北师大版七年级上册数学 专题复习:基本平面图形
- 格式:wps
- 大小:295.24 KB
- 文档页数:4
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《基本平面图形》全章复习与巩固(提高)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2. 掌握圆、扇形及多边形的概念及相关计算;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、线段、射线、直线1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==Cbba MBA要点诠释:①线段中点的等价表述:如上图,点M 在线段AB 上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.PNMBAAB PB NP MN AM 41==== 要点二、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类: ∠β 锐角 直角钝角平角 周角 范围0<∠β<90°∠β=90° 90°<∠β<180°∠β=180°∠β=360°(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=12∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.要点三、多边形和圆的初步认识1.多边形及正多边形:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点诠释:(1)n边形有n个顶点、n条边,对角线的条数为(3)2n n.(2)多边形按边数的不同可分为三角形、四边形、五边形、六边形等.2. 圆及扇形:(1)圆:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.要点诠释:圆心确定圆的位置,半径确定圆的大小.(2)扇形:由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形.如下图:要点诠释: 扇形OAB 的面积公式:;扇形OAB 的弧长公式:180n Rl π=.【典型例题】类型一、线段、射线、直线1.下列判断错误的有( )①延长射线OA ;②直线比射线长,射线比线段长;③如果线段PA =PB ,则点P 是线段AB 的中点;④连接两点间的线段,叫做两点间的距离. A .0个 B .2个 C .3个 D .4个 【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA =PB ,只有当点P 在线段AB 上时,才是线段AB 的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别. 举一反三:【变式】平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点. 【答案】10, 0. 类型二、角2.(2016春•南充校级期中)如图:若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°.则∠COE的度数是.【思路点拨】设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【答案】72°.【解析】解:设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.故答案为:72°.【总结升华】本题考查了对顶角、邻补角,设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.举一反三:【变式】(2014•陆川县校级模拟)在同一平面内,若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于.【答案】25°或65°.解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BO C=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°,故答案为:25°或65°.3.(2015•深圳校级模拟)如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70° B.20° C.35° D.110°【思路点拨】根据两直线平行,同旁内角互补求得∠C的度数即可.【答案】A【解析】解:如图,连接AB,∵两正北方向平行,∴∠CAB+∠CBA=180°﹣45°﹣25°=110°,∴∠ACB=180°﹣110°=70°.【总结升华】本题考查了方向角,解决本题的关键是利用平行线的性质.举一反三:【变式】考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图(1)中画出射线OA、OB,并计算∠AOB的度数.【答案】解:如图(2),以O为顶点,正北方向线为始边向东旋转45°,得OA;以O为顶点,正南方向线为始边向东旋转60°,得OB,则∠AOB=180°-(45°+60°)=75°.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x时,与分针第一次重合,依题意有12x=90+x解得9011 x=答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合.【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决.类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法5. 如图所示,B、C是线段AD上的两点,且32CD AB=,AC=35cm,BD=44cm,求线段AD的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm) 所以BC =35-x =35-18=17(cm)33182722CD x ==⨯=(cm) 所以AD =AB+BC+CD =18+17+27=62(cm)【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB(cm).综上可得:AB 的长为14cm ,87cm ,11253 cm .【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.类型四、多边形和圆7.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,当扇形纸板的圆心角为________时,正三角形边被纸板覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .D ECB O(a) (b) 【答案与解析】 解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB 、AD•分别交于点M 、N ,连结OA 、OD .∵四边形ABCD 是正方形∴OA =OD ,∠AOD =90°,∠MAO =∠NDO =45°, 又∠MON=90°,∠AOM=∠DON. ∴△AMO 与△DNO 形状完全相同.精品文档 用心整理资料来源于网络 仅供免费交流使用 ∴AM =DN∴AM+AN =DN+AN =AD =a(2)3601203︒︒=,所以当扇形纸板的圆心角为120°时,正三角形边被纸板覆盖部分的总长度为定值a ;同理可得,当扇形纸板的圆心角为72°时,正五边形的边长被纸板覆盖部分的总长度也为定值a .【总结升华】一般地,将一块半径足够长的扇形纸板的圆心放在边长为a 的正n 边形的中心O 点处,若将纸板绕O 点旋转,当扇形纸板的圆心角为360n︒时,正n 边形的边被纸板覆盖部分的总长度为定值a.。
北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”。
D.在直线AB上任取4点,以这4个点为端点的线段共有6条2、过平面上三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条3、正六边形的周长为6mm,则它的面积为()A. mm 2B. mm 2C.3 mm 2D.6 mm 24、如图所示,∠1=28°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.128°B.118°C.108°D.152°5、从A市到B市,乘坐火车共经过5个车站(不包括A,B两种),买车票的价格因为起点和终点不同有很多种,从A市到B市的任意两个车站的车票价格最多有()A.7种B.14种C.21种D.28种6、如图,下列表示角的方法,错误的是()A.∠1与∠AOB表示同一个角B.∠AOC也可以用∠O来表示C.∠β表示的是∠BOCD.图中共有三个角:∠AOB,∠AOC,∠BOC7、下列命题中,假命题的是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8、如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°9、锐角加上锐角的和是()A.锐角B.直角C.钝角D.以上三种都有可能10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列各图中所给的线段、射线、直线能相交的是()A. B. C. D.12、将一副直角三角尺按如图所示的不同方式摆放,则图中与相等的是().A. B. C.D.13、对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理 C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理 D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理14、如图,OA⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有5个.其中正确的结论是()A.1个B.2个C.3个D.4个15、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题(共10题,共计30分)16、从n边形的一个顶点出发有四条对角线,则这个n边形的内角和为________度.17、如图,小明从点A向北偏东75°方向走到B点,又从B点向南偏西30°方向走到点C,则∠ABC的度数为________18、计算:180°﹣20°40′=________19、试写出用n边形的边数n表示对角线总条数S的式子:________.20、往返于甲、乙两地的火车中途要停靠三个站,则有________种不同的票价(来回票价一样),需准备________种车票.21、如图,点O是直线AB上一点,∠COD=120°,则∠AOC+∠BOD=________.22、已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB 度数为________.23、如图,是的平分线,是的平分线,且,________度.24、已知∠AOB=80°,∠BOC=20°,OE平分∠AOC,则∠AOE=________.25、若∠α=35°16′,则∠α的余角的度数为________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘ (2)62°5’-21°39‘ (3)22°16′×5(4)42°15′÷527、已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:∠A=∠B.28、如图,O是直线AB上一点,OD,OE分别是∠AOC和∠BOC的平分线.求证:∠DOE=90°.29、如图,C、D、E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21.求PQ的长.30、两个相等的角,有公共顶点和一条公共边,另两条边所成的角是直角.求这两个角的度数.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、B5、C6、B7、B8、C9、D10、A11、B12、D13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
北师大版数学七上期末复习专题第四章基本平面图形压轴题1.(2021七上·吉林月考)如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为8,点P从点A出发以每秒2个单位长度的速度在数轴上向右运动,当点P到达点B后立即返回,再以每秒3个单位长度的速度向左运动.设点P运动时间为t(s).(1)当点P与点B重合时,t的值为;(2)当t=7时,点P表示的有理数为;(3)当点P与原点距离是2个单位长度时,t的值为;(4)当BP=3AP时,t的值为.2.(2021七下·长春期中)如图,已知点在数轴上对应的数为,点对应的数为,与之间的距离记作AB.(1)已知a=-2,b比a大12,(1)则B点表示的数是________;(2)设点在数轴上对应的数为,当PA-PB=4时,求的值;(3)若点M以每秒1个单位的速度从A点出发向右运动,同时点N以每秒2个单位的速度从B点向左运动.设运动时间是t秒,则运动t秒后,•用含t的代数式表示M点到达的位置表示的数为▲ , N点到达的位置表示的数为▲;‚当t为多少秒时,M与N之间的距离是9?3.(2021七上·长寿期末)如图,已知数轴上点A表示的数为8,点B表示的数为.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)线段的长为________个单位长度,点P运动t秒后表示的数为________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?(3)若M为的中点,N为的中点.点P在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请求出线段的长.4.(2021七上·成都期末)已知点C在线段AB上,AC=2BC,点D,E在直线AB上,点D在点E的左侧.(1)若AB=15,DE=6,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,求的值.5.(2021七上·西岗期末)如图,已知线段,动点P从A出发,以每秒2个单位的速度沿射线AB方向运动,运动时间为t秒,点M为AP的中点.(1)若点P在线段AB上运动,当t为多少时,?(2)若点P在射线AB上运动,N为线段PB上的一点.当N为PB的中点时,求线段MN的长度;当时,是否存在这样的t,使M、N、P三点中的一个点是以其余两点为端点的线段的中点.如果存在,请求出t的值;如不存在,请说明理由.6.(2020七上·电白期末)已知数轴上三点、、表示的数分别为4、0、,动点从点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点到点的距离与点到点的距离相等时,点在数轴上表示的数是 .(2)另一动点从点出发,以每秒2个单位的速度沿数轴向左匀速运动,若点、同时出发,问点运动多长时间追上点?(3)若点为的中点,点为的中点,点在运动过程中,线段的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段的长度.7.(2021七上·巴南期末)如图,数轴上三点、、对应的数是分别是、、,且,,若用表示、两点的距离,表示、两点的距离,则.(1)求的值.(2)若动点以每秒2个单位长度的速度从点向右出发运动,则动点运动多少秒时,动点到、两点的距离之和为12?(3)若动点从点、动点从点同时向右运动,当动点运动到点时,动点、同时停止运动.在运动过程中,点为线段的中点,点为线段的中点,已知动点运动的速度为每秒3个单位长度,动点运动的速度为每秒2个单位长度,请直接写出线段、、之间的数量关系.8.(2021七上·柳州期末)如图所示,线段,动点P从点A出发,以2个单位秒的速度沿射线AB运动,M 为AP的中点.(1)出发多少秒后,(2)当点P在线段AB上运动时,试说明为定值.(3)当点P在线段AB延长线上运动时,N为BP的中点,下列两个结论:长度不变;的值不变.选出一个正确的,并求其值.9.(2021七上·桐梓期末)如图,在数轴上点,点,点表示的数分别为(1)线段的长度为________个单位长度,线段的长度为________个单位长度.(2)点是数轴上的一个动点,从点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为秒. 用含的代数式表示:点在数轴上表示的数为________线段的长为________个单位长度;(3)点,点都是数轴上的动点,点从点出发以每秒2个单位长度的速度沿数轴正方向运动,点从点出发以每秒个单位长度的速度沿数轴负方向运动.设点同时出发,运动时间为秒当点两点间的距离为13个单位长度时,求的值,并直接写出此时点在数轴上表示的数.10.(2020七上·蚌埠期末)如图,点在数轴上分别表示有理数,且满足.(1)点表示的数是,点表示的数是.(2)若动点从点出发以每秒3个单位长度向右运动,动点从点出发以每秒1个单位长度向点运动,到达点即停止运动两点同时出发,且点停止运动时,也随之停止运动,求经过多少秒时,第一次相距3个单位长度?(3)在(2)的条件下整个运动过程中,设运动时间为秒,若的中点为的中点为,当为何值时,?11.(2019七上·港南期中)如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1)________,________,________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.12.(2021七上·章丘期末)乐乐对几何中角平分线部分的学习兴趣浓厚,请你和乐乐一起探究下面问题吧.已知∠AOB=100°,射线OE、OF分别是∠AOC和∠COB的平分线.(1)如图1,若射线OC在∠AOB的内部,且∠AOC=30°,求∠EOF的度数;(2)如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数;(3)若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC,∠BOC,均指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,请直接写出∠EOF的度数.(不写探究过程)13.(2021七下·青羊开学考)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图①,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)当∠COD从图①所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.14.(2021七下·苏州开学考)如图1,已知点为直线上一点,将一个直角三角板的直角顶点放在点处,并使边、边始终在直线的上方,平分.(1)若,则________°;(2)若,求的度数(用含的代数式表示);(3)若在的内部有一条射线(如图2),满足,试确定与之间的数量关系,并说明理由.15.(2021七下·重庆开学考)如图1,射线OC,OD在的内部,且,,射线,分别平分,.(1)若,则________,________;(2)如图2,若将图1中在内部绕点О顺时针旋转.①旋转过程中的大小始终不变.求的值;②如图3,若旋转后OC恰好为的角平分线,请直接写出与的数量关系.16.(2021七上·成华期末)(1)如图1,∠AOC:∠COD:∠BOD=4:2:1,若∠AOB=140°,求∠BOC的度数;(2)如图2,∠AOC:∠COD:∠BOD=4:2:1,OP平分∠AOB,若∠AOB=β,求∠COP的度数(用含β的的代数式表示);(3)如图3,∠AOC=80°,∠BOD=20°,OE平分∠AOD,OF平分∠BOC,求∠EOF的度数.17.(2021七上·西岗期末)已知:,OB、OC、OM、ON是内的射线。
第四章基本平面图形知识梳理一、知识梳理:1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段,线段有两个端点,可以度量;射线:将线段向一个方向无限延长就形成了射线,射线有一个端点,不可度量;直线:将线段向两个方向无限延长就形成了直线,直线没有端点,不可度量.2.点、直线、射线和线段的表示:一个点可以用一个大写字母表示; A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示;一条射线一般用两个大写字母表示,用端点和射线上另一点来表示(端点字母写在前面);一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示.3.点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点;②点在直线外,或者说直线不经过这个点.4、直线的性质:①经过两个点有且只有一条直线(两点确定一条直线);②过一点的直线有无数条.5、线段的性质:①两点之间的所有连线中,线段最短(两点间线段最短).②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离.③线段的中点到两端点的距离相等。
(线段上点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点.6、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
7、角的分类:平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角;周角:一条射线绕着它的端点旋转一周,终边与始边重合时,所形成的角叫做周角.8、角的表示:①用一个大写英文字表示一个独立(在一个顶点处只有一个角)的角,如∠B等;②用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等(注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧);③用数字表示单独的角,如∠1,∠2,∠3等;④用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.9、角的度量:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示, 1度记作1°;把1°的角60等分,每一份叫做1分的角,1分记作1’;把1’的角60等分,每一份叫做1秒的角,1秒记作1”.换算: 1°=60’,1’=60”直角三角板(45°,45°,90°,30°,60°,90°)可画出15°,75°,105°,120°,135°,150°,165°等,都是15的倍数。
北师大版七年级上册数学 专题复习:基本平面图形
一、填空题
1、把一根木条钉牢在墙壁上需要__________个钉子,其理论依据是__________.
2、如图1,直线AB 也可以说成直线BA ,即用两个字母表示的直线与字母的_________无关.
图1
3、如图,点A 、B 、C 、D 在直线l 上.(1)AC= ﹣CD ;AB+ +CD=AD ; (2)共有 条线段,共有 条射线,以点C 为端点的射线是 .
4、画线段AB =1 cm ,延长线段AB 到C ,使BC =2 cm ,已知D 是BC 的中点,则线段AD =__________ cm.
5、如图2,∠1=∠2,则∠BAD =____ .
图2 图3
6、如图3,A 、B 、C 、D 、E 是直线l 上顺次五点,则
(1)BD =CD +______;(2)CE =______+______; (3)BE =BC +____+DE ;(4)BD =AD -______=BE -______.
7、为了比较线段AB 和线段CD 的大小,把线段CD 移到线段AB 上,使点C 与点A 重合.
(1)当点D 落在线段AB 上时,AB ____CD ; (2)当点D 与点B 重合时,AB ______CD ;
(3)当点D 落在线段AB 延长线上时,AB ____C D.
8、一个正多边形过一个顶点有5条对角线,则这个多边形的边数是_________. 9、n 边形过每一个顶点的对角线有 条. X k b 1 . c o m
10、 (12
1
)°=( ) ´=( )″; 48″=( ) ´=( ) °
11、上午10点30分,时针与分针成___________度。
12.、如图4,直线AB 、CD 相交于O ,∠COE 是直角,∠1=57°, 则∠2=____ .
图3
A
O 10 二、选择题
13、已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间距离是( )
A.3 cm
B.4 cm
C.5 cm
D.不能计算
14、已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出AD 的中点E ,再画出AE 的中点F ,那么AF 等于AB 的( )
A.41
B.83
C.81
D.16
3
15、如图5,下列说法,正确说法的个数是( )
图5
①直线AB 和直线BA 是同一条直线;②射线AB 与射线BA 是同一条射线;③线段AB 和线段BA 是同一条线段;④图中有两条射线.
A.0
B.1
C.2
D.3 16、下列语句中,正确的是( )
A.直线比射线长
B.射线比线段长
C.无数条直线不可能相交于一点
D.两条直线相交,只有一个交点 17、下列说法正确的是( )
A.延长直线AB
B.延长射线AB
C.延长线段AB 到点C
D.线AB 是一射线
18、如图6,∠AOB 为平角,且∠AOC =2
1
∠BOC ,则∠BOC 的度数是( )
A.100°
B.135°
C.120°
D.60° 19、如图7,军舰从港口沿OB 方向航行,它的方向是( )
A.东偏南30°
B.南偏东60°
C.南偏西30°
D.北偏东30° 20、关于直线,射线,线段的描述正确的是( )
A.直线最长,线段最短
B.射线是直线长度的一半
C.直线没有端点,射线有一个端点,线段有两个端点
D.直线、射线及线段的长度都不确定
21、一个人骑自行车前行时,两次拐弯后,仍按原方向前进,这两次拐弯的角度是( )
A.向右拐30°,再向右拐30°
B.向右拐30°,再向左拐30°
C.向右拐30°,再向左拐60°
D.向右拐30°,再向右拐60°
22、如图,射线OA 表示的方向是( ) A 、西南方向 B 、东南方向
C 、西偏南10°
D 、南偏西10°
三、解答题
23、已知线段a 、b ,求作线段AB=2a-b
24、如图8,M 是线段AC 的中点,N 是线段BC 的中点.(6分) (1)如果AC=8cm ,BC=6cm ,求MN 的长.(2)如果AM=5cm ,CN=2cm ,求线段AB 的长.
25、如图12,已知点C 为AB 上一点,AC =12cm, CB =3
2
AC ,D 、E 分别为AC 、AB 的中点求DE 的长。
(7分)
26、如图10,已知∠AOB=2
1
∠BOC, ∠COD=∠AOD=3∠AOB, 求∠AOB 和∠COD 的度数。
(6分)
a
b
图8
A
B
C
D
第23题图O
图
10 第20题图B
C E 图12
27、如图所示, 点O 是直线AB 上一点.∠AOC=300
,∠BOD=600
, OM 、ON 分别是∠AOC、∠BOD 的平分线, 求∠MON 的度数.
28、如图,点O ,A ,B 在同一直线上,OC 平分∠AOD ,OE 平分∠FOB ,∠COF =∠DOE =90°,求∠AOD .
29、.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点 (1) 若AM=1,BC=4,求MN 的长度。
(2)若AB=6,求MN 的长度。
30、如图1―4-5所示,AC 为一条直线,O 是AC 上一点,∠AOB =120° ,OE 、OF 分别平分∠AOB 和∠BOC .
(1)求∠EOF 的大小;
(2)当OB 绕O 旋转时,OE 、OF 仍为∠AOB 和∠BOC 平分线,问:OF 、OF 有怎样的位置关系?为什么?
题图
22D
C
F
E。