) (2018八上·九台期末) 如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从BA的延长线上距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了秒。
广西北海市2019学年八年级下学期期末考试数学试卷
【含答案及解析】
姓名___________ 班级____________ 分数__________
一、单选题
1. 函数y=,自变量x的取值范围是()
A. x>2
B. x<2
C. x≥2
D. x≤2
2. 下列手机软件图标中,是中心对称图形的是( )
A. B. C. D.
3. 数据,π,-3,2.5,中无理数出现的频率是( )
A. 20%
B. 40%
C. 60%
D. 80%
4. 点M在第二象限内,M到x轴是距离是3,到y轴距离是2,那么点M的坐标是( )
A. (-3,2)
B. (-2,-3)
C. (-2,3)
D. (2,-3)
5. 下列各组线段能构成直角三角形的是( )
A. 30,40,50
B. 7,12,13
C. 5,8,10
D. 3,4,6
6. 在平面直角坐标系中,正比例函数的图象的大体位置是( )
A. B. C. D.
7. 如图,将一副三角板如图放置,∠COD=20°,则∠AOB的度数为( )
A. 140°
B. 150°
C. 160°
D. 170°
8. 在正方形网格中,∠AOB的位置如图所示,到两边距离相等的点应是( )
A. C点
B. D点
C. E点
D. F点
9. 如图所示,菱形ABCD中,对角线相交于点O,E为AD边中点,菱形ABCD 周长为16,则OE的长为( )
A. 2
B. 4
C. 6
D. 8
10. 如图,在△ABC中,BD⊥AC于点D,点E为AB的中点,AD=6,DE=5,则线段BD的长为( )
A. 5
B. 6
C. 8
D. 10
11. 如图,A,B的坐标分别为(0,1),(3,0),若将线段AB平移至A1B1,则a+b的值为( )
A. 4
B. 5
C. 6
D. 7
12. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB上不与AB重合的一个动点,
过点D分别作DE⊥AC于点E,DF⊥BC于点F,则线段EF的最小值为( )
A. 3
B. 4
C.
D.
二、填空题
13. 在□ABCD中,∠A=106°,则,则∠C =_________°.
14. 已知点A(-1,0),B(2,0),则线段AB的长为____________.
15. 一次函数y=-2x+4的图象与y轴的交点坐标是__________。
16. 如图,D是Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于点E,若AE=5cm,DC=12 cm,则CE的长为_____________ cm.
17. 如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=40°,则∠E=
_________°
18. 在平面直角坐标系中,一只电子青蛙从原点O出发,按向上,向右,向下,向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,那么点的坐标是______.
三、解答题
19. 某多边形的内角和与外角和的总和为1620°,求此多边形的边数.
20. 如图,已知四边形ABCD是矩形,对角线AC、BD交于点O,CE∥BD,DE∥AC,CE与DE 交于点E.请探索DC与OE的位置关系,并说明理由.
21. 如图,在□ ABCD中,AE⊥BD于点E,CF⊥BD于点F.求证:四边形AECF是平行四边形.
22. 如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点的坐标为;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)平移过程中,线段OA所扫过的面积为 .
23. 为了解2017年北海市九年级学生学业考试体育成绩,现随机抽取部分学生的体育成
绩(A:60分;B:59-54分;C:53-48分;D:47-36分;E:35-0分)进行分段统计如下:
根据上面提供的信息,回答下列问题:
(1)在统计表中,a的值为,b的值为;
(2)将统计图补充完整;
(3)如果把成绩在48分以上(含48分)定为优秀,那么北海市在2017年8580名九年
级学生中体育成绩为优秀的学生人数约有多少名?
24. 已知某服装厂现有甲种布料50米,乙种布料27米,现计划用这两种布料生产A,B
两种型号的时装共60套. 已知做一套A型号的时装需用甲种布料1米,乙种布料0.2米,可获利30元;做一套B型号的时装需用甲种布料0.5米,乙种布料0.8米,可获利20元. 设生产A型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元. (1)求y(元)与x(套)之间的函数表达式,并求出自变量的取值范围.
(2)当生产A型号的时装多少套时,能使该厂所获利润最大?最大利润是多少?
25. 如图,点P是正方形ABCD的对角线BD上的一点,连接PA,PC.
(1)证明:∠PAB=∠PCB;
(2)在BC上截取一点E,连接PE,使得PE=PC,连接AE,判断△PAE的形状,并说明理由.
26. 如图所示,直线l1 经过A,B两点,直线l2的表达式为,且与x轴交于点D,两直线相交于点C.
(1)求直线l1的表达式;
(2)求△ADC的面积;
(3)在直线l1上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】
第25题【答案】
第26题【答案】。