七年级(下册)数学第五章至第七章总结
- 格式:doc
- 大小:1.02 MB
- 文档页数:16
人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。
交点在三角形的内部。
(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
七年级下册的笔记由于你没有具体说明是七年级下册哪一科目的笔记,以下为人教版七年级下册数学的部分重点笔记:第五章相交线与平行线。
1. 相交线。
- 邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角。
如∠1和∠2,∠1 + ∠2 = 180°。
- 对顶角:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
对顶角相等。
- 垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 垂线段最短:直线外一点与直线上各点连接的所有线段中,垂线段最短。
2. 平行线及其判定。
- 平行线:在同一平面内,不相交的两条直线叫做平行线。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 判定方法:- 同位角相等,两直线平行。
- 内错角相等,两直线平行。
- 同旁内角互补,两直线平行。
3. 平行线的性质。
- 两直线平行,同位角相等。
- 两直线平行,内错角相等。
- 两直线平行,同旁内角互补。
第六章实数。
1. 平方根。
- 如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
即若x^2=a,则x=±√(a)(a≥0)。
- 正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 算术平方根。
- 正数a的正的平方根√(a)叫做a的算术平方根,0的算术平方根是0。
3. 立方根。
- 如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。
即若x^3=a,则x = sqrt[3]{a}。
- 正数的立方根是正数,负数的立方根是负数,0的立方根是0。
4. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2),π等。
- 实数:有理数和无理数统称实数。
实数与数轴上的点一一对应。
第七章平面直角坐标系。
1. 有序数对。
- 有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
七年级数学下册思维导图(超全)第一章:实数1. 实数的概念2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数3. 实数的运算加法减法乘法除法乘方开方第二章:代数式1. 代数式的概念2. 代数式的分类单项式多项式3. 代数式的运算减法乘法除法乘方第三章:方程与不等式1. 方程的概念2. 一元一次方程求解方法3. 不等式的概念4. 一元一次不等式求解方法第四章:函数1. 函数的概念2. 函数的表示方法解析式法图象法3. 一次函数定义图象性质4. 二次函数定义图象第五章:几何图形1. 点、线、面2. 线段3. 角锐角、直角、钝角、平角、周角4. 三角形定义分类性质5. 四边形定义分类性质6. 圆定义性质第六章:概率与统计1. 概率的概念2. 概率的计算方法3. 统计的概念4. 数据的收集与整理5. 数据的表示方法表格法6. 数据的分析方法七年级数学下册思维导图(超全)第一章:实数1. 实数的概念实数是包括有理数和无理数在内的所有数的集合。
2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数不能表示为两个整数比例的数,如根号2、π等。
3. 实数的运算加法将两个实数相加得到一个新的实数。
减法将一个实数减去另一个实数得到一个新的实数。
乘法将两个实数相乘得到一个新的实数。
除法将一个实数除以另一个非零实数得到一个新的实数。
乘方将一个实数乘以自身多次得到一个新的实数。
开方求一个实数的平方根或立方根等。
第二章:代数式1. 代数式的概念代数式是由数、字母和运算符号组成的表达式。
2. 代数式的分类单项式只有一个项的代数式。
多项式由多个项组成的代数式。
3. 代数式的运算加法将两个代数式相加得到一个新的代数式。
减法将一个代数式减去另一个代数式得到一个新的代数式。
乘法将两个代数式相乘得到一个新的代数式。
除法将一个代数式除以另一个非零代数式得到一个新的代数式。
乘方将一个代数式乘以自身多次得到一个新的代数式。
新版北师大版初中数学知识点汇总目录七年级上册知识点汇总ﻩ错误!未定义书签。
第一章丰富的图形世界错误!未定义书签。
第二章有理数及其运算ﻩ错误!未定义书签。
第三章字母表示数ﻩ错误!未定义书签。
第四章平面图形及位置关系ﻩ错误!未定义书签。
第五章一元一次方程ﻩ错误!未定义书签。
第六章生活中的数据错误!未定义书签。
七年级下册知识点总结ﻩ错误!未定义书签。
第一章整式的运算错误!未定义书签。
第二章平行线与相交线ﻩ错误!未定义书签。
第三章生活中的数据错误!未定义书签。
第四章概率ﻩ错误!未定义书签。
第五章三角形错误!未定义书签。
第六章变量之间的关系ﻩ错误!未定义书签。
第七章生活中的轴对称ﻩ错误!未定义书签。
八年级上册知识点汇总ﻩ错误!未定义书签。
第一章勾股定理错误!未定义书签。
第二章实数ﻩ错误!未定义书签。
第三章图形的平移与旋转错误!未定义书签。
第四章四平边形性质探索错误!未定义书签。
第五章位置的确定ﻩ错误!未定义书签。
第六章一次函数错误!未定义书签。
第七章二元一次方程组错误!未定义书签。
第八章数据的代表ﻩ错误!未定义书签。
八年级下册知识点汇总ﻩ错误!未定义书签。
第一章一元一次不等式和一元一次不等式组错误!未定义书签。
第二章分解因式错误!未定义书签。
第四章相似图形错误!未定义书签。
第五章数据的收集与处理ﻩ错误!未定义书签。
第六章证明(一)错误!未定义书签。
九年级上册知识点汇总ﻩ错误!未定义书签。
第一章证明(二)ﻩ错误!未定义书签。
第二章一元二次方程ﻩ错误!未定义书签。
第三章证明(三)错误!未定义书签。
第四章视图与投影错误!未定义书签。
第五章反比例函数错误!未定义书签。
第六章频率与概率ﻩ错误!未定义书签。
九年级下册知识点汇总错误!未定义书签。
第一章直角三角形边的关系错误!未定义书签。
第二章二次函数ﻩ错误!未定义书签。
第三章圆错误!未定义书签。
第四章统计与概率错误!未定义书签。
七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章丰富的图形世界¤1。
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
初中数学七年级下册知识点及公式总结大全(人教版)第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6像这样具有相同位置关系的一对角叫做同位角。
内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。
同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
初一下册数学知识点总结归纳第一章整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。
七年级数学下册知识点归纳第五章相交线与平行线相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
平行线及其判定(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)?2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
第五章.相交线与平行线5.1相交线5.1.1相交线有关概念邻补角:如果两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。
对顶角:如果一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。
对顶角的性质:对顶角相等.例题;已知:直线AB与CD相交于O点(如图),说明∠1=∠3、∠2=∠4的理由解:∵直线AB与CD相交于O点,∴∠1+∠2=180°、∠2+∠3=180°∴∠1=∠3同理可得:∠2=∠4如图,直线a、b相交,∠1=40°,求∠2、∠3、∠ 4的度数。
解:∵∠3=∠1(对顶角相等)∠1=40°(已知)∴∠3=40°(等量代换)∴∠2=180°—∠1=140°(邻补角的定义)∴∠4=∠2=140°(对顶角相等)填空1、一个角的对顶角有个,邻补角最多有个,而补角则可以有个。
2、右图中∠AOC的对顶角是,邻补角是 .3、如图,直线AB、CD相交于O,∠AOC=80°∠1=30°;求∠2的度数.解:∵∠DOB=∠,()=80°(已知)∴∠DOB= °(等量代换)又∵∠1=30°()∴∠2=∠ -∠ = - =填空如图1,直线AB、CD交EF于点G、H,∠2=∠3,∠1=70度。
求∠4的度数。
解:∵∠2=∠()∠1=70 °()∴∠2= (等量代换)又∵(已知)∴∠3= ()∴∠4=180°—∠ = (的定义)解答题直线AB、CD交于点O,OE是∠AOD的平分线,已知∠AOC=50°。
求∠DOE的度数。
解:∵∠AOC=50°(已知)∴∠AOD=180°—∠AOC=180°—50°=130°(邻补角的定义)∵OE平分∠AOD(已知)∴∠DOE=1/2∠AOD=130°÷2=65°(角平分线的定义)5.1.2垂线有关概念1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。
从垂直的定义可知,判断两条直线互相垂直的关键:只要找到两条直线相交时四个交角中一个角是直角。
2.垂直的表示:1)图形:2)文字:a、b互相垂直, 垂足为O3)符号:a⊥b或b⊥a,若要强调垂足,则记为:a⊥b, 垂足为O3.垂直的书写形式:如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。
书写形式:①判定:∵∠AOD=90°(已知)∴AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。
书写形式:②性质:∵ AB⊥CD (已知)∴∠AOD=90°(垂直的定义)(∠AOC=∠BOC=∠BOD=90°)4.垂线的性质(1)过一点有且只有一条直线与已知直线垂直.垂线的性质(2)连接直线外一点与直线上各点的所有线段中,垂线段最短或说成垂线段最短直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
例1 如图,直线AB、CD相交于点O,OE⊥AB,∠1=55°,求∠EOD的度数.解:∵ AB⊥OE (已知)∴∠EOB=90°(垂直的定义)∵∠BOD= ∠1=55°(对顶角相等)∴∠ EOD= ∠ EOB+ ∠ BOD=90 °+55 °=145 °5.1.3同位角、错角、同旁角同位角:①在直线EF的同侧②在直线AB、CD的同方向错角:①在直线AB、CD的侧②在直线EF的两侧同旁角:①在直线AB、CD的侧②在直线EF的同侧例:如图直线DE、BC被直线AB所截,(1)∠1和∠2、∠1和∠3、∠1和∠4各是什么角?(2)如果∠1=∠4,哪么∠1和∠2相等吗?∠1和∠3互补吗?为什么?答:(1)∠1和∠2是错角;∠1和∠3是同旁角;∠1和∠4是同位角。
(2)∵∠1=∠4(已知)∠4=∠2(对顶角相等)∴∠1=∠2.∵∠4+∠3=180°(邻补角定义)∠1=∠4(已知)∴∠1+∠3=180°即∠1和∠3互补.例:(1)如果把图看成是直线AB,EF被直线CD所截,那么∠1与∠2是一对什么角?∠3与∠4呢?∠2与∠4呢?∠1与∠2是一对同位角,∠3与∠4是一对错角,∠2与∠4是一对同旁角.(2)如果把图看成是直线CD,EF被直线AB所截,那么∠1与∠5是一对什么角?∠4与∠5呢?∠1与∠5是一对同旁角, ∠4与∠5是一对错角.(3) 哪两条直线被哪一条直线所截, ∠ 2与∠ 5是同位角直线AB,CD被直线EF所截看图填空:(1)若ED,BF被AB所截,则∠ 1与∠2是同位角;(2)若ED,BC被AF所截,则∠3与∠4是错角;(3)∠1与∠3是AB和AF被ED所截构成的错角;(4)∠2 与∠4是 AB和 AF 被BC所截构成的同位角。
如图,∠ AED与哪个角是同位角?∠ EDC与哪个角是错角?∠ DEC与哪个角是同旁角?答:∠ AED与∠ ACB、∠ AED与∠ ACD是同位角;∠ EDC与∠DCB,∠ EDC与∠FED,∠ EDC与∠AED是错角;∠ DEC与∠ ECB,∠ DEC与∠ ECD ∠ DEC与∠EDB,∠ DEC与∠EDC是同旁角。
从图中所示的9个角中,找出所有的同位角,错角,同旁角。
答:(1)当直线AB、BC被DE所截同位角:∠1和∠5,∠ 2和∠ 6,∠ 3和∠ 7,∠ 4和∠ 8 。
错角:∠2和∠ 8,∠3和∠ 5。
同旁角:∠ 2和∠5,∠3和∠8。
(2)当直线AB、DE被BC所截同位角:∠5和∠9错角:∠7和∠ 9同旁角:∠8和∠9(3)当直线BC、DE被AB所截同位角:∠ 2和∠ 9错角:∠ 4和∠9同旁角:∠ 3和∠ 95.2平行线及其判定5.2.1平行线有关概念1.平行线的定义:在同一平面不相交的两条直线叫做平行线。
2.平行线的表示:我们通常用符号“//”表示平行。
同一平面的两条不重合的直线的位置关系只有两种:相交或平行3.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行如果a//c,b//c;那么a//b如果两条直线都垂直于第三条直线,那么这两条直线互相平行.如果a⊥c, a⊥b;那么b//c5.2.2平行线的判定有关概念一般地,判定两直线平行有以下的方法:1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单地说,同位角相等,两直线平行.2.两条直线被第三条直线所截,如果错角相等,那么这两条直线平行.简单说成:错角相等,两直线平行.3.两条直线被第三条直线所截,如果同旁角互补,那么这两条直线平行.简单说成:同旁角互补,两直线平行.例题如图,量得∠1=80°,∠2=100°,可以判定AB∥CD,根据是什么?解:∵∠1=80°,∠2=100° (已知)∴∠1+ ∠2=180°∴ AB∥CD(同旁角互补,两直线平行)1.如图,若∠1=∠2 = ∠31) ∵∠1=∠2,∴ AD ∥ BC . (同位角相等,两直线平行)2) ∵∠3=∠2,∴ AB ∥ CD .(错角相等,两直线平行)3) ∵∠_1__+∠__4__=_180_°__,∴ AB ∥ CD .( 同旁角互补,两直线平行)如图,已知∠A与∠D互补,可以判定哪两条直线平行?∠B与哪个角互补,可以判定直线AD∥BC?解:1) ∵∠A与∠D互补(已知)∴AB∥DC(同旁角互补,两直线平行)2) ∠B与∠A互补时可判定AD∥BC(同旁角互补,两直线平行)5.3 平行线的性质5.3.1 平行线的性质1.平行线的性质1两条平行线被第三条直线所截,同位角相等.简写为:两直线平行,同位角相等.2.平行线的性质2两条平行线被第三条直线所截,错角相等.简写为:两直线平行,错角相等.3.平行线的性质3两条平行线被第三条直线所截,同旁角互补.简写为:两直线平行,同旁角互补.如图,在汶川震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?解:∵AB∥CD (已知),∴∠B=∠C(两直线平行,错角相等).又∵∠B=142°(已知),∴∠B=∠C=142°(等量代换).5.3.2命题、定理判断一件事情的语句叫做命题。
注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
命题是由题设(或条件)和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
两直线平行,同位角相等。
题设(条件)结论命题一般都写成“如果…,那么…”的形式。
“如果”后接的部分是题设,“那么”后接的部分是结论。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。
正确的命题叫真命题,错误的命题叫假命题。
真命题的正确性是经过推理证实的,这样的真命题叫做定理。
5.4平移1、把一个图形整体沿某一个方向移动,会得到一个新的图形.新图形与原图形的形状和大小完全相同。
2、新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点就是对应点。
连接各组对应点的线段平行且相等。
3、图形的这种移动,叫做平移变换,简称平移。
形状不变,大小不变,位置改变 .第六章平面直角坐标系1. 平面直角坐标系的意义: 在平面有公共原点且互相垂直的两条数轴组成平面直角坐标系。
水平的数轴为X轴,铅直的数轴为y轴,它们的公共原点O为直角坐标系的原点。
2. 象限: 两坐标轴把平面分成四个象限,坐标轴上的点不属于任何一个象限。
3.可用有序数对(x ,y)表示平面任一点P的坐标。
x表示横坐标,y表示纵坐标。
4.各象限点的坐标符号特点: 第一象限(+ ,+),第二象限(- ,+)第三象限(- ,-)第四象限(+ ,-)。
5.坐标轴上点的坐标特点: 横轴上的点纵坐标为零,纵轴上的点横坐标为零。
6.利用平面直角坐标系绘制某一区域的各点分布情况的平面图包括以下过程:(1)建立适当的坐标系,即选择适当的点作为原点,确定x轴、y轴的正方向; (注重寻找最佳位置)(2)根据具体问题确定恰当的比例尺,在数轴上标出单位长度;(3)在坐标平面上画出各点,写出坐标名称。