数学建模练习题
- 格式:doc
- 大小:1.71 MB
- 文档页数:25
数学建模练习题一、基础数学知识类某企业生产两种产品,生产每吨产品A需耗用原料1吨、工时4小时,生产每吨产品B需耗用原料2吨、工时3小时。
若企业每月原料供应量为10吨,工时供应量为36小时,求该企业每月生产产品A和产品B的数量。
某湖泊污染问题,已知污染物的降解速度与污染物浓度成正比,求污染物浓度随时间的变化规律。
计算由曲线y=x^2和直线x=2、y=0所围成的图形的面积。
二、统计分析类2, 4, 6, 8, 10, 12, 14, 16, 18, 20某地区居民消费水平(y)与收入(x)之间的关系,数据如下表所示,求出线性回归方程。
| 收入(x) | 消费水平(y) || | || 1000 | 800 || 1500 | 1200 || 2000 | 1600 || 2500 | 2000 || 3000 | 2400 |三、优化方法类某企业生产三种产品,产品A、B、C的单件利润分别为5元、4元、3元。
生产每吨产品A、B、C所需的原料分别为2吨、1吨、1吨。
若企业每月原料供应量为10吨,求该企业每月生产产品A、B、C的数量,使得总利润最大。
某企业生产两种产品,产品A、B的单件利润分别为10元、8元。
生产每吨产品A、B所需的工时分别为4小时、3小时。
若企业每月工时供应量为120小时,求该企业每月生产产品A、B的数量,使得总利润最大。
四、离散数学类关系矩阵为:| 1 0 1 0 || 0 1 0 1 || 1 0 1 0 || 0 1 0 1 |A (3)>B (4)> D\ |\ (2)\ /C (1)>五、实际问题建模类某城市交通拥堵问题,分析道路宽度、车辆数量、交通信号等因素对交通拥堵的影响,建立数学模型。
某地区水资源分配问题,考虑农业、工业、生活用水等因素,建立数学模型,并提出合理的水资源分配方案。
六、运筹学方法类一位背包客有最大负重为50公斤的背包,现有五种物品,每种物品的重量和价值如下表所示。
大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。
生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。
公司每天有24小时的机器时间和40小时的人工时间可用。
如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。
每名顾客的平均服务时间是5分钟。
假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。
请计算银行的平均排队长度和顾客的平均等待时间。
三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。
产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。
如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。
水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。
每个水库的供水能力不同,每个城市的需求也不同。
如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。
请考虑季节性因素和趋势,并给出预测的置信区间。
六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。
如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。
如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。
希望这些练习题能够帮助学生在数学建模的道路上更进一步。
1、放射性废料的处理问题美国原子能委员会以往处理浓缩的放射性废料的方法,一直是把它们装入密封的圆桶里,然后扔到水深为90多米的海底。
生态学家和科学家们表示担心,怕圆桶下沉到海底时与海底碰撞而发生破裂,从而造成核污染。
原子能委员会分辨说这是不可能的。
为此工程师们进行了碰撞实验。
发现当圆桶下沉速度超过12.2 m/s 与海底相撞时,圆桶就可能发生碰裂。
这样为避免圆桶碰裂,需要计算一下圆桶沉到海底时速度是多少? 这时已知圆桶重量为239.46 kg,体积为0.2058m3,海水密度为1035.71kg/m3,如果圆桶速度小于12.2m/s就说明这种方法是安全可靠的,否则就要禁止使用这种方法来处理放射性废料。
假设水的阻力与速度大小成正比例,其正比例常数k=0.6。
现要求建立合理的数学模型,解决如下实际问题:1.判断这种处理废料的方法是否合理?2.一般情况下,v大,k也大;v小,k也小。
当v很大时,常用kv来代替k,那么这时速度与时间关系如何? 并求出当速度不超过12.2 m/s,圆桶的运动时间和位移应不超过多少? (的值仍设为0.6)鱼雷攻击问题在一场战争中,甲方一潜艇在乙方领海进行秘密侦察活动。
当甲方潜艇位于乙方一潜艇的正西100千米处,两方潜艇士兵同时发现对方。
甲方潜艇开始向正北60千米处的营地逃跑,在甲方潜艇开始逃跑的同时,乙方潜艇发射了鱼雷进行追踪攻击。
假设甲方潜艇与乙方鱼雷是在同一平面上进行运动。
已知甲方潜艇和乙方鱼雷的速度均匀且鱼雷的速度是甲方潜艇速度的两倍。
试建立合理的数学模型解决以下问题:1) 求鱼雷在追踪攻击过程中的运动轨迹;2) 确定甲方潜艇能否安全的回到营地而不会被乙方鱼雷击中3、贷款买房问题某居民买房向银行贷款6万元,利息为月利率1%,贷款期为25年,要求建立数学模型解决如下问题:1)问该居民每月应定额偿还多少钱?2)假设此居民每月可节余700元,是否可以去买房?4、养老保险问题养老保险是保险中的一种重要险种,保险公司将提供不同的保险方案以供选择,分析保险品种的实际投资价值。
数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。
2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。
3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。
4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。
二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。
6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。
三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。
10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。
11.试找出100以内的所有素数。
12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。
14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。
15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。
数学建模与应用案例练习题数学建模是将实际问题转化为数学问题,并通过数学方法和计算机技术求解的过程。
它在各个领域都有着广泛的应用,能够帮助我们更好地理解和解决现实中的复杂问题。
下面我们将通过一些具体的案例练习题来深入了解数学建模的方法和应用。
案例一:生产计划优化问题某工厂生产 A、B 两种产品,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个单位的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂现有 100 个单位的原材料和 80 个单位的工时,A 产品的单位利润为 5 元,B 产品的单位利润为 4 元。
问如何安排生产计划,才能使工厂获得最大利润?首先,我们设生产 A 产品 x 件,生产 B 产品 y 件。
那么,目标函数就是利润最大化,即 Z = 5x + 4y。
然后,我们需要考虑约束条件。
原材料的限制为 2x +3y ≤ 100,工时的限制为 3x +2y ≤ 80,同时 x、y 都应该是非负整数。
接下来,我们可以使用线性规划的方法来求解这个问题。
通过绘制可行域,找到目标函数在可行域上的最大值点。
经过计算,我们可以得出当 x = 20,y = 20 时,工厂能够获得最大利润 180 元。
这个案例展示了数学建模在生产决策中的应用,通过合理地安排生产计划,能够有效地提高企业的经济效益。
案例二:交通流量预测问题在一个城市的某个十字路口,每天不同时间段的车流量不同。
我们收集了过去一段时间内每天各个时间段的车流量数据,希望建立一个数学模型来预测未来某一天的车流量。
首先,我们对收集到的数据进行分析,发现车流量具有一定的周期性和季节性变化。
然后,我们可以选择使用时间序列分析的方法来建立模型。
比如,可以使用 ARIMA 模型(自回归移动平均模型)。
在建立模型之前,需要对数据进行预处理,包括平稳性检验、差分处理等。
通过建立合适的 ARIMA 模型,并进行参数估计和检验,我们就可以利用这个模型对未来的车流量进行预测。
数学建模练习题1.1.线性规划题目问题1:毛坯切割问题用长度为500厘米的材料,分别截成长度为98厘米和78厘米的两种毛坯,要求截出长度98厘米的毛坯1000根,78厘米的毛坯2000根,问怎样去截,才能是所用的原材料最少,试建立数学模型。
问题2:进货收获问题某商店你制定某种商品7-12月的进货、售货计划,已知商品仓库最大容量为1500件,6月底已经库存300件,年底不少于300件为宜,以后每月初进货一次,假设各月份该商品买进和售出的价格如下表所示,若每件每月库存费为0.5元,问各月进货,售货多少件,才能是净收益最多。
试建立数学模型。
问题3:货船装货问题某货船的载重量为12000吨,总容积为45000立方米,冷藏容积为3000立方米,可燃性指数的总和不得超过7500,准备装6中货物,每种货物的单价、重量、体积和可燃性指数如下表:1.2.微分方程题目问题1. 什么时候开始下雪?早晨开始下雪,整天稳降不停。
正午一辆扫雪车开始扫雪,每小时扫雪量按体积计为一常数。
到下午2时它清扫了两公里,到下午4时又清扫了1公里,问雪是什么时候开始下的?问题2. 谁喝的咖啡热一些?总统与首相面前同时送上同温度的热咖啡。
总统在送到咖啡后立即加上一点冷奶油,等了10分钟才喝;首相则等了10分钟后添加等量的冷奶油开始喝,问谁喝的咖啡热一些?问题3. 需冷却多久?一位稀里糊涂的咖啡泡煮师,想让水达到185o F,可他几乎总是忘记这一点而把水煮开。
温度计又坏了,他要你计算一下,从212o F冷却到185o F要等多少时间,你能解决他的问题吗?问题4. 纽约的人口如果不考虑移民与高杀人率,纽约城的人口将满足方程,其中t 以年度量。
(1)事实上,每年有6000人从该城迁出,又有4000人被杀,试修正上面方程。
(2)已知1970年纽约城人口为800万,求未来任何时刻的人口,且求时的极限。
问题5.开火的最优距离A 方反坦克导弹与B 方坦克之间进行战斗。
2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。
已知|a - 3| + (b + 2)² = 0,则 a + b = _______。
已知一个正方体的棱长是6cm,则它的体积是_______ cm³。
方程2x - 3 = 5 的解是x = _______。
已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。
三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。
解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。
四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。
若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。
求这辆汽车的平均速度。
建模练习题第一套参考答案一.水厂设立 如图,设(公里)2.312540,22≈-==AD x AC ,则AC 的费用为400x ,BC 的费用为()222.3125600x -+,此问题的数学模型为 min S = 400x + ()222.3125600x -+ 2.310≤≤x模型的求解: ()()222.31252.31600400x x dx ds -+--= , 令dxds = 0 ,得到驻点 x 0≈8.8 由实际意义或求二阶导数可说明驻点x 0是最小值点,最小费用为(元)0.23676≈S ( 答略).二.截割方案设1米长的钢材截27厘米的x 根,15厘米的y 根.则此问题的数学模型为:⎪⎪⎩⎪⎪⎨⎧∈≥≤++=Zy x y x yx t s y x ,,0,1001527..1001527max λ模型的求解: 方法1: 在区域115.027.0,0,0≤+≥≥y x y x 内确定出与直线115.027.0:=+y x l 最近的格点;方法2: 由1527100x y -=穷举. 方法3: 用Lindo 数学软件.求解结果: 3,2==y x .最高利用率: %99100315227max =⨯+⨯=λ. 三.投资决策投资生产A 、B 两产品的利润分别为4200100010)4.02006.01000(=-⨯⨯-⨯=A R (万元)132040010)4.0206.0300(=-⨯⨯-⨯=B R (万元)投资回报率分别为 3.34001320,2.410004200====B A λλ. 故应对A 产品进行投资, 投资回报率将最大.四.生产安排设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为Zy x y x y x y x y x t s yx S ∈≥≥≤+≤+≤++=,,0,020002424006140032..65max模型的求解:方法一:图解法.可行域为:由直线,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及 组成的凸五边形区域.直线C y x l =+65:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由⎩⎨⎧=+=+200024140032y x y x 解得:200,400==y x320020064005max =⨯+⨯=S (千元)(答略)方法二:用Lindo 软件或Maple 软件求解.五.最优联网以村(包括乡政府)为顶点,可直接联网的两村则连边,联网费用作为边上的权,得到一个赋权连通图G 如下:由破圈法或避圈法求得G 的最优树T (上图波浪线),最优联网方案为SD 、DC 、DE 、DB 、BA 、AF 或SD 、BC 、DE 、DB 、BA 、AF最小联网费用为千元)(6.1856.33322min =+++++=s六、最佳存款设存款分n 次进行,每次的存期分别为1x ,.,,2n x x 这里1≤n ≤6,∑==ni i x 16,存期集合为S ={1,2,3,5}.存期为i x 时,对应度年利率为i r当i x =1时,i r =0.0225;当i x =2时,i r =0.0243;当i x =3时,i r =0.0270;当i x =5时,i r =0.0288;设将一万元分n 次进行,每次存期分别为1x ,.,,2n x x 所得的收益为()n x x x f ,,,21 .则此问题当数学模型为()()∏=+=n i i i n r x x x x f 1421110,,,max s.t. ∑==n i i x 16. 1≤n ≤6 ,S x i ∈易知函数()n x x x f ,,,21 的值与1x ,.,,2n x x 的顺序无关.不妨设n x x x ≤≤≤ 21.则(1x ,.,,2n x x )的所有取值为(1,1,1,1,1,1),(1,1,1,1,2),(1,1,2,2),(1,1,1,3), (1,2,3),(1,5),(2,2,2),(3,3)现计算()n x x x f ,,,21 的值如下:()()25.114280225.01101,1,1,1,1,164≈+=f ()()()07.114620243.0210225.01102,1,1,1,144≈⨯++=f ()()()99.114950243.0210225.01102,2,1,1224≈⨯++=f ()()()22.115560270.0310225.01103,1,1,134≈⨯++=f ()()()()41.115900270.0310243.0210225.01103,2,14≈⨯+⨯++=f()()()4.116970288.0510225.01105,14≈⨯++=f()()01.115300243.021102,2,234≈⨯+=f ()()61.116850270.031103,324≈⨯+=f 故最佳存款方案为:先存一年期再存一个五年期,所得的最大收益为11697.4元.。
《数学建模》作业一、计算题1. 求差分方程 ⎩⎨⎧===++++0)1(,1)0(0)(6)1(5)2(x x k x k x k x 的初值解。
2. 求差分方程 (2)3(1)2()0(0)1, (1)2x k x k x k x x ++++=⎧⎨==⎩的初值解。
二、1.某储蓄所每天的营业时间是上午9:00到下午5:00。
根据经验,每天不同时间段所需要的服务员数量如下:储蓄所可以雇佣全时和半时两类服务员。
全时服务员每天报酬100元,从上午9:00到下午5:00工作,但中午12:00到下午2:00之间必须安排1小时的午餐时间。
储蓄所每天可以雇佣不超过3名的半时服务员,每个半时服务员必须连续工作4小时,报酬40元。
问该储蓄所应如何雇佣全时和半时两类服务员?如果不能雇佣半时服务员,每天至少增加多少费用?如果雇佣半时服务员的数量没有限制,每天可以减少多少费用?2. 已知某人有债务25000元,月利率为1%,计划在未来12个月用分期付款的方式付清债务,每月要偿还多少元?(利息按照复利计算,即把利息加入本金后一起计算利息的算法)。
三.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNn rx t x1)(= ,其中r 和N 的意义与Logistic 模型相同。
设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =。
讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x 。
四. 在鱼塘中投放0n 尾鱼苗。
随着时间的增长,尾数将减少而每尾的重量将增加。
(1)设尾数)(t n 的(相对)减少率为常数;由于喂养引起的每尾鱼重量的增加率与鱼表面积成正比,由于消耗引起的每尾鱼重量的减少率与重量本身成正比。
分别建立尾数和每尾鱼重的微分方程,并求解。
(2)用控制网眼的办法不捕小鱼,到时刻T 才开始捕捞,捕捞能力用尾数的相对减少量()n ϕ表示,记作E ,单位时间捕获量是)(t En 。
数学建模练习题一.某学校有三个系共200名学生,其中甲系100名,乙系60名,丙系40名.若学生代表会议设20各级席位,公平而又简单的席位分配方法是按学生人数的比例分配,显然甲乙丙三系分别应占有10,6,4个席位,现在丙系有6名学生转入甲乙两系,各系人数如表第二列所示,仍按比例(表中第三列)分配席位时出现了小数(表中第四列),在将取得整数的19席分配完毕后,三席同意剩下的1席参照所谓惯例分给比例中小数最大的系,于是三系分别占有10,6,4席(表中第5列)因为有20个代表会议在表决的时候可能出现10:10的局面,会议决定下一届增加一席,他们按照上述方法重新分配席位,计算结果见表6,7列,显然这个结果对丙系太不公平了.因为总席位增加一席,而丙系却由4席减为3席.按照比例并参照惯例的席位分配甲103 51.5 10.3 10 10.815 11乙63 31.5 6.3 6 6.615 7丙34 17.0 3.4 4 3.570 3总和200 100.0 20.0 20 21.000 21要解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指标,并由此建立新的分配分配方法解答:Pī/Nī表示第ī个单位每个代表名额代表的人数采用相对标准,引入相对不公平概念.如果P1/n1>P2/n2,则说明A方是吃亏的,或说对A方不公平.对A的相对不公平度:rA(n1,n2)=(p1/n1-p2/n2)/(p2/n2)=(p1n2)/(p2n1)-1对B的相对不公平度:rB(n1,n2)=(p2n1)/(p1n2)-1情形1:P1/(n1+1)>p2/n2,表明即使A方再增加一个名额,仍然对A方不公平,所以这个名额当然给A方情形2:P1/(n1+1)<p2/n2,表明A增加一个名额后,就对B方不公平,这时B的相对不公平度为:rB(n1+1,n2)=p2(n1+1)/p1n2-1情形3:(P1/n1)>p2/(n2+1) ,表明B增加一个名额后,就对A方不公平,这时A的相对不公平度为: rA(n1,n2+1)=p1(n2+1)/p2n1-1由以上三种情形可知,若情形1发生,名额给A方.否则须考查rB(n1+1,n2)和rA(n1,n2+1)的大小关系.如果rB<rA,则名额给方,否则给B方.由于rB(n1+1,n2)<rA(n1,n2+1)等价于P2*P2/n2(n2+1)< P1*P1/n1(n1+1)若情形1发生,上式仍成立,记作Qi=pi*pi/ni(ni+1)增加名额给Q值较大一方.Q甲=103*103/10(10+1)=96.445Q乙=63*63/6(6+1)=94.5Q丙=34*34/4(4+1)=57.8因此名额加给甲班二,不确定环境下供应链的生产与订购决策问题不确定环境下供应链的生产与订购与订购决策问题摘要供应链管理作为一种新型企业关系管理模式在现代市场竞争中为企业生产和发展提供了一种工具,本文就 A 题给出的在不确定环境下供应链的生产和订购决策问题进行研究,展开讨论,分析和建立数学模型,利用数学软件进行求解. 对于问题一:只考虑包含一个生产商和一个销售商的供应链,在假设商品的最终需求量是确定的,而生产商生产商品量是不确定的情况下采用线性规划的方法建立数学模型,分别建立生产商和销售商获得利润的两个方程式,针对两个方程中的一些变量进行限制,当生产商和销售商的利润同时达到最大值时就是该供应链的最优解,最后利用 lingo 软件进行编程和求解. 对于问题二:在问题一的供应链的基础上,增加了一个条件那就是我们商品的市场需求量也是随机的,并且有一个商品市场需求量的期望值=400,需求量的波动区间是[0.8,1.2], 利用正态分布中的 3 原则,求解出 ,再利用正态分布的密度公式Ρ √2 1 , ∞ ∞ 列出一个相关式求解出求解出销售商的最优订购量 Oi 再利用线性规划的方法将所求的 Oi 做为一个已知数列解一个生产商所获利润的方程,并且加入相应的限制条件就可求出生产商最优计划产量的最优解. 对于问题三:考虑在实际生产中,大多数供应链具有两级不确定性,即原产品生产的不确定性和产成品生产的不确定性;总体再利用线性规划的相关性列出两个线性方程,以及对其加入相应的限制条件,求解出供应链中二级生产商的最优订购量和一级生产商的最优计划产量. 关键词: 关键词:供应链线性规划正态分布最优订购量最优计划产量 1. 问题对于第一问和第二问,只考虑包含一个生产商和一个销售商的供应链,即销售商向生产商订购商品,生产商将商品按批发价格批发给销售商,销售商将商品按销售价格销售给最终顾客.其中相关已知条件有如下表所示: 生产成本/个生产商销售商 20 库存成本/个 5 5 缺货赔偿金/个出售价格/个 15 25 40 60 (1)若假设商品的最终需求量是确定的,即商品市场需求量为 400.而生产商生产商品量是不确定的,即由于受到各种随机因素的影响,商品实际产量可能不等于计划产量,呈随机波动,若生产商计划生产量为 Q,则商品生产量的波动区间为[0.85,1.15],即产品实际产量的区间为[0.85Q,1.15Q].. 建立数学模型, 确定销售商的最优订购量和生产商的最优计划产量. 根据建立的数学模型,求解供应链中销售商的最优订购量和生产商的最优计划产量. (2)在问题(1)的供应链中,如果商品的市场需求量也是随机的,商品市场需求量的期望为400,市场需求量的波动区间为[0.8,1.2],即实际市场需求量的区间为[320,480].请建立数学模型,确定销售商的最优订购量和生产商的最优计划产量.根据建立的数学模型,求解供应链中销售商的最优订购量和生产商的最优计划产量. 对于第三问,考虑在实际上,大多数供应链具有两级生产不确定性,即原产品生产的不确定性和产成品生产的不确定性,一级生产商生产原产品(或原材料) ,二级生产商向一级生 5 产商订购原产品(或原材料) ,并通过加工原产品(或原材料)生产产成品,进而销售给最终顾客,两级生产均具有不确定性.相关的已知条件如下表所示: 生产成本/个库存成本/个缺货赔偿/个加工成本/个售价/个一级生产商二级生产商 20 5 7 15 30 10 40 95 (3)若假设产成品的市场需求量是确定的,即产成品市场需求量为 280.原产品生产量的波动区间为[0.85,1.15],产成品生产量的波动区间为[0.9,1.1].请建立数学模型,研究在两级生产不确定的供应链中,二级生产商(产成品生产商)的最优订购量和一级生产商(原材料或原产品生产商)的最优计划产量.根据建立的数学模型,求解供应链中二级生产商的最优订购量和一级生产商的最优计划产量. 2 符号说明销售商的利润生产商的利润一级生产商利润二级生产商利润销售商订购量二级生产商的订购量商品生产量的波动区间和原产品生产量的波动区间系数产成品生产量的波动区间系数实际市场需求量波动系数生产商和一级生产商的最优计划生产量商品市场需求量的期望值 1. 生产商的计划生产量始终大于订购量; 2. 市场的最终需求是确定的;3. 商品生产量波动是连续的; 3 模型假设4. 市场需求量波动是连续的且服从正态分布;5. 原材料生产量的波动是连续的. 6 4,问题分析这是一个优化问题,要决策的是生产商的最优计划量和销售商的最优订购量,即所谓的优化组合,要达到的目标有二, .一般来说这两个目标是矛盾的,销售商订购的越多(在生产商的能力范围之内) ,生产商的净收益越大,但销售商的市场需求量是有约束的,销售商卖不出去,就要储存需要库存成本,那销售商的净收益就会很小.所以需要更多的约束条件使这两个目标同时达到最优的即所谓的最优决策,我们追求的只能是,在确定的订购量下生产商的净收益最大的决策,和在确定的生产量下销售商净收益最大的决策,使生产商的计划生产量和销售商的订购量按一定比例组合最优的决策.这就是说在不同的约束条件下,只要建模合理,答案可以是多种. 建立优化问题的模型最主要的是用数学符号和式子表述决策变量,构造目标函数和确定约束条件.对于本题决策变量是明确的,即最优计划量,销售商的最优订购量商品,生产量的波动值和市场实际需求量的波动值(题中第一问的该值为一) ,目标函数之一是销售商的总收益最大,目标函数之二是生产商的总收益最大.而生产商的总收益用他的实际生产量和销售商的订购量衡量,销售商的总收益用他的订购量和市场的实际需求量衡量. 5,模型建立 5.1 问题一,二供应链的相关关系图如下所示: 计划生产量实际生产量订购量市场需求量销售商销售销售产品批发生产商生产产品成本批发价产品库存成本库存成本缺货赔偿金缺货赔偿金销售单价 7 5.2 问题一模型的建立对于问题 1 模型的建立,讨论如何调整销售商的订购量和生产商计划生产量使生产商和订购商的利润最大. 根据前面的模型假设,从生产商的角度考虑,由于单位商批发缺货成本太大,所以不予考虑缺货状态下销售商利润和生产商的利润.计划生产量是假想情况下在规定的时间所能生产的产品量,但总有突发事件发生导致生产商的计划生产量与实际生产量有出入,生产商为了保证自己的利润最大即花费不至过大,一定不能缺货,因为缺货一个所损失的赔偿金抵上多生产三个产品在储存上的花费.而不能缺货,生产商的计划产量就要始终大于订购商的订购量.而从销售商的角度考虑,订购量与上述生产商一致,不能缺货,因为缺货一个所损失的赔偿金抵上多订购五个产品在储存上的花费,而在成本方面,现在卖不出去以后搞促销一样可以卖出去.具体分析如下: 1)当 Q>400,既订购量大于市场需求量,所以销售商和订购商的利润分别为: max=60*400-40* max=40* -20* -5*( *Q-5*( -400); *Q) (1) (2) 当 Q<400,即订购量小于市场需求量,所以销售商和订购商的利润分别为: max=60*400-40* -25*(400max=40* )(3) -20* *Q-15*( *Q) (4) 针对上述描述分析中的各种范围讨论,我们采用的是线性规划方法,先利用供应链中各种数据存在的关系,列出生产商和销售商利润求值关系式,如下所示: 1 2 60 400 40 40 20 5 5 400,0 25 ,0 15 400 ,0 ,0 (5) (6) 当供应链中生产商的利润 Pj 与销售商的利润 Pi 在应链的限制条件中同时达到最大值时, 8 我们就可以利用数学软件编程求解出我们的销售商的最优订购量 Oi 和生产商的最优计划产量Q .5.3 问题二模型的建立对于问题 2 模型的建立,在问题一的基础上,商品市场需求量变为随机的,讨论如何调整销售商的订购量和生产商计划生产量使生产商和订购商的利润最大.我们首先知道了商品市场需求量的期望值为 400,根据条件已知期望,属于概率与数理统计范围,又根据前面模型假设知道了销售商的实际订购量符合正态分布根据正态分布中 3 原则即: 设Χ~Ν , ,则Ρ |Χ | σΦΦ0.6826, 0.9545, 0.9973, 1; 2; 3. 从上式中可以看出:尽管正态变量的取值范围是( ∞,。