【摘要】随着智能电网的发展,未来电力系统通信业务将转向大颗粒IP业务,业务传输所需的带宽将迅速增长,针对电力系统通信业务对光通信网络的新要求,SDH技术的引入成为必然。本文主要介绍了SDH技术的基本原理以及其在电力系统通信中的应用。【关键词】SDH电力系统现状发展趋势一、SDH技术简介1,SDH技术特点。SDH采用的是同步时分交换技术,该技术具有很强的网络运行能力以及管理和维护" />
当前位置:文档之家› SDH技术在电力系统通信中的应用及发展趋势

SDH技术在电力系统通信中的应用及发展趋势

SDH技术在电力系统通信中的应用及发展趋势
SDH技术在电力系统通信中的应用及发展趋势

SDH技术在电力系统通信中的应用及发展趋势

href="#">

【摘要】随着智能电网的发展,未来电力系统通信业务将转向大颗粒IP业务,业务传输所需的带宽将迅速增长,针对电力系统通信业务对光通信网络的新要求,SDH技术的引入成为必然。本文主要介绍了SDH技术的基本原理以及其在电力系统通信中的应用。

【关键词】SDH电力系统现状发展趋势

一、SDH技术简介

1,SDH技术特点。SDH采用的是同步时分交换技术,该技术具有很强的网络运行能力以及管理和维护功能,还是一个高速大容量传输系统。它充分利用光纤高带宽的特点,从而将传输速率大幅提高,目前市场上已有40Gb/s速率高速产品,使得传输的容量显著提升。它将北美制式与欧洲制

式相融合,利用标准光接口,从而使不同型号的产品可以再光接口上互联互通,全面实现兼容,并且采用同步复用,仅需要利用软件便可将高速信号直接的分插出低速支路信号。SDH的结构可使网络管理功能大大加强,与PDH(准同步数字体系Plesiochronous Digital Hierarchy)相比来看,SDH更适合现代化电信业务的结构需求,可以提供多种宽带综合业务,从而更好实现全程全网智能化网管系统,并实现与不同厂家产品互联互通及与PDH的互相兼容,从而网络自愈功能更使其可靠性能得到增强,其主要性能如下:

(1)统一的比特率,统一的接口标准,使得不同厂家的产品可以在光接口上实现互联,实现横向兼容,从而使网络的延伸性大大增强。(2)SDH技术提供丰富的冗余字节,从而使网络的管理能力大大加强。(3)SDH技术提出了自愈环的新概念。用SDH设备能组成带有自愈保护能力的环网形式,可以在传输媒体主信号被切断时,可以自动通过自愈环恢复正常通信,从而使网络的安全性大大提高。(4)SDH技术采用复接技术,采用一套标准化的信息结构等级,称之为同步传送模块STM―N(其中N=1、4、16、64),在传输时按照规定将各种信息组装起来,利用传输媒质送到目的地,使网络中上下支路信号变得十分简单,从而减轻了网络的维护量,实际上也就降低了维护成本和网络成本。(5)SDH技术使传输速率大大提高,目前最高速率为10Gb/s的产品已经广泛使用,

相比PDH,它大大利用了光纤带宽的特性,较充分的利用了网络的线路资源。(6)SDH在组网时采用大量的软件功能进行网络管理、控制及配置,因此网络有很强的可扩充性和可维护性。(7)支持多种拓扑结构(点到点、线性、环、多环等)。

2,SDH工作原理。SDH是采用了时分复用技术的数字信号传输系统,可以将多路PCM数字信号按帧结构汇合后,按照时序在数字电路上实现传输。SDH有全球统一的速率标准。可以在一个SDH设备上实现多种不同速率的光或电接口,不同或相同速率的端口在设备中靠交叉连接矩阵进行数据的复用和解复用,复用就是把几个低速率组合封装为高速率的数据,解复用就是把高速率数据分解为多个低速率的数据。两个传输设备之间若有相同速率的光或电接口,就可以通过光纤或电缆连接来传送数据。通过几个设备的互相连接就可得到不同速率信号在传输网中任意两个端口之间的传送。

二、SDH技术在电力系统应用现状及发展趋势

目前SDH技术在电力骨干通讯网技术应用较多,而在普通以太网较少;主要原因是以太网实现时实语音传输技术还不完善。电力通信网更加注重信息传输网和电话交换网的建设,而对业务接人及应用考虑较少,随着电力系统的发展,对信息的依赖程度越来越高,在传统语音业务、数据业务之外,增加多种数据业务和多媒体业务;对业务接入速度、可

靠性、透明度都有更高的要求;随着电力信息网的日益扩大,对网络管理和业务实现提出了更高的要求。由于SDH技术的成熟性和先进性,也使其逐步由长途网到中继网,最后在接入网上得到广泛应用。

在SDH系统为基础并能够提供IP,ATM传送与处理的系统(包括rIDM、IP与ATM接口,甚至包括II)和ATM交换模块)将是成功解决接人层传送的主要方法,这种方式可廉价地在一个业务提供点(POP)上提供高质量专线、ATM、II)等业务的接入、传送和保护。这种采用SDH传输以太网等多种业务的方式就是将不同的网络层次的业务通过VC级联的方式映射到SDH电路的各个时隙中,由SDH网络提供完全透明的传输通道,从物理层的设备角度上看是―个集成的整体。这种解决方案可以大幅度地降低投资规模,减少设备占地面积,降低功耗,进而降低网络运营商的运营成本。并且还提供多业务的能力可将网络运营商陕速地部署网络业务,增加业务收入,提升市场竞争能力。自网络结构上分析,接入层的传输节点分布较广、数量大,需要低成本、环境条件高适应能力;必须支持复杂组网。

使用光纤直连组网通常是利用路由器和ATM交换机,以太网交换机等通过独享光纤带宽的简单组网技术,包括星型、环形、网格型等组网方式,由于是纯数据接入设备,独享带宽,造成光纤资源利用率极低,尤其是树型和网格型,

对光纤的要求量大,随着节点的增加,给运营商带来更高要求,无法高效接入大量应用的TDM业务。如果采用E1电路仿真,首先成本非常昂贵,造成用户无法承担;另外造成性能差,不能满足与移动与联通等运营商组网的要求。所以该方案仅适用新建的纯数据网络。在新型接入网组网中,根据业务用户的重要性,采用综合接入SDH设备进行环形、链形、树形进行组网,由于星型组网会需要大量的光纤,保护能力差,建议选择环形、环形加分叉等形式,分叉方法可采用SDH、PON/APON/EPON等。总的来说,新型多业务接入传输系统不仅具有SDH的基本功能外,还有多种业务的接入功能,可以实现数据业务的透明传输,提供点到点与点到多点的业务汇聚功能,不仅具有数据优化传输升级能力,提供业务的带宽管理能力,而且具备多种业务互通的平滑升级能力。

在目前的电力系统通信接入网中,设备应用和系统设计对传输业务的特性、要求、流向、业务量、保护倒换等方面的综合考虑不充分,造成系统设备配置不合理,特别是资源共享性不佳、重复投资现象严重等问题。因此,电力通信网网络的优化应以分析网络的可靠性为切入点,以保障现有业务的正常运行为基础,对现网的各生产指标进行评估。然后根据现网络存在问题和业务需求确定网络优化目标,根据目标分别进行优化,使网络和相关单位的生产管理水平得到同

步的提高。

浅谈SDH技术及其应用

浅谈SDH技术及其应用

目录 摘要 (4) 第1章SDH概述 (5) 1.1 SDH产生的背景 (5) 1.2 SDH的特点 (5) 第2章SDH的工作原理 (6) 2.1 STM-N的帧结构 (6) 2.2 SDH的复用结构和步骤 (6) 第3章 SDH的网络结构和网络保护机理 (7) 3.1 基本的网络拓扑结构 (7) 3.2链网和自愈环 (8) 第4章 SDH的主要设备 (13) 4.1 SDH网络的常见网元和功能 (13) 第5章SDH在电力通信专网的应用 (16) 5.1电力通信专用网的特点 (16) 5.2电力通信专用网的构建思路 (16) 5.3电力系统通信专网的SDH网络拓扑 (17) 5.4其他辅助通信系统 (18) 第6章 SDH的发展趋势 (20) 结束语 (21) 参考文献 (22)

浅谈SDH技术及其应用 (吉首大学继续教育学院,湖南吉首 416000)摘要:随着信息社会的到来,人们希望现代信息传输网络能快速、经济、有效地提供各种电路和业务,而上述网络技术由于其业务的单调性,扩展的复杂性,带宽的局限性,仅在原有框架内修改或完善已无济于事,此时SDH 的产生并凭借其众多特性,使其在广域网领域和专用网领域得到了巨大的发展。 本文从SDH帧的详细论述了SDH的工作原理,SDH的常用网络拓扑、网络设备以及网络的保护机理。在这些基础上介绍了SDH网络中常用设备的功能。最后举例说明了其在现实中的应用和如何构建一个SDH网络。 近年来,SDH作为新一代理想的传输体系,具有路由自动选择能力,上下电路方便,维护、控制、管理功能强,标准统一,便于传输更高速率的业务等优点,能很好地适应通信网飞速发展的需要。SDH技术与一些先进技术相结合,如光波分复用(WDM)、ATM技术、Internet技术(IP over SDH)等,使SDH网络的作用越来越大。SDH已被各国列入21世纪高速通信网的应用项目,是电信界公认的数字传输网的发展方向,具有远大的商用前景。 关键词:SDH、、原理、网络、设备。

电力系统电气自动化的应用

电力系统电气自动化的应用 发表时间:2018-08-02T15:36:37.827Z 来源:《电力设备》2018年第11期作者:刘晓松乔天时[导读] 摘要:随着科学技术的发展,信息技术也迎来了发展的春天,跟信息技术相关的电气自动化技术也得到广泛的应用和发展。 (国网四川省电力公司新津县供电分公司)摘要:随着科学技术的发展,信息技术也迎来了发展的春天,跟信息技术相关的电气自动化技术也得到广泛的应用和发展。电气自动化在电力系统中的应用越来越多,它能提高电力系统运行的可靠度,还能提高电力系统的工作效率。从电气自动化在电力系统中的应用现状入手,发现电气自动化在电力系统应用中存在的问题,探索电气自动化在电力系统中合理应用的对策。关键词:信息技术;电气自动 化;电力系统;可靠度;应用对策 1电气自动化在电力系统中的应用优势电气自动化是利用计算机技术,将信息系统、控制系统、电器设备等系统统一于一体的一门技术。电气自动化在电力系统中的应用,改变了传统的电力系统工作模式,优化了电力系统的工作能力,提高了电力系统的可靠度和工作效率。电气自动化具有自身独特的优势,可以稳固其在电力系统应用中的地位,笔者就电气自动化的优势进行了分析。 1.1提高了电力系统的信息化程度 电气自动化提高了电力系统的电力技术、电力设备和电力系统管理上的信息化程度,使电力系统的运行处于一个信息化管理控制的大系统中。电力系统从电力设备的监测控制、数据采集到电力设备的执行工作都处在一个自动化的控制之下,减少了人力资源的浪费,在最大程度上提高了电力系统的工作效率。电气自动化技术结合网络计算机技术,通过中央控制室对各个电力子系统进行有效的监控并发出正确的指令,使电力系统的运行处在一个稳定的环境下。电气自动化弥补了传统的电力系统控制信息不明确的缺陷,电气自动化将很多计算机应用软件运用到电力系统中,对电力系统的信息控制进行精确的监测。一旦发现不符合标准的情况,就会立即向反馈机制发出警报,并将重要的故障信息传输给电力系统的管理层,使电力管理人员以最快的速度接收到电力系统故障信息和故障部位,以便及时对电力系统做出应急措施。 1.2便于对电力系统进行维护工作 电力系统随着使用时间的增加,需要定期对其进行维护工作,传统的电力系统维护工作比较烦琐,并且消耗大量的人力,维护所花的时间也过长,影响电力系统的运行效益。而电气自动化应用到电力系统中后,其对电力系统的日常维护工作就显得十分方便,电气自动化是与计算机软件应用相结合的技术,计算机硬、软件的灵活性非常大,并对电力系统的数据采集工作都有记录。维修人员可以通过计算机软件反馈过来的数据信息,科学评估电力设备的运行状态,并通过计算机技术在线上对电力系统进行维护。电气自动化所用到的计算机软件还可以进行应用扩充,根据不同的需要适当地对应用软件进行改进,力求电力系统的可靠度达到最优化。 1.3便于进行电力系统的管理工作 电气自动化的一大优势就是便于控制,自动化本身就具有易于控制的意思,科学技术的不断发展,给信息化的发展带来了美好的前景,各种信息技术应用层出不穷。电气自动化在电力系统中的应用提高了电力系统的可操作性,并给电力系统的管理带来了便利,电气自动化可以通过一根光纤对整个系统进行统一的控制工作。电力系统中大大小小设备的运行情况都受中央控制室的有效控制,中央控制室的操作界面也十分友好,便于工作人员进行操作。电气自动化对每个电力设备进行有效的监控,系统采集的数据可以进行相应的分析工作,减少了人力的消耗和工时的浪费,大大提高了电力系统的管理效率。 2电气自动化在电力系统中的应用分析随着计算机技术和信息控制技术的发展,电气自动化在电力系统中的应用已经越来越深入,电气自动化依托计算机技术应用于电力系统的各个环节当中,使得电力系统便于控制、便于维护,提高了电力系统的信息化程度。笔者介绍几个电气自动化在电力系统中的具体应用,探讨电气自动化在电力系统中的应用前景。 2.1智能变电站的出 现智能变电站是通过先进、可靠的智能设备,将变电站内的电力信息汇集到一个信息系统中实现的,可以对全站的电力信息进行实时监控和统计。变电站信息系统通过电力信息的横向和纵向交流,实现电力管理系统各层次之间的信息传输,且数据标准化处理后有助于各层次间的数据接收。智能变电站通过信息系统对电力信息进行实时监控,避免了由于人员的失误而造成的危害,实现电力网络的高效运行。智能变电站具有监控、预警、应急的功能,在危险隐患出现的时候能对系统做出预警,显示出现问题的地方。如果系统可以自己解决,就会做出相应的应急措施,如果不能,就会上报给工作人员,然后工作人员再对统计的电力信息及参数进行分析,做出正确的决策。 2.2电力系统中的仿真技术 电气自动化在电力系统中的有效应用,提高了对电力设备运行数据的监控能力,并增加了数据记录和数据分析的应用软件,电力系统可以对记录数据进行仿真模拟,查找出电力系统存在的缺陷,并及时采取弥补措施。电气自动化技术可以对电力系统进行即时信息的采集和处理工作,对那些动态的、不好控制的数据信息进行实验模拟,在模拟过程中找出系统可能会发生故障的地方及原因,并对其进行相应的改进。 2.3电力系统中的电网技术 电网技术可以将全国的电厂、变电站和送电信息连接在一起,对电力系统进行高效的控制,全国的电力信息汇总到一起,便于对电力资源进行合理的配置,提高电力系统的工作效益。电力系统中的电网技术可以对电力信息进行自动的控制,当地区的电力配置发生不均衡的情况时,可以自动在线上进行有效调节,节省电力资源,同时为电力系统的配置工作带来便利。 3电力系统中电气自动化的发展趋势 3.1变换器电路从低频向高频方向发展 随着电力电子器件的更新,由它组成的变换器电路也必然要换代。应用普通晶闸管时,直流传功的变换器主要是相控整流,而交流变频船动则是交一直一交变频器。当电力电子器件进入第二代后,更多是采用PWM变换器了。采用PWM方式后,提高了功率因数,减少了高次谐波对电网的影响,解决了电动机在低频区的转矩脉动问题。但是PWM逆变器中的电压、电流的谐波分量产生的转矩脉动作用在定转子上,使电机绕组产生振动而发出噪声。

电力系统仿真软件介绍

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP 的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由Drs.

SDH光传输技术与应用

武汉职业技术学院课程学习报告 报告题目: SDH技术 姓名:邹刚 所在院系:电信学院 班级:通信11302 学号: 11013382 指导教师:王碧芳 武汉职业技术学院 二〇一三年十一月二十日

1.1 SDH 的基本概念 SDH (Synchronous Digital Hierarchy )全称叫做同步数字体系,SDH 是世界 公认的新一代宽带传输体制,SDH 体制规范了数字信号的传输速率等级、帧结构、 复用方式和光接口特性等。 1.2 SDH 的帧结构 STM-N 信号帧结构的安排应尽可能使支路低速信号在一帧内均匀、有规律 的分布。以便于实现支路信号的同步复用、交叉连接(DXC )、分/插和交换,TU-T 规定了STM-N 的帧是以字节(8bit )为单位的矩形块状帧结构,如图 2.1 1所示。 270×N 列行传输方向125μs 1359 4 1.3 SDH 的复用结构和步骤 SDH 的复用包括两种情况:一种是由STM-1信号复用成STM-N 信号;另一 种是由PDH 支路信号(例如2Mbit/s 、34Mbit/s 、140Mbit/s )复用成SDH 信号STM-N 。

我国的SDH基本复用映射结构 2.1 140Mbit/s复用进STM-N信号 1.首先将140Mbit/s的PDH信号经过正码速调整(比特塞入法)适配进C-4,C-4是用来装载140Mbit/s的PDH信号的标准信息结构。经SDH复用的各种速率的业务信号都应首先通过码速调整适配装进一个与信号速率级别相对应的标准容器:2Mbit/s—C-12、34Mbit/s—C-3、140Mbit/s—C-4。容器的主要作用就是进行速率调整。140Mbit/s的信号装入C-4也就相当于将其打了个包封,使139.264Mbit/s信号的速率调整为标准的C-4速率。C-4的帧结构是以字节为单位的块状帧,帧频是8000帧/秒,也就是说经过速率适配,139.264Mbit/s的信号在适配成C-4信号后就已经与SDH传输网同步了。这个过程也就是将异步的139.264Mbit/s信号装入C-4。C-4的帧结构如图2.2 3所示。 C4 的帧结构图 C-4信号的帧有260列×9行(PDH信号在复用进STM-N中时,其块状帧总是保持是9行),那么E4信号适配速率后的信号速率(也就是C-4信号的速率)为:8000帧/秒×9行×260列×8bit=149.760Mbit/s。所谓对异步信号进行速率适配,其实际含义就是指当异步信号的速率在一定范围内变动时,通过码速调整可将其速率转换为标准速率。在这里,E4信号的速率范围是139.264Mbit/s±15ppm (G.703规范标准)=(139.261~139.266)Mbit/s,那么通过速率适配可将这个速率范围的E4信号,调整成标准的C-4速率149.760Mbit/s,也就是说能够装入C-4容器。 2.为了能够对140Mbit/s的通道信号进行监控,在复用过程中要在C-4的块状帧前加上一列通道开销字节(高阶通道开销VC-4 POH),此时信号构成VC-4信息结构,见图2.2 4所示。 VC-4是与140Mbit/s PDH信号相对应的标准虚容器,此过程相当于对C-4信号又

电力电子学在电力系统中的应用汇总

电力电子技术在电力系统中的应用 中文摘要:本文就电力电子技术在电力系统应用的主要方面做一介绍,电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。文章介绍了电力电子技术在电力系统各个环节中的应用及在电力系统中的应用前景。以风力发电为例子,介绍了风力发电系统及其中应用较多的几种电力电子器件及电力电子技术,分析了各种方法的特点、功用和发展。 关键字:电力电子技术电力系统应用风力发电 电力电子技术在电力系统中的应用涉及到提高输电能力、改善电能质量、提高电网运行稳定性、可靠性、控制的灵活性及降低损耗等重大问题。电力系统中电力半导体装置很多,大到直流输电用的整流、逆变装置,小到电视机电源,电池充电器,还包括变频、斩波(直流调压)和交流调压装置等,其应用遍布于电力系统各个电压等级。 1.高压直流输电技术(HVDC) 目前,全世界HVDC工程已达50多个,总设备容量超过36GW。新一代HVDC技术中 正在考虑使用GTO、IGBT等可关断器件,以及脉宽调制(PWM)等技术。在国内高压 输电工程建设和国外设备、技术的引进、吸收的基础上,立足国内搞小容量的HVD C工程的设计和制造,将是可行和必要的。 2.静止无功补偿器(SVC) SVC是用以晶闸管为基本元件的固态开关替代了电气开关,实现快速、频繁地 以控制电抗器和电容器的方式改变输电系统的导纳。SVC可以有不同的回路结构, 按控制的对象及控制的方式不同分别称之为晶闸管投切电容器(TSC)、晶闸管投 切电抗器(TSR)或闸管控制电抗器(TCR)。 我国输电系统五个500kV变电站用的SVC容量在105~170Mvar,均为进口设备, 型式为TCR加TSC或机械投切电容器组。国内工业应用的TCR装置大约有20套,容量 在10~55Mvar,其中一小半为国产设备。低压380V供电系统有各类TSC型国产无功补 偿设备在运行,但至今仍没有一套国产的SVC在我国的输变电系统运行。 3.灵活交流输电系统(FACTS)

常用应用电路完整版

常用应用电路 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

555时基集成电路的应用 555时基电路分TTL和CMOS两大类。图是TTL型电路的内部结构图。从图中可以看出,它是由分压器、比较器、R-S触发器、输出级和放电开关等组成的。电路中的比较器的主要功能是对输入电压和分压器形成的基准电压进行比较,把比较的结果用高电平"1"或低电平"0"两种状态在其输出端表现出来。555电路中的R-S触发器是由两个与非门交叉连接构成的。为了使R-S触发器直接置零,触发器还引出一个MR端,只要在MR端置太低电平"0",不管触发器原来处于什么状态,也不管它输入端加的是什么信号,触发器会立即置零,即Q=0=Uo,所以MR端也称为总复位端。为了使555电路有更好的性能,触发器的输出端Q是经非门反相后送到输出端U。的。由于非门的放大作用,555电路的负载能力得到提高。555电路在使用中大多跟电容器的充放电有关,例如用555组成定时电路时,定时的长短是由RC电路的充电时间常数确定的。为了使定时器能反复使用,在完成一次定时控制后,应将电容C上的电荷放掉,为下一次定时工作做好准备"因此在555电路中特设了一个放电开关,它就是三极管VT。当555电路输出端电平U。=0时,Q=1,VT 处于导通状态;当输出端电平U。=1时,Q=O,VT处于截止状态,相当于DIS端开路。因此三极管VT起到了一个开关的作用。当U。=0时,开关闭合,为电容提供了一个接地的放电通路;当U。=1时,开关断开,DIS端开路,电容器不能放电。 TTL形555电路的内部结构电路中的UC端为外加基准电压的控制端。由于制造工艺的原因,CMOS型555时基电路的内部结构和TTL型555时基电路是不太一样的,如图所示。但它们的引脚功能及输入和输出逻辑功能是相同的,两种555电路有着完全相同的外特性。 CMOS型555电路内部结构 简化了的555内部电路 555时基电路的逻辑功能为了描述555时基电路的外特性,可以把它们的内部电路简化成为一个带放电开关的特殊R-S触发器,放电开关受刁端的控制,如图所示。它的逻辑功能见表。CMO5型555电路内部结构简化不的555内部电路555时基电路的逻辑功能从简化的内部电路结构和逻辑功能表中可以看出,555电路有以下儿个特点: ①两个输入端触发电平的羽值要求不同。在TH输入端加上大于(或Vc)的电压时,可以把触发器置于"O"状态,即u。=0。在TR 端加上小于(或)的电压时,可以把触发器置于"1"状态,即u。=1。 ②复位端而可低电平有效,平时应为高电平。 ③对于放电开关端DIS,当U。为低电平时,DIS端接地;当U。为高电平时,DIS对地 开路。 555内部电原理图 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。 无稳类电路

《电力系统分析基础》习题

《电力系统分析基础》习题 一、填空题 1、输电线路的网络参数是指( )、( )、( )、( )。 2、所谓“电压降落”是指输电线首端和末端电压的( )之差。 “电压偏移”是指输电线某点的实际电压和额定电压的( )之差。 3、由无限大电源供电的系统,发生三相短路时,其短路电流包含( )分量和( ) 分量,短路电流的最大瞬时值又叫( ),它出现在短路后约( )个周波左右,当频率等于50HZ时,这个时间应为( )秒左右。 4、标么值是指( )和( )的比值。 5、所谓“短路”是指( ),在三相系 统中短路的基本形式有( )、( )、( )、( )。 6、电力系统中的有功功率电源是( ),无功功率电源是( )、( )、 ( )、( )。 7、电力系统的中性点接地方式有( )、( )、( )。 8、电力网的接线方式通常按供电可靠性分为( )接线和( )接线。 9、架空线路是由( )、( )、( )、( )、( )构成。 10、电力系统的调压措施有( )、( )、( )、( )。 11、某变压器铭牌上标示电压为220±2×2.5%,它共有( )个分接头,各分接头电压 分别为( )、( )、( )、( )、( )。 二、思考题 1、电力网、电力系统和动力系统的定义是什么? 2、电力系统的电气接线图和地理接线图有何区别? 3、电力系统运行的特点和要求是什么? 4、电网互连的优缺点是什么? 5、我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压 如何确定? 6、电力系统为什么不采用一个统一的电压等级,而要设置多级电压? 7、导线型号LGJ-300/40中各字母和数字代表什么? 8、什么是电晕现象,它和输电线路的哪个参数有关? 9、我国中性点接地方式有几种?为什么110KV以上电网采用中性点直接接地?110KV 以下电网采用中性点不接地方式? 10、架空输电线路为什么要进行换位? 11、中性点不接地的电力系统发生单相接地故障时,各相对地电压有什么变化?单相接地电流的 性质如何?怎样计算? 12、电力系统的接线方式有哪些?各自的优、缺点有哪些? 13、发电机电抗百分值X G%的含义是什么? 14、按结构区分,电力线路主要有哪几类? 15、架空线路主要有哪几部分组成?各部分的作用是什么? 16、电力系统采用分裂导线有何作用?简要解释基本原理。 17、电力线路一般以什么样的等值电路来表示? 18、什么是变压器的短路试验和空载试验?从这两个试验中可确定变压器的哪些参数? 19、变压器短路电压百分数U k%的含义是什么? 20、双绕组变压器的等值电路与电力线路的等值电路有何异同?

SDH 技术原理及应用

SDH 技术原理及应用 光纤通信的发展导致了同步数字体系(SDH)的形成。SDH网在网络的带宽、灵活性、可靠性以及带宽与资源的可管理性等方面,比传统的PDH网有了很大的提高。以SDH为基础的传送网在几年以前已成为我国以及国际上通信网建设的主导方向。它不仅将成为未来宽带网的传送平台,而且将是今后全光网络的基本技术。 在以往的电信网中,多使用PDH设备。这种系列对传统的点到点通信有较好的适应性。而随着数字通信的迅速发展,点到点的直接传输越来越少,而大部分数字传输都要经过转接,因而PDH系列便不能适合现代电信业务开发的需要,以及现代化电信网管理的需要。SDH就是适应这种新的需要而出现的传输体系。 1988年,国际电报电话咨询委员会(CCITT)接受了SONET的概念,重新命名为“同步数字系列(SDH)”,使它不仅适用于光纤,也适用于微波和卫星传输的技术体制,并且使其网络管理功能大大增强。 SDH技术与PDH技术相比,有如下明显优点: 1、统一的比特率,统一的接口标准,为不同厂家设备间的互联提供了可能。附图是SDH和PDH在复用等级及标准上的比较。 2、网络管理能力大大加强。 3、提出了自愈网的新概念。用SDH设备组成的带有自愈保护能力的环网形式,可以在传输媒体主信号被切断时,自动通过自愈网恢复正常通信。 4、采用字节复接技术,使网络中上下支路信号变得十分简单。 SDH原理 一、SDH信号的帧结构和复用步骤 ITU-T规定了STM-N的帧是以字节(8bit)为单位的矩形块状帧结构,如下图所示。

图1 STM-N帧结构 STM-N的信号是9行×270×N列的帧结构。此处的N与STM-N的N相一致,取值范围:1,4,16,64……。表示此信号由N个STM-1 信号通过字节间插复用而成。ITU-T规定对于任何级别的STM等级,帧频是8000帧/秒,也就是帧长或帧周期为恒定的125μs。,STM-N的帧结构由3部分组成:段开销,包括再生段开销RSOH)和复用段开销(MSOH);管理单元指针(AU-PTR);信息净负荷(payload)。 1)信息净负荷(payload)是在STM-N帧结构中存放将由STM-N传送的各种信息码块的地方。 2)段开销(SOH)是为了保证信息净负荷正常灵活传送所必须附加的供网络运行、管理和维护(OAM)使用的字节。段开销又分为再生段开销(RSOH)和复用段开销(MSOH),分别对相应的段层进行监控。再生段开销在STM-N帧中的位置是第一到第三行的第一到第9×N列,共3×9×N个字节;复用段开销在STM-N 帧中的位置是第5到第9行的第一到第9×N列,共5×9×N个字节。 3)管理单元指针(AU-PTR)位于STM-N帧中第4行的9×N列,共9×N个字节,指针有高、低阶之分,高阶指针是AU-PTR,低阶指针是TU-PTR(支路单元指针) SDH的复用包括两种情况:一种是低阶的SDH信号复用成高阶SDH信号;另一种是低速支路信号(例如2Mbit/s、34Mbit/s、140Mbit/s)复用成SDH信号STM-N。第一种情况复用的方法主要通过字节间插复用方式来完成的,复用的个数是4合

基于大数据的电力系统数据应用

基于大数据的电力系统数据应用 发表时间:2018-12-25T16:19:20.450Z 来源:《电力设备》2018年第23期作者:张新伯[导读] 摘要:电能与生产生活密切相关,电能的生产与传输需要经过电力系统发电、输电、变电等一系列复杂的过程完成,电力系统的生产、监控、测量、通信过程中产生了大量的数据,有效利用这些数据提高电力系统的安全可靠运行水平,是电力企业提高管理水平的重要途径。 (深圳供电局有限公司广东深圳 518000)摘要:电能与生产生活密切相关,电能的生产与传输需要经过电力系统发电、输电、变电等一系列复杂的过程完成,电力系统的生产、监控、测量、通信过程中产生了大量的数据,有效利用这些数据提高电力系统的安全可靠运行水平,是电力企业提高管理水平的重要途径。本文分析了电力自动化系统数据类型、电力系统数据应用现状及当前大数据的具体应用,提出了未来如何利用电力系统大数据来优化企业管理的策略,仅供参考。 关键词:电力大数据;电力系统数据处理;应用在当前我国电力行业的发展背景下,电力企业之间的市场竞争也变得越来越激烈。而单个电力企业要想在这种复杂的市场环境中取得优势,就必须要在发展过程中不断提高自身技术水平。如果能够将大数据技术充分应用到电力企业的各项业务中,就可以更好的处理企业业务发展中的各类数据,并对电力大数据信息进行必要的预测,真正的变革整个电力系统的管理模式。但就当前的实际现状来看,大数据技术在我国大部分电力企业中的应用水平都非常有限,并没有充分发挥其价值。之所以出现这种情况,就是因为一些电力企业没有明确大数据技术的应用前景,无法将大数据技术跟电力系统各项活动融合在一起。在这种情况下,就有必要分析大数据在电力系统中的具体应用现状和应用前景。 1大数据概述 大数据作为一种新型的数据信息处理技术,能够通过对大量数据信息的选择和分析,进行整理、计算等,筛选出其中蕴含的规律,进而选取有价值的数据信息。大数据具有数量大、范围广、数据类型复杂多样、内容丰富、数据的来源可靠、数据处理时效高等优势,近年来在各个行业得到了普及和推广。 2大数据在电力系统中应用的重要意义大数据技术在我国电力系统中具有多个方面的应用意义,能够促进我国电力系统的稳定高效发展。一方面,大数据技术的应用能够解决我国电力系统对于数据收集和处理的困难。特别是目前我国电力系统运作过程中涉及到的电力设备不断变多,而每一种电力设备的数据结构类型也比较复杂。使用大数据技术能够更有效的处理这些数据信息。另一方面,大数据技术的使用也可以显著提高我国电力系统的技术层次,引入数据挖掘等各项先进技术,提高电力企业的技术层次。 3大数据目前对于电网存在的问题 3.1现有营销系统数据以及对客户的深度分析不够 现有营销技术支撑系统仅仅作为业务支撑体系,用于基础数据收集、运行数据计算工具,仅局限于正常的营销业务的处理,仅仅能够生成一些功能单一的固定报表数据。一个月使用一次,很难将相互孤立的数据与用户用电特征、电力使用环境等因素进行分析与关联,数据使用率低,造成了对客户的价值分析能力不足。随着社会进步与营销相关业务的发展,无论是数据采集,还是电费计算,电网营销数据每年的增长速度较快,数据完整性有很大提高,在数据真实性与及时性方面也有一定提高,但是目前营销系统、信息采集与PMS、供电可靠性等其他系统的信息匹配方面依然存在问题,还有这部分的数据不一致,不准确,造成了营销系统的数据更新压力很大,难以成为多方数据的共享平台,内部无法为公司决策层提供数据支撑,更不要说对客户的用电分析,难以为客户的深度分析提供有力支撑。 3.2没有形成专业的协同运作 造成大量数据形成了信息孤岛,没有真正达到信息的纵向集成与横向联合,没有专门的运转部门进行绩效考核与实际可靠有效的合并机制,多年来一直单轨运行,数据更新不及时,工作平台不共享,造成重复工作很多,难免形成数据疏漏,经常出现系统运行一段时间后,需要大量时间进行数据重新梳理,没有形成日常化更新运作,人员变动频繁,交接疏漏时有发生。 3.3数据量大,可靠性低 电力自动化系统在运行过程中会产生大量的数据,而不同的数据代表不同的信息,电力自动化系统是由许多的子系统构成,各个子系统的数据库中储存着相关的数据信息,整个系统中的数据量非常庞大,数据交叉现象时有发生,繁多的数据信息会在一定程度上影响和制约这个系统的数据信息的分析处理和数据的更新,随着存储数据的增多,出现问题的几率也越来越大,降低了数据处理的安全性和准确性,对系统的数据库进行统一管理,保证系统数据的唯一性势在必行。 4大数据在电力自动化系统中的具体应用 4.1电网基础建设的自动化与智能化 在当前我国国民经济不断发展的背景下,我国各个城市地区的现代化建设程度也快速加深,社会各个行业和人们日常生活中对于电力的需求也出现了显著增加。在这种发展趋势下,我国各个地区的电网基础建设项目也逐渐增多。而如果能够将大数据技术融入到电网基础建设项目中,就能够显著提高项目建设过程中的数据储存困难和信息处理效率不高等问题。这主要是因为大数据技术的应用能够最大程度的收集电网基础建设项目中的各类现场信息,并使用自动对比等可行性较强的数据挖掘技术来对现场产生的各类信息进行全面的分析,最终实现建设项目的智能化管理和自动化处理。 4.2基于大数据的电网运行可视化监控 在整个输变电网络中有大量的设备、及检测点,通过传感器实时从各设备上采集设备运行指标及输变电的电压、电流、负载状态监测指标等,通过大数量的实时处理平台进行数据提取、加工及整合,再通过可视化大屏实时展示各设备及监测点的运行,对于设备及检测点数据的异常及时预警,及时处理。同时将设备的运行数据及检修数据进行整理分析形成知识库,以此知识库通过大数据处理技术及数据挖掘进行设备生命周期预测、设备异常问题检修处理方法推荐、设备检修周期以可能问题预测,以及对电力设备资产管理、设备运检管理、设备技术管理、技改大修管理等的大数据支撑。 4.3大数据在故障预测中的应用

SDH技术原理及应用

SDH 技术原理及应用 研究生姓名:谢德达班级:Z1003422 学号:1100342051 光纤通信的发展导致了同步数字体系(SDH)的形成。SDH网在网 络的带宽、灵活性、可靠性以及带宽与资源的可管理性等方面,比传 统的PDH网有了很大的提高。以SDH为基础的传送网在几年以前已成 为我国以及国际上通信网建设的主导方向。它不仅将成为未来宽带网 的传送平台,而且将是今后全光网络的基本技术。 SDH原理 一、SDH信号的帧结构和复用步骤 ITU-T规定了STM-N的帧是以字节(8bit)为单位的矩形块状帧结构,如下图所示。 图1 STM-N帧结构 STM-N的信号是9行×270×N列的帧结构。此处的N与STM-N的N相一致,取值范围:1,4,16,64……。表示此信号由N个STM-1 信号通过字节间插复用而成。ITU-T规定对于任何级别的STM等级,帧频是8000帧/秒,也就是帧长或帧周期为恒定的125μs。,STM-N的帧结构由3部分组成:段开销,包括再生段开销RSOH)和复用段开销(MSOH);管理单元指针(AU-PTR);信息净负荷(payload)。 1)信息净负荷(payload)是在STM-N帧结构中存放将由STM-N传送的各种信息码块的地方。2)段开销(SOH)是为了保证信息净负荷正常灵活传送所必须附加的供网络运行、管理和维护(OAM)使用的字节。段开销又分为再生段开销(RSOH)和复用段开销(MSOH),分别对相应的段层进行监控。再生段开销在STM-N帧中的位置是第一到第三行的第一到第9×N列,共3×9×N个字节;复用段开销在STM-N帧中的位置是第5到第9行的第一到第9×N 列,共5×9×N个字节。 3)管理单元指针(AU-PTR)位于STM-N帧中第4行的9×N列,共9×N个字节,指针有高、低阶之分,高阶指针是AU-PTR,低阶指针是TU-PTR(支路单元指针) SDH的复用包括两种情况:一种是低阶的SDH信号复用成高阶SDH信号;另一种是低速支路信号(例如2Mbit/s、34Mbit/s、140Mbit/s)复用成SDH信号STM-N。第一种情况复用的

电力系统分析下随堂练习汇编

学习-----好资料 第一章电力系统概述 1. 发电机的额定电压与系统的额定电压为同一等级时,发电机的额定电压比系统的额定电压(C )。 A .高10% B .高2.5% C.高5% D.低5% 2. 考虑变压器的内部电压损耗,变压器的二次绕组的额定电压规定 比系统的额定电压() A .高10% B .高7% C.高5% D .低5% 参考答案:A 3. 如果变压器的短路电压小于7%或直接与用户连接时,变压器的 二次绕组的额定电压规定比系统的额定电压()。 A .高10% B .高7% C.高5% D .低5% 参考答案:C 4. 对电力系统运行的首要要求()。 A .保证安全可靠供电 B .电能质量合乎要求 C .经济性良好 D .减小对生态有害影响 参考答案:A 5. 停电后可能发生危机人身安全的事故,或长时间扰乱生产秩序的电力负荷属于() A ?三级负荷B. 二级负荷C. 一级负荷D?特级负荷 参考答案:C 6. 中断供电后可能造成大量减产,影响城市中大量居民的正常活动 的电力负荷属于() A ?三级负荷B. 二级负荷C. 一级负荷D?特级负荷 参考答案:B 7. 我国电力系统的频率,正常运行时允许的偏移范围是() A . ±).7 Hz B. ±0.5 Hz C . ±0.2 Hz?±.5 Hz D. ±0.1 Hz?±7 Hz 参考答案:C 8. 我国35kV及以上电压等级的电力用户,供电电压正常允许的偏移范围是额定值的() A . ±7% B . ±5% C. ±5% ~±7% D .方%?±10% 参考答案:B 9. 我国10kV及以上电压等级的电力用户,供电电压正常允许的偏移范围是额定值的() A . ±5% B . ±7% C. ±5% ~±7% D . ±7% ?±10% 参考答案:B 10. 我国对6~10kV供电电压的波形畸变率限制范围是() A . <+ 5% B . < 5% C. <+ 4%D . < 4% 参考答案:D 11. 我国对0.38kV供电电压的波形畸变率限制范围是() A . <+ 5% B . < 5% C. <+ 4%D . < 4% 参考答案:B 12. 以下哪项不属于无备用接线的网络() A .单回路放射式B.干线式C .树状网络 D .环形网络 参考答案:D 13. 将大容量发电厂的电能输送到负荷集中地区的电力网是() A .高压网络B.低压网络C.输电网络D .配电网络 参考答案:C 14. 由()的各种电器设备连接在一起而组成的整体称为电力系统。 A .生产电能B.输送电能C.分配电能D.消费负荷 参考答案:ABCD 15. 以下选项中,哪些是与电能生产相关的动力部分(ABC ) A汽轮机和锅炉 B .火电厂热用户C.水轮机和水库D变电站 16. 电力网包括哪些部分() A .变压器B.输电线路C.电力用户 D .发电厂参考答案:AB 17. 电力系统运行的特点()。 A .稳定运行B.电能不能大量存储C.暂态过程非常短 D.与经济和生活密切相关 参考答案:BCD 18. 对电力系统运行的要求()。 A .保证安全可靠供电B.电能质量合乎要求 C .经济性良好 D .减小对生态有害影响 参考答案:ABCD 19. 电力网的接线方式按供电可靠性可分类为() A .开式网络接线B.有备用接线C?闭式网络接线 D.无备用接线 参考答案:BD 20. 电力网按其职能可以分为() A .输电网络B.高压网络C .配电网络D .低压网络参考答案:AC 第二章电力系统元件模型及参数计算 1. 输电线路参数中,反映载流导线产生磁场效应的参数是() A.电阻 B.电感 C.电导D .电容 参考答案:B 2. 输电线路参数中,反映线路带电时绝缘介质中产生泄漏电流及导 线附近空气游离而产生有功功率损失的参数是() A.电阻 B.电感 C.电导D .电容 参考答案:C 3. 输电线路参数中,反映带电导线周围电场效应的参数是() A.电阻 B.电感 C.电导D .电容 参考答案:D 4. 当三相导线排列不对称时,一般采取什么措施使三相恢复对称 () A .导线重组B.导线换位C .分裂导线 D .多股绞线 参考答案:B 5. 标幺制是一种()。 A.绝对单位制B .相对单位制 C .相对有名制D有名单位制参考答案:B 6. 有几级电压的网络中,各元件参数的标幺值选取原则是()。 A.统一基准功率,分段选取基准电压 B .分段选取基准功率和基准电压 C. 统一选取基准功率和基准电压 D. 统一基准电压,分段选取基准功率 参考答案:A 7. 变压器参数中,可由空载试验得到的参数是()。 A .电阻B.电抗C.电导D .电纳 参考答案:CD 8. 变压器参数中,可由短路试验得到的参数是()。 A .电阻B.电抗C.电导D .电纳 参考答案:AB

MSTP技术及其应用

MSTP技术及其应用 一、MSTP的引入 在以话音业务为主体的通信时代,SDH作为承载网,通过时隙映射和交叉连接功能以及端到端的质量保证机制很好确保了话音业务的实时性。然而,随着以包交换为传送机制的IP数据业务的大幅度、高速发展,以时分交换为机制的SDH网络很难在满足话音业务的同时,再实现高效率的承载IP业务。摒弃SDH 技术重新建设承载网还是引入一些新的技术对SDH进行改造,将问题解决在网络的边缘(接入端),使IP业务在SDH网络中也能有良好的通过性,曾经是业界人士讨论的焦点。无疑,后者具有更大的操作价值,因为这不仅可以使现有的网络资源得到更为合理的利用,而且SDH本身具有的一些特性也可以弥补以太网的一些不足,例如QoS问题。于是MSTP的概念出现了,MSTP(Multi-Service Transport Platform)——基于SDH的多业务平台(基于SDH的多业务节点),还有人称其为新一代的SDH。总之,它有别于传统的SDH设备。从网络定位上讲,MSTP应处在网络接入部分,用户侧——面向不同的业务接口,网络侧——面向SDH传输设备;形象的讲,MSTP就象一个长途客/货枢纽站,如何有效的将客货分离,按照不同的需求安全、快捷的运送到目的地,是其追求的目标。 二、MSTP概念 MSTP是指基于SDH平台,同时实现TDM、ATM、以太网等多种业务的接入、处理和传送,提供统一网管的多业务节点。 城域网MSTP建设方案是介于传统的“SDH+ATM”方案与未来全光智能网络之间的一种目前现实可行的城域网建设方案。MSTP明显地优于SDH,主要表现在多端口种类,灵活的服务提供,支持WDM的升级扩容,最大效用的光纤带宽利用,较小粒度的带宽管理等方面。由于它是基于现有SDH传输网络的,可以很好地兼容现有技术,保证现有投资。由于MSTP可以集成WDM技术,能够保证网络的平滑升级,从某种程度上也是Metro-WDM的低成本解决方案之一。 MSTP系列设备为城域网节点设备,是数据网和语音网融合的桥接区。MSTP 可以应用在城域网各层,对于骨干层:主要进行中心节点之间大容量高速SDH、IP、ATM业务的承载、调度并提供保护;对于汇聚层:主要完成接入层到骨干层的SDH、IP、ATM多业务汇聚;对于接入层:MSTP则完成用户需求业务的接入。 由于MSTP是基于SDH技术的,所以MSTP对于传统的TDM业务可以很好的支持;技术的难点是如何利用SDH来支持IP业务,也就是如何将IP数据

电力系统中电力技术的应用

电力系统中电力技术的应用 摘要:电力是城市发展和市民正常生活必须的能源之一,因此电力系统运行的 稳定性至关重要。为了进一步提升电力系统运行的稳定性和安全系数,要针对电 力系统运行的各个阶段,适当加入电力技术。目前,我国的电力系统中普遍应用 电力自动化技术主要包含有智能化控制技术、仿真技术、调度技术以及PLC技术等。为了更好的满足电力系统控制的需求,可将两种甚至多种技术手段融合在一 起使用。本文主要介绍了电力系统中的电力技术并分析了电力技术的优势和应用,希望为相关行业提供借鉴。 关键词:电力系统;电力技术 1引言 电力企业要想进一步提高电力系统运行稳定性以及管理水平,就需要构建起满足日常生 产运营管理标准的电力系统体系。这就需要相关企业针对如何提高电力系统有效性,以保持 电力系统始终处于良好、稳定性能状态方面做深入分析。同时,还应不断优化电气设备及控 制流程,旨在提高电力系统对故障问题的敏感性,从而实现电气设备及时、精准的修复故障 工作。 目前,电力系统中应用的电力技术主要指电气工程自动化技术,它是在计算机技术、电 气工程技术及自动化技术等多种技术手段的融合下发展而来的。该技术手段最大的特征在于 能够提升系统运行的效率和稳定性,所以被广泛应用于各类工程项目控制中。在电力系统中 的应用,主要是借助电气工程自动化技术提高对电力系统的控制力度,使系统可以长时间维 持在一个高效、稳定的运行状态。此外,还需要借助PLC技术以及自动仿真技术,对电力系 统运行的安全性进行把控。 2电气工程自动化技术的优势和发展趋势 2.1电气工程自动化技术的优势 电气自动化技术对于电力系统的运行而言,具有十分明显的优势。首先,该技术能够大 幅度提升电气设备全程运行的安全、稳定水平,促使整个系统可以更好的维持在一个相对稳 定的状态。其次,和依靠人工排查系统故障的传统模式相比,基于电气自动化技术所研发的 自动调度系统具有更高的灵敏度和准确性,从而可以对电力系统形成一个良好的保护,促使 其故障率能够有一个极为显著的下降。最后,集成智能化和自动化的电力系统具有更高的安 全系数,也更加符合人性化的需求。在系统中,原本需要人工才能完成的工作全部都交由机 械设备来完成了这一设定直接降低了电力系统维护工作中,工作人员发生安全事故的概率。 2.2电气工程自动化技术的发展趋势 就我国现阶段电气自动化技术发展的情况判断,未来发展的趋势主要有3个方面。首先,电气自动化技术的发展会趋向于智能化。未来的电力系统中会增加智能化元素的比重,从前 期系统监测,到数据分析,再到后期的故障排查,都会有人工智能设备来代替人工。在人工 智能技术的加持下,可以极大程度地提高电力系统运行的效率。其次,电力系统中电力自动 化技术应用的成本会越来越低。在全球经济一体化的大背景下,电气工程自动化技术的发展 势必会走向成熟。对于电力系统而言,无论是用作系统运行控制的软件系统,亦或是用于实 际维护电力系统各类设备的硬件,都会从科研逐步走向量产,而相应的成本也会得到更好的

相关主题
文本预览
相关文档 最新文档