钢结构第五章_轴心受力构件详解
- 格式:ppt
- 大小:3.25 MB
- 文档页数:69
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
第四章轴心受力构件一、轴心受力构件的特点和截面形式轴心受力构件包括轴心受压杆和轴心受拉杆。
轴心受力构件广泛应用于各种钢结构之中,如网架与桁架的杆件、钢塔的主体结构构件、双跨轻钢厂房的铰接中柱、带支撑体系的钢平台柱等等。
实际上,纯粹的轴心受力构件是很少的,大部分轴心受力构件在不同程度上也受偏心力的作用,如网架弦杆受自重作用、塔架杆件受局部风力作用等。
但只要这些偏心力作用非常小(一般认为偏心力作用产生的应力仅占总体应力的3%以下。
)就可以将其作为轴心受力构件。
轴心受力的构件可采用图中的各种形式。
其中a)类为单个型钢实腹型截面,一般用于受力较小的杆件。
其中圆钢回转半径最小,多用作拉杆,作压杆时用于格构式压杆的弦杆。
钢管的回转半径较大、对称性好、材料利用率高,拉、压均可。
大口径钢管一般用作压杆。
型钢的回转半径存在各向异性,作压杆时有强轴和弱轴之分,材料利用率不高,但连接较为方便,单价低。
b) 类为多型钢实腹型截面,改善了单型钢截面的稳定各向异性特征,受力较好,连接也较方便。
c) 类为格构式截面,其回转半径大且各向均匀,用于较长、受力较大的轴心受力构件,特别是压杆。
但其制作复杂,辅助材料用量多。
二、轴心受拉杆件轴心受拉杆件应满足强度和刚度要求。
并从经济出发,选择适当的截面形式,处理好构造与连接。
1、强度计算轴心拉杆的强度计算公式为:(6-1)式中:N——轴心拉力;A n——拉杆的净截面面积;f ——钢材抗拉强度设计值。
当轴心拉杆与其它构件采用螺栓或高强螺栓连接时,连接处的净截面强度计算如连接这一章所述。
公式(6-1)适用于截面上应力均匀分布的拉杆。
当拉杆的截面有局部削弱时,截面上的应力分布就不均匀,在孔边或削弱处边缘就会出现应力集中。
但当应力集中部分进入塑性后,内部的应力重分布会使最终拉应力分布趋于均匀。
因而须保证两点:(1)选用的钢材要达到规定的塑性(延伸率)。
(2)截面开孔和消弱应有圆滑和缓的过渡,改变截面、厚度时坡度不得大于1:4。
钢结构轴心受力构件在钢结构的世界里,轴心受力构件是其中一类至关重要的组成部分。
它们在建筑结构、桥梁工程以及各类工业设施中都扮演着不可或缺的角色。
那么,什么是钢结构轴心受力构件呢?简单来说,就是在承受外力作用时,构件的截面形心与外力的作用线重合,从而使构件沿着其轴线方向承受拉力或压力的钢结构部件。
钢结构轴心受力构件主要包括轴心受拉构件和轴心受压构件两种类型。
先来说说轴心受拉构件。
这类构件在实际应用中非常常见,比如钢结构中的吊车梁、屋架中的下弦杆等。
当构件受到拉力作用时,其内部的应力分布相对均匀,主要承受拉应力。
在设计轴心受拉构件时,我们需要重点考虑的是材料的抗拉强度。
因为一旦拉力超过了材料的抗拉极限,构件就会发生破坏。
为了保证轴心受拉构件的可靠性和安全性,我们在选材上要格外谨慎。
一般会选择高强度的钢材,以充分发挥其抗拉性能。
同时,在连接节点的设计上也不能马虎,要确保连接牢固,避免出现松动或断裂的情况。
接下来谈谈轴心受压构件。
轴心受压构件在钢结构中也有着广泛的应用,例如柱子、桁架中的受压弦杆等。
与轴心受拉构件不同,轴心受压构件的受力情况要复杂得多。
当受到压力作用时,构件可能会发生整体失稳或者局部失稳的现象。
整体失稳是指整个构件突然发生弯曲变形,失去承载能力。
而局部失稳则是指构件的某个局部区域出现了屈曲现象。
为了防止这些失稳情况的发生,我们在设计轴心受压构件时,需要考虑很多因素。
首先,要合理选择构件的截面形状和尺寸。
常见的截面形状有圆形、方形、矩形等。
对于较大的压力,通常会选择回转半径较大的截面形状,以提高构件的稳定性。
其次,要控制构件的长细比。
长细比是指构件的计算长度与截面回转半径的比值。
长细比越大,构件越容易失稳。
因此,在设计时要通过合理的布置和支撑,减小构件的计算长度,从而降低长细比。
此外,还需要考虑材料的抗压强度和屈服强度。
在实际工程中,为了提高轴心受压构件的稳定性,常常会采用一些加强措施,比如设置纵向加劲肋、横向加劲肋等。