人教版七年级数学上册同步测试题及答案 (1)
- 格式:doc
- 大小:83.50 KB
- 文档页数:3
七年级上册数学同步练习册参考答案(人教版)第一章有理数§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{ ,0.02,-7.2, , ,2.1…}负分数集合:{ ,-7.2, … }非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31人能够达到引体向上的标准3. (1) (2) 0§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.。
七年级数学(人教版上)同步练习第四章第一节几何图形(一)【典型例题】例1:填空:(1)长方体、正方体都有个面,长方体的6个面可能都是形,也有可能都有2个面是形,它的面完成相同。
答:6个面,长方形,正方形,对(2)正方体的6个面都是形,6个面的面积是。
答:正方形,相等(3)圆柱的上、下底面是;(4)圆锥的底面是答:圆,圆例2:填空:(1)三棱柱的上、下底面是;侧面是。
答:三角形,四边形(2)四棱柱的上、下底面是;侧面是。
答:四边形四边形例3:一个三棱柱的底面边长为acm,侧棱长为bcm。
(1)这个三棱柱共有几个面?它们分别是什么形状?哪些面的形状、面积完全相同? (2)这个三棱柱共有多少条棱,它们的长度分别是多少?答:(1)5个面,其中3个侧面是长方形,两个底面是三角形,两个底面形状完全相同,三个侧面形状完全相同。
(2)共有9条棱,其中侧棱长均为bcm,底面棱长均为acm.例4:图中的两个图形经过折叠能否围成棱柱?先想一想,再试一试。
答:都可以,第一个可以围成六棱柱;第二个可以围成三棱柱例5:将一个正方体的表面沿某些棱剪开,展成一个平面图形,把你展开后的不同平面图形都画出来,看看有几种。
答:1)2)3)例6:两位同学用图形画出的小动物中,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?答:第一个图形是由圆柱体、长方体、球体、正方体组成;第二个图形是由三角形、长方形、五边形、六边形、圆组成。
【模拟试题】(答题时间:40分钟)1. 判断正误(1)圆柱的上下两个面一样大()(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面是四边形()(4)棱锥的侧面都是三角形()(5)棱柱的侧面可能是三角形()(6)圆柱的侧面是长方形()(7)球体不是多面体()(8)圆锥是多面体()(9)棱柱、棱锥都是多面体()(10)柱体都是多面体()2. 一个四棱柱被一刀切去一部分,试举例说明剩下的部分是否可能还是四棱柱。
人教版七年级数学上册第1-2章同步测试题(有答案)第 2 页有理数、整式的加减测试题一、选择题(共13小题;共39分)1. 下列各数:−(+2),−32,(−13)2,−(−1)2015,−∣−3∣ 中,负数的个数是 ( ) 个.A. 2B. 3C. 4D. 52. 下列各式计算正确的是 ( ) A. −52×(−125)=−1 B. 25×(−0.5)2=−1C. −24×(−3)2=144D. (35)2÷(1÷259)=23253. 下列叙述正确的有 ( )① 0 是整数中最小的数;② 有理数中没有最大的数;③ 分数都是有理数;④ 整数和分数统称有理数.A. ②③④B. ①②③C. ①②④D. ①③④4. 某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:∘C ),则下列城市当天平均气温最低的是 ( ) 城市 温州 上海 北京 哈尔滨 广州 平均气温/℃ 6−9 −15 15A. 广州B. 哈尔滨C. 北京D. 上海5. 如图所示,数轴上两点 A ,B 分别表示实数 a ,b ,则下列四个数中最大的一个数是 ( )A. aB. bC. 1aD. 1b6. 由四舍五入得到的近似数 30.0 精确到 ( )A. 0.01B. 十分位C. 个位D. 十位7. 某企业今年 3 月份产值为 a 万元,4 月份比 3 月份减少了 10%,5 月份比 4 月份增加了 15%,则 5 月份的产值是 ( )第 3 页第 4 页15. 在数轴上表示整数的点称为整点,某数轴的单位长度是 1 cm ,若从这个数轴上任意一点画出一条长为 50 cm 的线段,则线段盖住的整点数是 个.16. 某粮店出售的三种品牌的大米袋上,分别标有(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意抽出两袋,它们的质量最多相差 kg . 17. 在式子 b 23,12xy +3,−2,3x ,1a+b,ab+x 5,2x 2−3x ,a 中,单项式有 个,多项式有 个,整式有 个.18. 某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:① 如果不超过 500 元,则不予优惠;② 如果超过 500 元,但不超过 800 元,则按购物总额给予 8 折优惠;③ 如果超过 800 元,则其中 800 元给予 8 折优惠,超过 800元的部分给予 6 折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款 480 元和 520 元;若合并付款,则她们总共只需付款 元. 19.若x y>0,y z<0,则xz 0.20. 如果 3x 2y m 与 −2x n−1y 3 是同类项,那么m +n = .21. 已知 ∣3m −12∣+(n 2+1)2=0,则 2m −n = .22. 若 a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是 2,则式子∣a+b∣2m 2+1+4m −3cd 的值为 .23. 有理数 a ,b ,c 在数轴上的位置如图所示,则式子 ∣a ∣+∣b ∣−∣a +b ∣−∣a −2b ∣ 化简后的结果为 . 三、解答题第 5 页24. 计算 (−179)+(−411)+(+49)−(+711)(−313)÷245÷(−318)×(−0.75) −16−(1−0.5)×13×[2−(−3)2]25. 化简、求值:5(3a 2b −ab 2)−3(ab 2+5a 2b),其中a =13,b =−12.−2x 2−12[3y 2−2(x 2−y 2)+6],其中 x =−1,y =−12.26. 已知 ∣m∣=3,∣n∣=2,且 m <n ,求 m 2+2mn +n 2 的值27. 一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10. (1)守门员最后是否回到了球门线的位置? (2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?28.王明在计算一个多项式减去2b 2-b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b 2+3b-1.据此你能求出这个多项式并算出正确的结果吗?29.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg 为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,-3,+2,-2.5,-3,+1,-2,-2 (1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?30.已知某粮库已存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正):星期一二三四五六日进、出记录+35 -20 -30 +25 -24 +50 -26(1)通过计算,说明本周内哪天粮库剩余的粮食最多?(2)若运进的粮食为购进的,购买价格为每吨2019元,运出的粮食为卖出的,卖出的价格为每吨2300元,则这一周的利润为多少?(3)若每周平均进出的粮食大致相同,则再过几周粮库存的粮食可达到200吨?答案1. B2. D3. A4. B5. D6. B7. B8. D9. B 10. A11. C 12. D 13. A14. 正;1015. 50或5116. 0.617. 3;3;618. 838或91019. <20. 621. 1022. 5 或−1123. a24. (1)原式=3−3+8=8.(2)原式=−169+49+(−411)−(+711)=−43−1=−213.(3)原式=(−103)÷145÷(−258)×(−34)=−103×514×825×34=−27.第 6 页第 7 页(4)原式=−1−0.5×13×(−7)=−1+76=16.25. (1) 原式=6x 2−4xy −8x 2+4xy +4=−2x 2+4.(2)原式=−x 2+12x −2y +x +2y=−x 2+32x.当 x =12,y =2012 时,原式=−14+34=12.(3)原式=15a 2b −5ab 2−3ab 2−15a 2b=−8ab 2.当 a =13,b =−12时,原式=−8×13×(−12)2=−23.(4)原式=−2x 2−32y 2+x 2−y 2−3=−x 2−52y 2−3.当 x =−1,y =−12时,原式=−1−58−3=−458.26. 由题意可得,m =±3,n =±2.又 m <n ,∴m =−3,n =2 或 m =−3,n =−2, 当 m =−3,n =2,原式=(−3)2+2×2×(−3)+22=1;当 m =−3,n =−2,原式=(−3)2+2×(−2)×(−3)+(−2)2=25.27. (1)(+5)+(−3)+(+10)+(−8)+(−6)+(+12)+(−10) =(5+10+12)−(3+8+6+10)=27−27=0.答:守门员最后回到了球门线的位置.(2)由观察可知:5−3+10=12(米).答:在练习过程中,守门员离开球门线最远距离是12米.(3)∣+5∣+∣−3∣+∣+10∣+∣−8∣+∣−6∣+∣+12∣+∣−10∣=5+3+10+8+6+12+10=54(米).答:守门员全部练习结束后,他共跑了54米.第 8 页。
整式同步测验题(一)一.选择题1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣44.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.45.多项式4x2﹣xy2﹣x+1的三次项系数是()A.4B.﹣C.D.﹣6.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个7.下列说法正确的是()A.x不是单项式B.﹣15ab的系数是15C.单项式4a2b2的次数是2D.多项式a4﹣2a2b2+b4是四次三项式8.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+19.单项式﹣3ab的系数是()A.3B.﹣3C.3a D.﹣3a10.下列说法中错误的有()个.①绝对值相等的两数相等;②若a,b互为相反数,则=﹣1;③如果a大于b,那么a的倒数小于b的倒数;④任意有理数都可以用数轴上的点来表示;⑤x2﹣2x﹣33x3+25是五次四项式;⑥一个数的相反数一定小于或等于这个数;⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个11.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是()A.B.C.D.二.填空题12.﹣πx2的次数是.13.多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个次五项式.14.单项式的次数为:.15.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.三.解答题16.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.17.已知多项式2x2+x3+x﹣5x4﹣(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.4.【解答】解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.5.【解答】解:多项式4x2﹣xy2﹣x+1的三次项是﹣xy2,三次项系数是﹣.故选:B.6.【解答】解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.7.【解答】解:A、x是单项式,故原说法错误;B、﹣15ab的系数是﹣15,故此选项错误;C、单项式4a2b2的次数是4,故此选项错误;D、多项式a4﹣2a2b2+b4是四次三项式,正确.故选:D.8.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.9.【解答】解:单项式﹣3ab的系数是﹣3.故选:B.10.【解答】解:①如|2|=2,|﹣2|=2,2≠﹣2,即绝对值相等的两数不一定相等,故①错误;②若a,b互为相反数,当a和b,都不是0时,=﹣1,故②错误;③当a=2,b=﹣3时,a>b,但a的倒数大于b的倒数,故③错误;④任意有理数都可以用数轴上的点来表示,故④正确;⑤x2﹣2x﹣33x3+25是三次四项式,故⑤错误;⑥﹣3的相反数是3,3>﹣3,故⑥错误;⑦正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,故⑦错误;即错误的有6个,故选:C.11.【解答】解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D,故选:D.二.填空题12.【解答】解:单项式﹣πx2的次数是:2.故答案为:2.13.【解答】解:多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个六次五项式,故答案为:六.14.【解答】解:单项式的次数为:2+2=4.故答案为:4.15.【解答】解:多项式式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣7三.解答题(共4小题)16.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3+2x2+x﹣;(2)该多项式的次数是4,它的二次项是2x2,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|。
七年级数学(人教版上)同步练习第一章第五节有理数的乘方一. 教学内容:有理数的乘方1. 乘方的意义,会用乘法的符号法则进行乘方运算;2. 会用科学记数法表示较大的数,理解近似数和有效数字表示的意义;3. 了解科学记数法在实际生活中的作用。
二. 知识要点:1. 有理数乘方的意义求n个相同因数的积的运算,叫做乘方。
一般地,记作a n。
乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,a n从运算的角度读作a 的n次方,从结果的角度读作a的n次幂。
注:(1)一个数可以看作这个数本身的一次方。
(2)当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写小些。
(3)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方的运算的结果。
2. 乘方运算的性质(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1;(5)现在学习的幂的指数都是正整数,在这个条件下,0的任何次幂都得0。
3. 有理数的混合运算顺序(1)先乘方,再乘除,最后加减。
(2)同级运算,从左到右进行。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
4. 科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,像这样的记数方法叫作科学记数法。
注:科学记数法是有理数的一种记数形式,这种形式就是a×10n,它由两部分组成:a和10n,两者相乘,其中a大于或等于1,且小于10(即1≤a<10),它是由原来的小数点向左移动后的结果,也就是说,a与原数只是小数点位置不同。
指数n是正整数,等于原数化为a时小数点移动的位数,用科学记数法表示一个数时,10的指数比原数的整数位数小1。
5. 近似数和有效数字(1)近似数与实际完全符合的数是准确数。
与实际有一点偏差但又非常接近的数称为近似数。
人教版七年级数学上册《5.3实际问题与一元一次方程》同步测试题及答案一、解答题1.列方程解应用题甲乙两车分别从相距605km 的A 、B 两地出发,甲车的速度为60km/h ,乙车的速度为50km/h ,两车同时出发,相向而行.求经过多少小时两车相遇后相距55km ?2.如图,某小区矩形绿地的长宽分别为35m 15m ,.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地的长是宽的2倍,求新的矩形绿地的长与宽;3.如图,已知A B ,为数轴上的两个点,点A 表示的数是30-,点B 表示的数是10.(1)写出线段AB 的中点C 对应的数;(2)若点D 在数轴上,且30BD =,写出点D 对应的数;(3)若一只蚂蚁从点A 出发,在数轴上每秒向右前进3个单位长度;同时一只毛毛虫从点B 出发,在数轴上每秒向右前进1个单位长度,它们在点E 处相遇,求点E 对应的数.4.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?5.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?6.每年农历五月初五是中国民间的传统节日——端午节.今年端午节,某地甲、乙两家超市为吸引更多的顾客,开展促销活动,对某种质量和售价相同的粽子分别推出了不同的优惠方案,甲超市的方案是:购买该种粽子超过80元后,超出80元的部分按九折收费;乙超市的方案是:购买该种粽子超过120元后,超出120元的部分按八折收费.请根据顾客购买粽子的金额,帮顾客判断到哪家超市购买粽子更划算?7.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?8.有一篮苹果,平均分给几个小朋友,每人3个,则多2个;每人4个则少3个.问:有几个小朋友,几个苹果?9.“丰收1号”油菜籽的平均每公顷产量为2 400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3hm2,但是所产油菜籽的总产油量比去年提高3 750kg.这个村去年和今年种植油菜的面积各是多少公顷?10.(列方程)把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?11.昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?12.把一些图书分给某班学生阅读,如果没人分3本,则余20本,如果每人分4本,则还缺25本。
人教版七年级数学上册同步练习题及答案全套【编者按】要想学好数学,多做试题是难免的,这样才能够掌握各种试题类型的解题思路。
在考试中应用自如,使自己的水平得到正常甚至超长发挥。
第三章一元一次方程3.11一元一次方程(1)知识检测1.若4xm-1-2=0是一元一次方程,则m=______.2.某正方形的边长为8cm,某长方形的宽为4cm,且正方形与长方形面积相等,•则长方形长为______cm.3.已知(2m-3)x2-(2-3m)x=1是关于x的一元一次方程,则m=______.4.下列方程中是一元一次方程的是( )A.3x+2y=5B.y2-6y+5=0C.x-3=D.4x-3=05.已知长方形的长与宽之比为2:1•周长为20cm,•设宽为xcm,得方程:________.6.)利润问题:利润率=.如某产品进价是400元,•标价为600元,销售利润为5%,设该商品x折销售,得方程( )-400=5%400.7.某班外出军训,若每间房住6人,还有两间没人住,若每间住4人,恰好少了两间宿舍,设房间为x,两个式子分别为(x-2)6人,(x+2)4,得方程_______.8.某农户2019年种植稻谷x亩,2019•年比2019增加10%,2019年比2019年减少5%,三年共种植稻谷120亩,得方程_______.9.一个两位数,十位上数字为a,个位数字比a大2,且十位上数与个位上数和为6,列方程为______.10.某幼儿园买中、小型椅子共50把,中型椅子每把8元,小型椅子每把4•元,•买50把中型、小型椅子共花288元,问中、小型椅子各买了多少把?•若设中型椅子买了x把,则可列方程为______.11.中国人民银行宣布,从2019年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2019年6月5日存入定期为1年的人民币5000元(到期后银行将扣除5%的利息税).设到期后银行向储户支付现金x元,则所列方程正确的是( )A.x-5000=50003.06%B.x+50005%=5000(1+3.06%)C.x+50003.06%5%=5000(1+3.06%)D.x+50003.06%5%=50003.06%12.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程( )A.3x+9-x=19B.2(9-x)+x=19C.x(9-x)=19D.3(9-x)+x=1913.已知方程(m-2)x|m|-1+3=m-5是关于x的一元一次方程,求m的值,•并写出其方程.拓展提高14.小明爸爸把家里的空啤酒瓶让小明去换饮料,现有40个空啤酒瓶,1个空啤酒瓶回收是0.5元,一瓶饮料是2元,4个饮料瓶可换一瓶饮料,问小明可换回多少瓶饮料?。
1.3 有理数的加法测试1. 小磊解题时,将式子(−16)+(−7)+56+(−4)先变成[(−16+56]+[(−7)+(−4)]再计算结果,则小磊运用了( )A. 加法交换律B. 加法交换律和加法结合律C. 加法结合律D. 无法判断【答案】B【解析】将式子(−16)+(−7)+56+(−4)先变成[(−16)+56]+[(−7)+(−4)]再计算结果,运用了加法交换律和加法结合律,故选B.2. 下列变形,运用运算律正确的是( )A. 2+(−1)=1+2B. 3+(−2)+5=(−2)+3+5C. [6+(−3)]+5=[6+(−5)]+3D. 13+(−2)+(+2323)=(1313+2323)+(+2)【答案】B【解析】A. 2+(−1)=(−1)+2,错误;B. 3+(−2)+5=(−2)+3+5,正确;C. [6+(−3)]+5=(6+5)+(−3),错误;D. 13+(−2)+(+23)=(13+23)+(−2),错误,故选B.3. 下列交换加数的位置的变形中,错误的是( )A. 30+(−20)=(−20)+30B. (−5)+(−13)=(−13)+(−5)C. (−37)+16=16+(−37)D. 10+(−20)=20+(−10) 【答案】D【解析】A. 30+(−20)=(−20)+30是正确的,不符合题意;B. (−5)+(−13)=(−13)+(−5)是正确的,不符合题意;C. (−37)+16=16+(−37)是正确的,不符合题意;D. 10+(−20)=(−20)+10,原来的变形是错误的,符合题意.故选D.4. 计算(+1317)+(−3.5)+(−6)+(+2.5)+(+6)+(+417)的结果是( )A. 12B. −12C.317D. 0【答案】D 【解析】原式=(1317+417)+(−3.5+2.5)+(−6+6)=1−1+0=0,故选D5. 下列说法中正确的是( )A.若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0 【答案】D 【解析】A. 如果a=−3,b=5,那么a+b=2>0,但是a<0,故本选项错误;B. 如果a=3,b=−5,那么a+b=−2<0,但是a>0,故本选项错误;C. 如果a=−3,b=5,那么a+b=2>−3=a,但是a+b=2<5=b,故本选项错误;D. 若|a|=|b|,则a=b或a+b=0,故本选项正确.故选D. 点睛:本题考查了有理数的加法法则及绝对值的定义与性质,本题属于基础知识,需熟练掌握.6. 在数轴上表示有理数a的点在表示–2的点的左边,则a+2( )A. 一定是正数B. 一定是负数C. 可能是正数,可能是负数D. 等于0【答案】B【解析】∵在数轴上表示有理数a的点在表示−2的点的左边,∴a<−2∴a+2<0,故选B.点睛:根据题意可知a与2异号,根据绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值即可作出选择.7. 若一个数的绝对值和相反数都等于它本身,另一个数是最大的负整数,则这两个数的和为( )A. –2B. –1C. 0D. 1【答案】B【解析】∵一个数的绝对值和相反数都等于它本身,∴这个数为0,而最大的负整数为−1,∴这两个数的和为−1.故选B.8. 一个数是10,另一个数比10的相反数大2,则这两个数的和为()-A. 18 B. 2- C. 2 D. 18【答案】C【解析】【分析】根据题意表示出另一个数,相加即可得到结果.【详解】根据题意得:10+(−10+2)=10−10+2=2.故选C【点睛】此题考查有理数的加法,解题关键在于利用相反数的性质进行求解9. –13与+25的和的相反数可以列式为( )A. –13+25B. –(13–25)C. –(–13+25)D. 13+25 【答案】C【解析】根据题意得:−(−13+25).故选C10. 已知|m|=5,|n|=2,且n<0,则m+n的值是( )A.–7B. +3C. –7或–3D. –7或3 【答案】D 【解析】因为|m|=5,|n|=2,∴m=±5,n=±2,又∵n<0,∴n=-2, 当m=5,n=-2时,m+n=3; 当m=-5,n=-2时,m+n= -7. 所以D选项是正确的. 11. 已知3,2x y==,且x y>,则x y+的值为()A. 5B. -1C. -5或-1D. 5或1 【答案】D【解析】∵|x|=3,|y|=2,∴x=±3,y=±2,又∵x>y,∴x=3,y=2,x+y=5;或x=3,y=−2,x+y=1.故选D.a b的值为12. 若a=2,b=3,则A. 5B. -5C. ±5D. ±1或±5 【答案】D【解析】【分析】首先根据绝对值的性质,推出a、b的值,即a=±2,b=±3,然后分情况进行代入求值即可.【详解】∵|a|=2,|b|=3,∴a=±2,b=±3,∴当a=2,b=3时,a+b=5,当a=2,b=−3时,a+b=−1,当a=−2,b=3时,a+b=1,当a=−2,b=−3时,a+b=−5,∴a+b的值为±1或±5.故答案选D.【点睛】本题考查了绝对值的知识点,解题的关键是熟练的掌握绝对值的性质.13. 已知x<0,y>0,且|x|>|y|,则x+y的值是( )A. 非负数B. 负数C. 正数D. 0【答案】B【解析】∵|x|>|y|,∴x+y的符号与x的符号一致.∵x<0,∴x+y<0.故选B.14. 若两个非零有理数a,b,满足|a|=a,|b|=﹣b,a+b<0,则a,b的取值符合题意的是()A. a=2,b=﹣1B. a=﹣2,b=1C. a=1,b=﹣2D. a=﹣1,b=﹣2 【答案】C【解析】∵|a|=a,|b|=−b,a+b<0,∴a>0,b<0,且|a|<|b|,四个选项中只有C选项符合,故选C.点睛:本题考查了有理数的加法和绝对值的意义,解题的关键是发现a>0,b<0,且|a|<|b|.15. 如果a>0,b<0,且a、b两数的和为正数,那么( )A. |a|≥|b|B. |a|≤|b|C. |a|>|b|D. |a|<|b|【答案】C【解析】∵a>0,b<0,且a、b两数的和为正数,∴|a|>|b|.故选C.16. 能用简便算法的用简便算法计算:(1)3+(−1)+(−3)+1+(−4) (2)(−9)+4+(−5)+8(3)(−36.35)+(−7.25)+26.35+(+1 74)(4) 59+516+49+(−2)(5)(− 32)+(−512)+52+(−712)(6)(− 13)+(+25)+(+35)+(−123)【答案】−4;−2;−10;56;0;-1.【解析】分析:(1)(2)先化简再相加即可求解;(3)(4)(5)(6)先根据加法交换律把同分母分数交换,再根据加法结合律进行计算.本题解析:解:(1)3+(−1)+(−3)+1+(−4)=[3+(−3)]+[(−1)+1]+(−4)=0+0+(−4)=−4;(2)(−9)+4+(−5)+8=[(−9)+(−5)]+(4+8)=−14+12=−2;(3)(−36.35)+(−7.25)+26.35+(+714)=(−36.35+26.35)+(−7.25+714)=−10+0=−10;(4)59+156+49+(−2)=(59+49)[+156(−2)]=1+(−16)=56;(5)(−32)+(−512)+52+(−712)=[(−32)+52]+[(−712)+(−512)]=1+(−1)=0;(6)(−13)+(+25)+(+35)+(−123)=[(−13)+(−123)]+[(+25)+(+35)]=−2+1=−1.17. 计算:(−2)+4+(−6)+8+…+(−98)+100=___________【答案】50【解析】分析:观察式子,可发现:每相邻的两个数字相加为2,且有25对.本题解析:(−2)+4+(−6)+8+…+(−98)+100=25×2=50.故答案为50.18. 当x=__________时,|x+1|+2取得最小值【答案】-1【解析】∵|x+1|⩾0,∴当|x+1|=0时,|x+1|+2的值最小;即当x=−1时,|x+1|+2取得最小值,故答案为-1.19. 在数轴上表示数a的点到原点的距离是3个单位长度,则a+|a|=___________.【答案】0或6【解析】∵数a的点到原点的距离是3个单位长度,所以a=3或a=−3.当a=3时,a+|a|=3+3=6;当a=−3时,a+|a|=−3+3=0.∴a+|a|=0或6,故答案为0或6.点睛:本题考查了有理数的加法,数轴,由于数a的点到原点的距离是3个单位长度,那么a应有两个点,记为a1,a2,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是-3和3,分情况讨论即可求出a+|a|的值.20. 若x 的相反数是3,y =5,则x y +的值为_________.【答案】2或-8【解析】【分析】【详解】因为x 的相反数是3,所以3x =-, 因为5y =,所以5y =±,所以x y +的值为2或-8,故答案2或-8.21. 若|a |=4,–b =3,则a +b =___________.【答案】1或–7【解析】根据题意得:a=4或−4,b=−3,当a=4时,a+b=4−3=1;当a=−4时,a+b=−4−3=−7.故答案为1或−7.22. 已知25x y ==,,且x y >,则x y +=______.【答案】-3或-7.【解析】【分析】根据题意,利用绝对值的意义和有理数的加法法则判断即可求出值.【详解】解:∵|x|=2,|y|=5,且x >y ,∴x=2,y=-5或x=-2,y=-5,则x+y=-3或-7.故答案为-3或-7. 【点睛】本题考查有理数的加法,以及绝对值,熟练掌握运算法则是解题关键.23. 已知x 、y 都是有理数,|x |=2,|y |=4,且x <y ,则x +y =___________.【答案】2或6【解析】根据题意得:x=2,y=4;x=−2,y=4,则x+y=2或6.故答案为2或6点睛:此题考查了有理数的加法,熟练掌握运算法则是解答本题的关键.24. 已知|x–2|与|y–7|互为相反数,求–x+y的值【答案】5.【解析】分析:先根据非负数的性质求出x、y的值,再求出-x+y的值即可.本题解析:∵|x−2|与|y-7|互为相反数,∴|x−2|+|y-7|=0,∴x−2=0,y-7=0,解得x=2,y=7,所以-x+y=-2+7=5,故答案为5.。
1.4.2 有理数的除法5分钟训练(预习类训练,可用于课前)1.填空:(1)乘积是1的两个数互为______;(2)有理数的除法法则,除以一个数等于乘以这个数的______;(3)两数相除,同号得______,异号得______,并把绝对值______,0除以任何一个不等于0的数都得______.思路解析:根据倒数定义及除法法则来判别.答案:(1)倒数(2)倒数(3)正负相除02.-513,2.6,|-17|,-(-4),-2.5的倒数分别为________.思路解析:本题是求有理数的倒数,正数的倒数小学里我们学过,负数的倒数先确定符号,仍为负数,再把它们的绝对值求倒数注意先要化简.答案:-135,513,7,14,-253.化简下列分数:(1)412--; (2)3618-; (3)-244-.思路解析:本题利用除法可以简化分数的符号.分子、分母、分数的值三个符号中,任意改变其中的两个,值不变.答案:(1)13;(2)-2;(3)6.10分钟训练(强化类训练,可用于课中)1.填空题:(1)-6的倒数是_____,-6的倒数的倒数是_______,-6的相反数是______,-6的相反数的相反数是_______;(2)当两数_____时,它们的和为0;(3)当两数_____时,它们的积为0;(4)当两数_____时,它们的积为1.思路解析:根据倒数、相反数的定义来解.答案:(1) -16-6 6 -6(2)互为相反数(3)其中有一个数为0 (4)互为倒数2.计算:(1)(+36)÷(-4); (2)(-213)÷(-116);(3)(-90)÷15; (4)-1÷(+35).思路解析:本题第(1)(3)两小题应选用除法法则二;第(2)(4)两小题应选用除法法则一进行计算.解:(1)原式=-364=-9;(2)原式=73×67=2;(3)原式=-9015=-6;(4)原式=-1×53=-53.3.计算下列各题:(1)(-1 700 000)÷(-16)÷(-25)÷25;(2)(+125)÷(-3)+(-62)÷3+(+187)÷3.思路解析:同级运算应依次由前向后进行,混合运算应先乘除后加减,或化除为乘.两小题1)用了化除为乘,避免了大数的运算;(2)逆用了运算法则.解:(1)原式=-1 700 000×116×125×125=-170;(2)原式=-13(125+62-187)=0.4.用简便方法计算:(1)(-81)÷214-94÷(-16);(2)1÷{(-1111)×(-156)-(-3.9)÷[1-34+(-0.7)]}.思路解析:依照混合运算顺序进行逐层计算.解:(1)原式=-81×49+49×116=-36+136=-353536;(2)原式=1÷[1211×116+3.9÷(-0.45)]=1÷(2-263)=-320.5.化简下列分数:(1)26--; (2)39--;(3)03-; (4)-ab--.思路解析:利用除法化简分数,主要是简化分数的符号,一般地有,分数的分子、分母、分数本身的三个符号中,任意改变其中两个的符号,分数的值不变,这一结论使上述问题化简过程更为简便,如第(4)小题-ab--=-ab++=-ab.答案: (1)1/3; (2)13; (3) 0; (4)-ab.快乐时光三部曲老师:“这次你考试不及格,所以我要送你三本书.现在先看第一本《口才》.尽量说服父亲不要打你.如果说服不了,赶紧看第二本书《短跑》.如果没跑掉,就只能看第三本书了.”学生:“什么书?”老师:“《外科医学》.”30分钟训练(巩固类训练,可用于课后)1.计算:(1)(-40)÷(-8);(2)(-5.2)÷33 25.思路解析:题(1)能整除,在确定商的符号之后,直接除比较简便;题(2)的除数是分数,把它转化为乘法比较简便.解:(1)原式=5;(2)原式=-265×2578=53.2.计算:(1)(-1)÷(-310); (2)(-0.33)÷(+13)÷(-9);(3)(-9.18)×(0.28)÷(-10.71); (4)63×(-149)+(-17)÷(-0.9).思路解析:先确定结果的符号,然后将除法运算转化成乘法运算.解:(1)原式=103;(2)原式=0.33×3×19=0.11;(3)原式=-9.18×0.28×110.71=-625;(4)原式=63×(-149)+17×109=-91+1063=-905363.3.计算:(-163)÷(19-27+23-114).思路解析:乘法对加法满足分配律,但除法对加法并不满足分配律.只有当把除法转化为乘法以后,才能运用分配律.解:原式=-163÷(1641991414+--)=-163÷53126=-253.4.计算:(1)29÷3×13;(2)(-35)×(-312)÷(-114)÷3;(3)[(+17)-(-13)-(+15)]÷(-1105).思路解析:对于乘除混合运算,首先由负数的个数确定符号,同时将小数化成分数,带分数化成假分数,算式化成连乘积的形式,再进行约分.(1)题注意乘除是同一级运算,应从左往右顺序运算,不能先做乘再做除;(3)题将除转化为乘的同时,化简中括号内的符号,然后用乘法分配律进行运算较简单.解:(1)原式=29×13×13=299;(2)原式=35×72×(-45)×13=-1425;(3)原式=(17+13-15)×(-105)=-17×105-13×105+15×105=-15-35+21=-29.5.混合运算:(1)619÷(-112)×1924; (2)(-81)÷214×49×(-16);(3)(-21316)÷(34×98); (4)|-1.3|+0÷(5.7×|-45|+54).思路解析:第(1)(2)小题应先把带分数化为假分数,然后进行运算;第(3)小题有括号,应先算括号里面的,再把除法转化为乘法进行计算;第(4)小题有0作被除数,早发现可使运算简便.解:(1)原式=-619×23×1924=-16;(2)原式=81×49×49×16=256;(3)原式=-4516×3227=-313;(4)原式=1.3+0=1.3.6.已知m除以5余1,n除以5余4,如果3m>n,求3m-n除以5的余数. 思路解析:此题应用了化除为乘的思想.答案:3m-n除以5的余数是4.7.计算:(-317÷158+1÷365×1198)×(215+1-165).思路解析:前一个括号计算复杂,后一个括号则很特殊且简单,结果为零,因此有时不能只顾算前面忽视后面.答案:原式=(-317÷158+1÷365×1198)×0=0.8.计算:(-191 919×9 898+989 898×1 919)÷(-12+3.14).思路解析:此题看上去好像计算量很大,但仔细观察分子可发现,19 1919=19×10 101,9 898=98×101,989 898=98×10 101,1 919=19×101,这样一来,两个积互为相反数,相加得0.答案:09.有一种“算24”的游戏,其规则是:任取四个1~13之间的自然数,将这四个数(每数只能用一次)进行加减乘除混合运算,其结果为24.例如2,3,4,5作运算.(5+3-2)×4=24,现有四个有理数3、4、-6、10,运用以上规则写出等于24的算式,你能写出几种算法?答案:例如:3×(10+4-6)=24.其他略.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)1.下列选项中具有相反意义的量是()A.胜1局和亏损2万元B.向东行驶5km与向北行驶10kmC.运进6kg苹果与卖完5kg苹果D.水位上升0.6米与水位下降1米2.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向西走80米记作“−80米”,那么向东走40米记作()A.+40米B.+80米C.−80米D.−40米3.人体的正常体温大约为36.5℃,如果低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作()A.−0.8℃B.+0.8℃C.−37.3℃D.+37.3℃4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果收入100元记作+100,那么−40表示为()A.收入40元B.支出40元C.收入60元D.支出60元5.下列说法中不正确的是()A.任何一个有理数都可以用数轴上的一个点表示B.一个负数的绝对值等于它的相反数C.在数轴上,到原点距离越远的点所表示的数一定越大D.任何有理数都有相反数6.古人都讲“四十不惑”,如果以40岁为基,张明60岁,记为+20岁,那么王横25岁,记为()A.25岁B.−25岁C.−15岁D.+15岁7.一袋面粉的标准质量是15kg,如果把一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为()A.−14.7kg B.+14.7kg C.-0.3kg D.+0.3kg8.下列各数中,最小的数是().A.1B.2C.−12D.−39.下列各数中是负数的是()A.−3B.−(−1)C.0D.−210.在下列数−56,+1,6.7,0,722,−5,25%中整数有()A.2个B.3个C.4个D.5个11.下列四个数在数轴上表示的点,距离原点最近的是()A.−1B.−1.5C.+0.5D.+112.下列比较大小正确的是()A.−3=−−73B.−56<−45C.−−21<+−21D.−|−10|>813.下列各组数中,互为相反数的一组是()A.+−2和−+2B.−−2和+2C.−−2和−2D.−+2和−+214.下列化简正确的是()A.−+2=2B.−−2=−2C.+−2=−2D.−+2=2 15.在−1,0,53,−6.8和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个16.在−2,0,3.14,102,3,−−2021,100%中,非负整数的个数有()A.2个B.3个C.4个D.5个17.如果在数轴上A点表示−3,那么在数轴上与点A距离2个长度单位的点所表示的数是()A.−1B.−1和−5C.+1或−5D.−518.液体沸腾时的温度叫做沸点,下表是几种物质在标准大气压下的沸点,则沸点最低的物质是()物质酒精液态甲醛液态一氧化碳花生油沸点/℃78−19.5−191.5335A.液态一氧化碳B.液态甲醛C.酒精D.花生油19.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.+0.9B.−3.5C.−0.5D.+2.520.实数a、b在数轴上的位置如图所示,则下列结论正确的是()A.>B.−>−C.>D.−>−参考答案1.解:A、胜1局和亏损2万元不具有相反意义的量,故选项不合题意;B、向东行驶5km与向北行驶10km不具有相反意义的量,故选项不合题意;C、运进6kg苹果与卖完5kg苹果不具有相反意义的量,故选项不合题意;D、水位上升0.6米与水位下降1米是一对意义相反的量,故选项符合题意.故选:D.2.解:∵向东走与向西走是一对意义相反的量,∴如果向西走80米记作“−80米”,∴向东走40米记作+40米,故选:A.3.解:体温低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作+0.8℃,故选:B.4.解:如果收入100元记作+100,那么−40表示为支出40元.故选:B.5.解:∵实数与数轴上的点一一对应,故选项A正确;∵负数的绝对值等于它的相反数,∴一个负数的绝对值等于它的相反数,故选项B正确;∵在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,故选项C不正确;∵任何有理数都有相反数,故选项D正确.故选:C.6.解:由题意得:王横25岁,记为−15岁,故选:C.7.解:一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为-0.3kg.故选:C.8.解:∵−3<−12<1<2,∴所给的各数中,最小的数是−3.故选:D9.解:A.−3=3是正数,不符合题意;B.−(−1)=1是正数,不符合题意;C.0既不是正数,也不是负数,不符合题意;D.−2是负数,符合题意;故选:D.10.解:−56,+1,6.7,0,722,−5,25%中整数有:+1,0,−5,共3个,故选:B.11.解:∵−1=1,−1.5=1.5,+0.5=0.5,+1=1,∴−1.5>−1=+1>+0.5,∴+0.5的位置距离原点最近,故选:C.12.解:A、∵−=−723,−−7=723,∴−<−−7符合题意;B、∵−=56=2530,−=45=2430,∴−56<−45,故本选项正确,符合题意;C、∵−−21=21,+−21=−21,∴−−21>+−21,故本选项错误,不符合题意;D、∵−|−10|=−10,∴−|−10|<8,故本选项错误,不符合题意.故选:B.13.解:A、+−2=−2,−+2=−2,故两数不是相反数,不符合题意;B、−−2=−2,+2=2,两数互为相反数,符合题意;C、−−2=2,−2=2,故两数不是相反数,不符合题意;D、−+2=−2,−+2=−2,故两数不是相反数,不符合题意.故选:B.14.解:A、−+2=−2,此选项化简错误,不符合题意;B、−−2=2,此选项化简错误,不符合题意;C、+−2=−2,此选项化简正确,符合题意;D、−+2=−2,此选项化简错误,不符合题意;故选:C.15.解:正数有:53和2024,有2个正数.故选B.16.解:−2为负数,不符合题意;0为非负整数,符合题意;3.14为小数,不符合题意;102=5为非负整数,符合题意;3为小数,不符合题意;−−2021=2021为非负整数,符合题意;100%=1为非负整数,符合题意;综上所述,非负整数的个数有4个,故选:C.17.解:如图所示,∴在数轴上与点A距离2个长度单位的点所表示的数是−1和−5.故选B.18.解:∵−191.5>−19.5,∴−191.5<−19.5<78<335,∴沸点最低的液体是液态一氧化碳.故选A.19.解:+0.9=0.9,−3.5=3.5,−0.5=0.5,+2.5=2.5,∵0.5<0.9<2.5<3.5,∴从轻重的角度看,最接近标准的是−0.5,故选:C.20.解:由图可得:0<<,且|U<|U,∴A、<,故此选项不符合题意;B、−>−,故此选项符合题意;C、|U<|U,故此选项不符合题意;D、|−U<|−U,故此选项不符合题意;故选:B.。
三一文库()/初中一年级〔人教版七年级数学上册全册同步测试题及答案参考[1]〕第一章有理数1.1 正数和负数基础检测1. 中,正数有,负数有。
2.如果水位升高5m时水位变化记作+5m,那么水位下降3m 时水位变化记作 m,水位不升不降时水位变化记作 m。
3.在同一个问题中,分别用正数与负数表示的量具有的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走32m,记为这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃至℃范围内保存才合适。
9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是()A、-3.14B、0C、D、33、既是分数又是正数的是()A、+2B、-C、0D、2.3拓展提高4、下列说法正确的是()A、正数、0、负数统称为有理数B、分数和整数统称为有理数C、正有理数、负有理数统称为有理数 D 、以上都不对5、-a一定是()A、正数B、负数C、正数或负数D、正数或零或负数6、下列说法中,错误的有()①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。
1.2.2 数轴5分钟训练(预习类训练,可用于课前)1.判断题:(1)直线就是数轴; ( )(2)数轴是直线; ( )(3)任何一个有理数都可以用数轴上的点来表示; ( )(4)数轴上到原点距离等于3的点所表示的数是+3. ( ) 思路解析:规定了原点、单位长度、正方向的直线才是数轴,所以,直线不一定是数轴,而.答案:(1)× (2)√ ( 3)√ (4)×2.下列各图中,表示数轴的是( )思路解析:数轴的三要素——原点、正方向、单位长度是缺一不可的,所以应当用这三要素检查每个图形,判断是否画的正确.答案:D3.在下面数轴上,A ,H ,D ,E ,O 各点分别表示什么数?解析:判断数轴上的点表示的数,首先看该点在原点的右边还是左边,判断正负;再看该点答案:4,-1,-3,2,010分钟训练(强化类训练,可用于课中)1.数轴的三要素是________,________和_________.答案:原点 正方向 单位长度2.下面说法中错误的是( )A.数轴上原点的位置是任意取的,不一定要居中B.数轴上单位长度的大小要根据实际需要选取.1厘米长的线段可以代表1个单位长度,也可以代表2个、5个、10个、100个…单位长度,但一经取定,就不可改动C.如果a <b ,那么在数轴上表示a 的点比表示b 的点距离原点更近D.所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数思路解析:根据定义可知A 、B 正确;对D ,我们知道数轴上的点还可以表示无限不循环小数(无理数),故D C ,我们可举反例,如-100<2,但表示2的点距原点更近. 答案:C3.指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.思路解析:在数轴上的每一个数都表示一个数,注意刻度数的意义.答案:O 表示0,A 表示-2 23,B 表示1,C 表示314,D 表示-4,E 表示-0.5. 4.画一条数轴,并画出表示下列各数的点. 212,-5,0,+3.2,-1.4. 思路解析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原答案:快乐时光借力爱迪生在住所搞了不少实用发明.有个朋友来看他,推门时十分费力,推了好几下才进去.客人向爱迪生抱怨:“你这门也太紧了,竟使我出了一身汗.”“谢谢,你有力的推门已经给我屋顶上的水箱压进了几十升水.”爱迪生高兴地说. 30分钟训练(巩固类训练,可用于课后)1.以下四个数,分别是数轴上A 、B 、C 、D 四个点可表示的数,其中数写错的是( )A.-3.5B.-123C.0D.113 思路解析:显然,从数轴上看,B 点表示-1 13.答案:B2.下列各语句中,错误的是( )A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度1的长度的确定,可根据需要任意选取D.数轴上,与原点的距离等于36.8的点有两个思路解析:根据数轴的意义来判断.答案:B3.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是( )A.3B.1C.-2D.-4思路解析:根据题意,实际是从原点开始向左移动了4个单位长度,即该点为-4. 答案:D4.下列所画数轴对不对?如果不对,指出错在哪里?思路解析:答案:①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轴上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.5.(1)在数轴上距原点3个单位长度的点表示的数是_________.(2)在数轴上表示-6的点在原点的_________侧,距离原点________个单位长度,表示+6的点在原点的________侧,距离原点_________个单位长度.思路解析:根据数轴的意义判断,注意原点左、右的数到原点的距离.答案:(1)±3 (2)左 6 右 66.(1)在数轴上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.思路解析:(1)在数轴上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.(2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.答案:(1)由图看出:-4.5<-3<3<4.5.(2)在数轴上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.7.比较下列各组数的大小:(1)-536与0; (2)31000与0; (3)0.2%与-21; (4)-18.4与-18.5.思路解析:依据“正数都大于0,负数都小于0;正数大于一切负数”和“在数轴上表示的两个数,右边的数总比左边的数大”,比较两个数的大小.答案:(1)-536<0;(2)31000 >0; (3)0.2%>-21;(4)-18.4>-18.5.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
人教版数学七年级上册 同步练习第一章 有理数1.5 有理数的乘方第1课时 乘方的意义及运算1.比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝ ⎛⎭⎪⎫342中底数是________,指数是____,读作____________; (3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____.7.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出8.计算:(1)(-5)4;(2)-54;(3)⎝ ⎛⎭⎪⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝ ⎛⎭⎪⎫-13;(3)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (4)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232.11.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:_____________________________________________________________;(2)按照规律,第n个数为____.参考答案1.D 2.B3.(1)7 3 7的3次方 (2)34 2 34的2次方 (3)-5 4 -5的4次方 (4)8 1 4.(1)64 (2)-32 (3)-16 5.( (-) 6 ) ∧ 4 =6.4 7.208.(1)625 (2)-625 (3)-6427 (4)-85(5)-1 9.(1)-1 728 (2)-34 012 224 (3)90 392.079 68(4)2 687.385 610.(1)36 (2)3 (3)10 (4)911.C 12.25 60013.(1)利用计算器算得快;(2)他拉12次后得到的面条的总长度是3 276.8 m .14.(1)-64,128,-256 (2)(-1)n +12n 或-(-2)n第2课时 有理数的混合运算1.算式-23+49×⎝ ⎛⎭⎪⎫-232的运算顺序是( ) A .乘方、乘法、加法 B .乘法、乘方、加法C .加法、乘方、乘法D .加法、乘法、乘方2.下列计算中正确的是( )A .-14×(-1)3=1B .-(-3)2=9C.13÷⎝ ⎛⎭⎪⎫-133=9 D .-32÷⎝ ⎛⎭⎪⎫-13=-27 3.计算(-1)5×23÷(-3)2÷⎝ ⎛⎭⎪⎫133的结果是( ) A .-26 B .-24 C .10 D .124.[2017·重庆A 卷]计算:|-3|+(-1)2=__4__.5.计算:(1)||-4+23+3×(-5); (2)⎝ ⎛⎭⎪⎫122÷⎣⎢⎡⎦⎥⎤()-4-⎝ ⎛⎭⎪⎫-34.6.计算:(1)(-2)2×⎝ ⎛⎭⎪⎫1-34; (2)42÷(-4)-54÷(-5)3;(3)-(-2)5-3÷(-1)3+0×(-2.1)7;(4)-32×⎣⎢⎡⎦⎥⎤-32×⎝ ⎛⎭⎪⎫-232-2.7.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.8.刘谦的魔术表演风靡全国,小明也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-2,-3)放入其中,得到的有理数是_ .9.有一种“24点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J,Q,K分别表示11,12,13,A表示1).小明、小聪两人抽到的4张牌如图所示,这两组牌都能算出“24点”吗?怎样算?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?10.[2016·滨州]观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 016个式子为____.参考答案1.A 2.A 3.B4.4 5.(1)-3(2)-1136.(1)1(2)1(3)35(4)97.558.09.小明、小聪抽到的牌都能算出24点,如(3+4+5)×2=24,11×2+10÷5=24.如果允许包含乘方运算,可列算式如52-4+3=24,52-11+10=24.10.(32 016-2)×32 016+1=(32 016-1)2第3课时科学记数法1.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82 600 000人次,数据82 600 000用科学记数法表示为() A.0.826×106B.8.26×107C.82.6×106D.8.26×1082.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为()A.0.126 3×108B.1.263×107C.12.63×106D.126.3×1053.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204 000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.用科学记数法表示下列各数:(1)2 730=____;(2)7 531 000=____;(3)-8 300.12=____.6.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16 000立方米,把16 000立方米用科学记数法表示为____立方米.7.用科学记数法表示下列横线上的数.(1)地球的半径约为6__400__000 m;(2)青藏铁路建成后,从青海西宁到西藏拉萨的铁路全长约1__956__000 m;(3)长江每年流入大海的淡水约是10__000亿立方米;(4)太平洋西部的马里亚纳海沟在海平面下约11__000 m 处;(5)地球上已发现的生物约1__700__000种.8.地球上的水的总储量约为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018m3,因此我们要节约用水.请将0.010 7×1018m3用科学记数法表示是()A.1.07×1016m3B.0.107×1017m3C.10.7×1015m3D.1.07×1017m39.某市2015年底机动车的数量是2×106辆,2016年新增3×105辆,用科学记数法表示该市2016年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆10.写出下列用科学记数法表示的数的原数:(1)长城长约6.3×103 km;(2)太阳和地球的距离大约是1.5×108 km;(3)一双没有洗过的手上大约有8×104万个细菌.11.生物学指出:生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1,2,…,6),要使H6获得10 kJ的能量,则H1需要提供的能量大约为多少千焦?参考答案1.B 2.B 3.C 4.C5.(1)2.73×103(2)7.531×106(3)-8.300 12×1036.1.6×1047.(1)6.4×106(2)1.956×106(3)1×1012(4)1.1×104(5)1.7×1068.A9.C10.(1)6 300(2)150 000 000(3)800 000 00011.H1需要提供的能量大约为1×106kJ.第4课时近似数1.下列数据中为准确数的是()A.上海科技馆的建筑面积约为98 000 m2B.“小巨人”姚明身高2.26 mC.我国的神舟十号飞船有3个舱D.截至去年年底,中国国内的生产总值(GDP)达676 708亿元2.用四舍五入法按要求对0.050 49取近似数,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)3.G20峰会,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人,则近似数9.17×105精确到了()A.百分位B.个位C.千位D.十万位4.小亮用天平称得一个罐头的质量为2.026 kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0C.2.02 D.2.035.下列说法错误的是()A.近似数16.8与16.80表示的意义不同B.近似数0.290 0是精确到0.000 1的近似数C.3.850×104是精确到十位的近似数D.49 564精确到万位是4.9×1046.(1)用四舍五入法,精确到0.1,对5.649取近似数的结果是__5.6__;(2)用四舍五入法,对1 999.508取近似数(精确到个位),得到的近似数是____;(3)用四舍五入法,求36.547精确到百分位的近似数是____.7.圆周率π=3.141 592 6…,取近似数3.142,是精确到__ __位.8.下列由四舍五入法得到的数各精确到哪一位?(1)0.023 3;(2)3.10;(3)4.50万;(4)3.04×104.9.用四舍五入法按括号里的要求对下列各数取近似数.(1)0.001 49(精确到0.001);(2)203 500(精确到千位);(3)49 500(精确到千位).10.我国以2010年11月1日零时为标准计时点进行了第六次全国人口普查,普查得到全国总人口为1 370 536 875人,该数用科学记数法(精确到千万位)表示为()A.13.7 亿B.13.7×108C.1.37×109D.1.4×10911.用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示:(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000 km;(精确到100 000 000 km)(2)光年是天文学中的距离单位,1光年大约是9 500 000 000 000 km;(精确到100 000 000 000 km)(3)某市全年的路灯照明用电约需4 200万千瓦时.(精确到百万位)12.某次小明乘出租车时看到车内放有一张计价说明,如图1-5-4所示,但后面的几个字已受损.(1)小明乘车行驶4 km的时候,计价器显示的价格为8.6元.问超过部分每千米收费多少元?(2)如果小明这次乘出租车时付了12.2元,求他乘坐路程的范围(计价器每1 km跳价一次,不足1 km按1 km计价).参考答案1.C 2.C 3.C 4.D 5.D6.(1)5.6(2)2 000(3)36.557.千分8.(1)万分位(2)百分位(3)百位(4)百位9.(1)0.001(2)2.04×105(3)5.0×10410.C11.(1)1.22×1010km(2)9.5×1012km(3)4.2×107千瓦时12.(1)1.8元(2)大于5 km且小于或等于6 km。
1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)02.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,________,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{___________…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14∙∙51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括________和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B答案:5.1.8,-42,+0.01,-512,0,-3.1415926,1112,1 整数集合{_________________…};分数集合{_________________…}; 正数集合{_________________…}; 负数集合{_________________…}; 自然数集合{___________________…}; 非负数集合{___________________…}思路解析:利用集合的意义来判别数的分类. 答案:整数集合{-42,0,1,…};分数集合{1.8,+0.01,-512,-3.1415926,1112,…}; 正数集合{1.8,+0.01,1112,1,…};负数集合{-42,-512,-3.1415926,…};自然数集合{0,1,…};非负数集合{1.8,+0.01,0,1112,1,…} 6.计算:13+16+110+115+121+128+136+145.思路解析:若通分相加,本题难以计算,仔细观察各分母,可发现能写成13+123⨯+125⨯+111113537474959++++⨯⨯⨯⨯⨯,而每两个顺次相加可得11111111111(1)()()()32523734945+++++++,进一步可得1111261220+++,又可分成1111111(1)()()()2233445-+++-+-,最后算出结果.解:(1)1111111136101521283645+++++++=11111111323253537474959+++++++⨯⨯⨯⨯⨯⨯⨯=131517193256712920⨯⨯⨯⨯⨯+⨯ =1111261220+++=1111 12233445 +++⨯⨯⨯⨯=1111111 (1)()()()2233445 -+-+-+-=14155-=如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
人教七年级数学上册同步练习题及答案第一章 有理数1.1 正数和负数(第一课时)(基础训练)1.任意写出5个正数:________________;任意写出5个负数:_______________.2.在银行存入款存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+305,0,-23. 则正数有___________ _;负数有______ ______.4.向东行进-50m 表示的意义是( )A .向东行进50m C .向北行进50mB .向南行进50m D .向西行进50m5.下列结论中正确的是( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ( )A .2个B .3个C .4个D .5个7.下列各数中,哪些是正数?哪些是负数?+8,-25,68,O ,722,-3.14,0.001,-889.(综合训练)1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.1.1 正数和负数(第二课时)(课前小测)1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.零下15℃,表示为_____,比O℃低4℃的温度是_____.3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.4.“甲比乙大-3岁”表示的意义是________________.5.在-7,0,-3,34,+9100,-0.27中,负数有( ) A .0个 B .1个 C .2个D .3个(基础训练)1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作__________.2.如果把+210元表示收入210元,那么-60元表示______________.3.粮食产量增产11%,记作+11%,则减产6%应记作______________.4.如果把公元2008年记作+2008年,那么-205年表示______________.5.如果向西走12米记作+12米,则向东走-120米表示的意义是__________________.6.甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为;这时甲、乙两人相距米。
人教版七年级数学上册同步练习题 第一章有理数 1.3有理数的加减法一、选择题1.飞机原在3800米高空飞行,现先上升150米,又下降200米,这时飞机飞行的高度是( ) A .3 650米 B .3750米 C .3850米 D .3950米 2.某地区的气温在一段时间里,从-8 ℃先上升了5 ℃,然后又下降了7 ℃,那么此时的气温是( ).A .10 ℃B .-10 ℃C .4 ℃D .-4 ℃3.33+(-32)+7+(-8)的结果为( ).A .0B .2C .-1D .+54.如果0,0<>b a ,0<+b a ,则下列大小关系正确的是( ).A .a b a b <<-<-B .a b a b <-<-<C .b a b a -<<<-D .b a a b -<<-<5.下列说法正确的是( )。
A .两个数的和一定比两个数的差大B .两个数的差小于被减数C .相等的两个有理数之差为零D .绝对值相等的两个有理数之差为零6.某单位第一季度账面结余-1.3万元,第二季度每月收支情况为(收入为正):+4.1万元,+3.5万元,-2.4万元,则至第二季度末账面结余为( )A .-0.3万元B .3.9万元C .4.6万元D .5.7万元7.如果一个有理数与-7的和是正数,那么这个有理数一定是( )A .负数B .零C .7D .大于7的正数 8.下列四组数中,互为相反数的组合有( )①()3++与()3+-; ②()3--与()3-+;③3++与3--;④3+-与3-+; A .1组 B .2组 C .3组 D .4组9.如果a+b+c <0,那么( ).A .三个数中最少有两个负数B .三个数中有且只有一个负数C .三个数中两个是正数或者两个是负数D .三个数中最少有一个负数10.下列变化正确的是( )A .(-12)+(+18)+(-28)=[(-12)+(+28)]+(-18)B .(-12)+(+18)+(-28)=[(-18)+(+12)]+(-28)C .(-12)+(+18)+(-28)=[(-12)+(-28)]+(+18)D .以上变化都不对二、填空题11.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高____ m .12.直接填得数:(1)()11.215⎛⎫-++ ⎪⎝⎭=_______;(2)13(3)(2)44-+-=_______; (3)13()34+-=_______;(4)25(3)(2)77+-=_______. 13.已知两个数556和283-,这两个数的相反数的和是____________. 14.101﹣102+103﹣104+…+199﹣200=______.15.已知从 1,2,…,9 中可以取出 m 个数,使得这 m 个数中任意两个数之 和不相等,则 m 的最大值为______.三、解答题16.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A 地的哪一边?距A 地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.17.一振子从点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动的记录为(单位:mm):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求该振子停止时所在的位置距A 点多远?(2)如果每毫米需用时间0.02 s ,则完成8次振动共需要多少秒?18.计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232(3)(2)(1)( 1.75)343-----+.19.计算(1)414)21(32)65(41-+-+-+-; (2)2111()()3642-+----; (3)74324.773276.3----; (4).25.032581413125.0-+-+ 20.已知|x +2|+|y -16|=0,求x ,y 的值.21.计算下列各题:(1)(-51)+(+12)+(-7)+(-11)+(+36)+(+17);(2)37.5+(+2857)+[(-4612)+(-2517)]. 22.计算:(1)2141232(0.2)13355⎡⎤⎛⎫-------- ⎪⎢⎥⎝⎭⎣⎦; (2)3311148824--+-. 23.某粮店有10袋玉米准备出售,称得的质量如下(单位:千克):182,178,177,182.5,183,184,181,185,178.5,180.(1)选一个数为基准数,用正、负数表示这10袋玉米的质量与它的差.(2)试计算这10袋玉米的总质量是多少千克?(3)若每千克玉米售价为0.9元,则这10袋玉米能卖多少元?【参考答案】1.B 2.B 3.A 4.D 5.C 6.B 7.D 8.D 9.D 10.C11.3512.0 6- 512-47 13.17614.-5015.516.(1)检修小组在A 地东边,距A 地48千米;(2)出发到收工检修小组耗油24.8升.17.(1) 该振子停止时距A 点右侧5.5 mm ;(2) 1.23 s. 18.(1)-12;(2)3.6(3)-15;(4)-1. 19.(1)615-; (2)1312- ; (3)-17 ; (4)283 20.x =-2,y =16.21.(1)-4(2)-53722.(1)4715;(2)1223.(1)+2,-2,-3,+2.5,+3,+4,+1,+5,-1.5,0; (2)1 811千克;(3)1 629.9元;。
检测内容:1.1~1.2
得分________ 卷后分________ 评价________
一、选择题(每小题3分,共24分)
1.-2 020的相反数是(C)
A .12 020
B .-12 020
C .2 020
D .-2 020 2.下列式子中结果为负数的是(C)
A .|-2|
B .-(-2)
C .-|-2|
D .(-2)2
3.(乐山中考)-a 一定是(D)
A .正数
B .负数
C .0
D .以上选项都不正确
4.(山西中考)下面有理数比较大小,正确的是(B)
A .0<-2
B .-5<3
C .-2<-3
D .1<-4
5.下列各组数中,互为相反数的是(C)
A .-(+7)与+(-7)
B .-(-7)与+7
C .-|-115 |与-(-65
) D .-(-1100
)与+|-0.01| 6.某次数学测试的成绩若以70分为基准,老师公布的成绩为小丽+28分,小明0分,小亮-12分,则小亮的实际分数是(C)
A .98分
B .70分
C .58分
D .88分
7.绝对值等于其相反数的数一定是(C)
A .负数
B .正数
C .负数或零
D .正数或零
8.有理数a 在数轴上的对应点的位置如图所示,则a ,b ,-a ,|b |的大小关系正确的是(A)
A .|b |>a >-a >b
B .|b |>b >a >-a
C .a >|b |>b >-a
D .a >|b |>-a >b
二、填空题(每小题3分,共18分)
9.(云南中考)若零上8 ℃记作+8 ℃,则零下6 ℃记作__-6__℃.
10.比较大小 :+(-34 )__<__-|-57
|. 11.(福建中考)如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是__-1__.
12.将一刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1 cm),数轴上的两点A ,B 恰好与刻度尺上的“0 cm ”和“7 cm ”分别对应,若点A 表示的数为-2.3,则点B 表示的数应为__4.7__.
13.若|x |=7,则x =__±7__;若|-x |=7,则x =__±7__.
14.观察下列各数:-12 ,23 ,-34 ,45 ,-56
,…,根据它们的排列规律写出第2 019个数为__-2 0192 020
__. 三、解答题(共58分)
15.(6分)化简:
(1)-|-(+12
)|; 解:-|-(+12 )|=-12
(2)-[-(+2)].
解:-[-(+2)]=2
16.(8分)计算:
(1)|-20|-|+8|+|-12|;
解:原式=20-8+12=24
(2)2-|-137 |×|+1.4|÷|-213
|. 解:原式=2-107 ×75 ×37 =2-67 =117
17.(10分)已知一组数:2,-2,-0.5,-1.5,1.5,0.
(1)画一条数轴,并把这些数用数轴上的点表示出来;
解:
(2)把这些数分别填在下面对应的集合中:
①负数集合:{-2,-0.5,-1.5,…};
②分数集合:{-0.5,-1.5,1.5,…};
③非负数集合:{2,1.5,0,…}.
(3)请将这些数按从小到大的顺序排列.(用“<”连接)
解:-2<-1.5<-0.5<0<1.5<2
18.(10分)若|x-2|+|y-3|+|z-5|=0,计算:
(1)x,y,z的值;
(2)3|x|+2|y|-|z|的值.
解:(1)x=2,y=3,z=5
(2)原式=3×|2|+2×|3|-|5|=7
19.(12分)国际乒乓球正式比赛中,对所使用的乒乓球的质量有严格的标准,下表是6个乒乓球质量检测的结果(单位:g,超过标准质量的克数记为正数).
1号球2号球3号球4号球5号球6号球
-0.5+0.10.20-0.08-0.15
(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明理由;
(2)若规定与标准质量误差不超过0.1 g的为优等品,超过0.1 g但不超过0.3 g为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解:(1)因为|0|<|-0.08|<|+0.1|<|-0.15|<|0.2|<|-0.5|,所以4号球,5号球,2号球的误差相对小一些
(2)因为[|+0.1|,|0|,|-0.08|]≤0.1,0.1<[|0.2|,|-0.15|]≤0.3,|-0.5|>0.3,所以2号球,4号球,5号球是优等品,3号球和6号球是合格品,1号球是不合格品20.(12分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.
(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;
(2)超市D距货场A多远?
(3)货车一共行驶了多少千米?
解:(1)如图所示
(2)由(1)中数轴可知超市D距货场A 2千米(3)货车一共行驶了2+1.5+5.5+2=11(千米)。