信号时频分析理论共121页
- 格式:ppt
- 大小:8.93 MB
- 文档页数:121
- -从Fourier 分析到小波分析1 Fourier 分析所有客观存在的事物都包含着大量标志其本身所存的时间空间特征的数据,这就是该事物的信息。
当人们要了解事物某方面的情况时,通常要以各种手段把所需的信息表达出来,供人们观测和分析,这种对信息的表达形式称之为“信号”,所以信号是信息的载体。
信号是无处不在的。
如我们随时可听到的语音信号,随时可看到的视频图像信号,发电机组运行时的温度信号和振动信号等。
对一个给定的信号或过程,如)(t x ,我们可以用众多的方法来描述它,如)(t x 的函数表达式,通过Fourier 变换所得到的)(t x 的频谱,即)(ˆωx,再如)(t x 的相关函数,其能量谱或功率谱等。
在这些众多的描述方法中,有两个最基本的物理量,即时间和频率。
Fourier 变换和反Fourier 变换作为桥梁建立了信号)(t x 与其频谱)(ˆωx之间的一对一映射关系,从时域到频域的映射关系为Fourier 变换:⎰∞∞--=dt e t x x t j ωω)()( (1-1) 反过来,从频域到时域的映射关系为反Fourier 变换:⎰∞∞-=ωωπωd e x t x t j )(21)( (1-2) Fourier 变换的本质思想是用一些简单的基本函数的加权和来近似和表示一个复杂的函数,这样的近似和表示有很多优点,它给我们分析和认识复杂现象提供了一种有效的途径,一些在时域内难以观察的现象和规律,在频域内往往能十分清楚地显示出来。
Fourier 变换和反Fourier 变换属于整体或全局变换,即只能从整体信号的时域表示得到其频谱,或者只能从整体信号的频域表示得到信号的时域表示。
也就是说频谱)(ˆωx的任一频点值都是由时间过程)(t x 在整个时域(-∞,∞)上的贡献所决定;反之,过程)(t x 在某一时刻的状态也是由其频谱)(ˆωx在整个频域(-∞,∞)上的贡献所决定。
也就是说,)(t x 在任何时刻的微小变化都会牵动整个频谱,而任何有限频段上的信息都不足确定任意小时间范围内的过程)(tx。
Wigner-Ville 分布Wigner-Ville 分布可以看作是一大类分布的原型,它们和短时傅立叶变换谱有着本质的不同。
它首先由Wigner 提出,用于量子力学领域问题的研究,后由Ville 引入到信号分析。
因为在计算中,信号需要用到两次,因此Wigner-Ville 分布被称为一种二次型分布。
基本定义及计算Wigner-Ville 分布可由信号x (t )本身或它的频谱)(ωX 定义为如下两种等价方式ττ+τ-=ωτω-+∞∞-⎰d )e 21()21(π21)(i t x t x ,t WVD *x , (2.1.1)τθ+ωθ-ω=ωθ+∞∞-⎰d )e 21()21(π21)(i t *x X X ,t WVD . (2.1.2) 其中*表示复数共轭。
要证明上面两式是等价的,只需将信号写成它的频谱形式,然后将其代入到(2.1.1)式,即可得到(2.1.2)式。
式(2.1.1)中,)2/()2/(*ττ+-t x t x 称为信号的瞬时相关函数,因此Wigner-Ville 分布实质上是对信号的瞬时相关函数的傅立叶变换,它的结果能够反映信号的时频特征。
例2.1.1 对于信号)π400sin()(t t x = )10(≤≤t (2.1.3)其采样频率为1000 Hz 。
图2.1.1是其Wigner-Ville 分布,频率轴划分区间数为512。
图中清楚显示,该信号在整个时间段上,只含有一个频率为200Hz 的分量。
需要说明的是,图中显示的是Wigner-Ville 分布的绝对值,后面所有图中,如果没有特别注明,都默认显示的是绝对值。
图2.1.1 信号(2.1.3)的Wi gn er-Vi ll e 分布t /sf /H zW i g n e r -V il l e 分布50040030020010000.2 0.4 0.6 0.8 10.20.40.60.8例2.1.2)π50π100sin()(2t t t x += )20(≤≤t , (2.1.4)这是一个线性调频信号。