2012年北京工业大学数学建模初赛试题
- 格式:doc
- 大小:848.00 KB
- 文档页数:4
Lingo软件的应用颜宁生(北京服装学院)本人有一个“杜撰”课程对联的爱好,有一位同学在参加我的数学建模培训班后,给我写了一幅对联,表达了他对练好Lingo软件的决心。
上联:有心栽花花可以不开下联:无心插柳柳必须成荫横批:感悟拎购时间:2012,7,21地点:华南理工大学内容一、数学建模案例二、适合学生学习Lingo软件的两类入门题三、练会Lingo后的同学能帮老师做什么四、一份《数学建模》试卷模板一、数学建模案例上联:数学建模融入到现实生活当中下联:拎购软件嵌入到衣可晒单元格横批:嵌入技术嵌入技术过滤器的作用,把有用的信息过滤出来,从而求解的界面更生动和友好。
1.1、2012年北京工业大学数学建模C题1.1.1、假设为了简化模型的求解,假设每辆货车进入生产线后,其糖份就不再流失。
1.1.2、数学模型首先,将剩余时间分成4个时间段,设x(i,j)为0‐1变量,若第j辆货车在第i个时间段进入生产线,则x(i,j)=1,否则取0,(i=1,2,3,4;j=1,2,……,11),设a ij表示第j辆货车在第i个时间段进入生产线时能够加工出的蔗糖的百分比。
根据表C.1,得到a ij 值如下:aijj1234567891011i 111111111111 20.32490.547600.51840.75690.21160.14440.26010.65610.51840.49 30.10560.299900.268700.04480.02090.06770.43050.26870.2401 40.01110.089900.072200.0020.00040.00460.18530.07220.0576i=j=111max =a i j x i j st: x i j 3,1,2,3,4x i j (1,2,3,4;1,2, (11)j i i j =≤===∑∑∑41111(,)(,)(,)(,)=0或11.1.3、数学模型求解的Lingo 程序1.1.3.1、获取数据的Lingo 程序sets:h/1..2/;l/1..11/;hl(h,l):bg7;endsets data:bg7=@ole('C 题.xls','_bg7');@ole('C 题.xls','_g7')=bg7;enddata1.1.3.2、自动求解的Lingo 程序sets:h/1..4/;l/1..11/;hl(h,l):a,x;minimum/1/:h22;endsets data:a =@ole('C 题.xls','_g11');@ole('C 题.xls','_g17')=x;@ole('C 题.xls','h22')=h22;enddatamax=@sum(hl:a*x);@for(h(i):@sum(l(j):x(i,j))<=3);@for(l(j):@sum(h(i):x(i,j))=1);h22(1)=@sum(hl:a*x);@for(hl:@bin(x));End1.1.3.3、自动判解的Lingo 程序sets:h/1..4/;l/1..11/;hl(h,l):a,x;minimum/1/:y10;endsets data:a =@ole('C 题.xls','_g11');x=@ole('C题.xls','_g17');h22=@ole('C题.xls','h22');@ole('C题.xls','y10')=y10;enddatay10(1)=@if(@abs(h22-@sum(hl:a*x))#lt#0.01,100,0);end1.1.3.4、随机方案求甘蔗糖产量的Lingo程序sets:h/1..4/;l/1..11/;hl(h,l):a,x;minimum/1/:h23;endsetsdata:a=@ole('C题.xls','_g11');x=@ole('C题.xls','_g17');@ole('C题.xls','h23')=h23;enddatah23(1)=@sum(hl:a*x);end1.1.4、结果最优方案为:j1234567891011i 100100110000 200001000011 301010000100 410000001000即:第3辆、第6辆和第7辆第1批进入生产线;第5辆、第10辆和第11辆第2批进入生产线;第2辆、第4辆和第9辆第9批进入生产线;第1辆和第8辆第4批进入生产线;最优值为5.78009124,即能将11车甘蔗加工出5.78车甘蔗糖。
2012年高教杯数学建模竞赛A题文章包括以下内容:一、引言1. 对数学建模竞赛的介绍2. 2012年高教杯数学建模竞赛的背景3. A题的重要性和难度二、问题描述1. A题的具体内容和要求2. 问题背景和实际应用三、问题分析1. 对A题中涉及的数学知识和模型进行分析a. 需要运用的数学工具和方法b. 相关参数和变量的定义和意义c. 问题中存在的约束条件和假设2. 对A题中涉及的实际问题进行分析a. 现实场景的相关情况和特点b. 问题的实际意义和应用价值c. 对问题的可行性和局限性进行分析四、问题求解1. 根据问题分析确定相应的数学模型a. 求解问题所需建立的数学模型b. 模型的简化和推导过程2. 运用已知的数学方法和工具解决问题a. 使用数学软件进行模拟和计算b. 运用数学定理和理论进行证明和推演五、结果分析1. 求解结果的展示和分析2. 结果的合理性和可靠性分析3. 结果对实际问题的指导意义和应用价值六、总结与展望1. 对A题求解过程的总结和反思2. 对实际问题的展望和未来研究方向3. 对数学建模竞赛的意义和作用进行总结稿件要求:1. 语言流畅、准确,表达清晰、精炼,逻辑性强2. 论据充分,论证严谨,具有说服力3. 不得抄袭,不得侵犯他人著作权4. 投递稿件时请注明真实尊称和通信方式,以便我们及时与您取得联系注:以上为文章大纲及要求,具体内容请根据实际情况进行撰写。
2012年高教杯数学建模竞赛A题是一个具有挑战性和复杂性的问题,需要参赛者结合数学理论和实际问题进行分析和求解。
在本文中,我们将对A题进行深入的探讨,从问题描述到问题分析再到问题求解,最终得出结果分析和总结展望,全面展示对A题的理解和解决方案。
让我们来看A题的具体内容和要求。
A题涉及一个复杂的实际问题,需要参赛者运用数学工具和方法对其进行建模和求解。
这个问题背景和实际应用是一个现实场景中的情况,问题的实际意义和应用价值是非常明显的。
A题的重要性和难度也就显而易见了。
太阳能设计的小屋方案摘要太阳能电池板方阵安装角度怎样计算由于太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。
1.方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。
一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。
不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。
因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。
为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。
如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。
至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。
方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。
在不同的季节,各个方位的日射量峰值产生时刻是不一样的。
2.倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。
一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。
但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报名号的话):J3707所属学校(请填写完整的全名):西京学院参赛队员(打印并签名) :1. 李亚强2. 王震3. 王建强指导教师或指导教师组负责人(打印并签名):孙卫日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本论文依据葡萄酒品尝评分表,采用t 检验法对葡萄酒品尝评分结果完成了显著性差异检验;应用多元统计中的主成分分析法、聚类分析法对酿酒葡萄进行了分级;并运用多元线性回归模型分析了酿造葡萄酒与葡萄酒理化指标间的联系。
对于问题1:要判断两组评酒员的评价结果有无显著性差异,本文分别求解得出两组评酒员对各个酒样品的综合评价结果(1)j P 和(2)j P ,这里取显著性水平为0.01α=,在Excel 环境下采用t 检验法对(1)j P 和(2)j P 进行显著性检验,进而判断出两组评酒员的评价结果无显著性差异。
判断哪一组评酒员的评判结果更为可信取决于两组评判数据的波动大小,经过检验得出第二组评酒员的评判结果更为可信。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): a我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文利用SPSS和MATLAB软件对葡萄酒评价问题进行了分析,综合采用了t检验、主成分分析、聚类分析和灰色关联度分析等方法,建立了数学模型,并设计了一套对葡萄酒质量的评价体系。
关于问题一:首先,对两组评酒员对同一种葡萄酒给出的评分结果进行处理;其次,采用t检验判断出两组评分结果存在显著性差异;最后,利用每一组评酒员对同一种葡萄酒的评分方差作为衡量依据,建立评分机制,评估两个小组所给结果的可信性,经分析第一组、第二组得分分别为13分、42分。
因此,第二组评酒员的评分结果更可信。
关于问题二:首先,对酿酒葡萄的理化指标进行主成分分析,挖掘出若干个影响酿酒葡萄理化指标的主要成分;其次,根据第一问的结果,将第二组评酒员的评分作为衡量葡萄酒质量的量化指标;最后,通过聚类分析将酿酒葡萄分为4个等级。
2012数学建模国赛b题题目2012数学建模国赛B题题目解析摘要:本文是对2012年数学建模国赛B题的题目进行解析和讨论。
在本文中,我们将首先对题目进行解读,并确定所需解决的问题。
然后,我们将提供一个完整的解答方案,并进行详细的推导和分析。
最后,我们将总结解答的结果,并讨论可能的改进方向。
1. 题目解读2012年数学建模国赛B题涉及的主要内容是某高铁动车组列车的排队和调度问题。
根据题目提供的信息,我们需要解决以下几个问题:a) 列车的排队问题:给出不同车型列车的到达时间、停靠时间和出发时间,要求进行合理的排队,使得列车能够按时准确发出。
b) 列车的调度问题:对于不同的乘客流量需求,确定合适的车次数量以及发车间隔时间,以满足乘客的需求。
c) 最优调度方案:在满足列车发车要求和乘客需求的前提下,寻找最优的调度方案,使得列车的利用率最大化。
2. 解答方案a) 列车的排队问题:首先,我们需要根据到达时间、停靠时间和出发时间的要求,建立一个列车排队模型。
可以使用图论的方法,以列车作为节点,根据到达时间和出发时间的先后顺序建立有向边。
然后,通过拓扑排序算法,确定列车的排队顺序。
b) 列车的调度问题:对于不同的乘客流量需求,我们可以利用运筹学中的线性规划方法进行求解。
假设乘客流量的函数关系为f(t),其中t是时间变量。
我们可以建立一个约束条件,以保证乘客流量在规定时间范围内达到预期值。
c) 最优调度方案:在确定了列车的排队和调度方案之后,我们可以使用优化算法(如遗传算法或模拟退火算法)对调度方案进行优化。
通过调整车次数量和发车间隔时间,我们可以使得列车的利用率最大化。
3. 结果分析根据对题目所给信息和解答方案的分析,我们可以得出以下结论:a) 对于列车的排队问题,通过建立有向边和拓扑排序算法,我们可以得到一个合理的列车排队顺序。
b) 列车的调度问题可以通过线性规划方法进行求解,以满足乘客流量需求。
c) 使用优化算法对调度方案进行优化,可以最大化列车的利用率。
2012年北京工业大学“太和顾问杯”数学建模竞赛初赛
A 题:GPS 定位问题
GPS 是英文 Global Positioning System 的缩写,即全球定位系统。
GPS 的空间部分是由24颗卫星组成(21颗工作卫星,3颗备用卫星),它位于距地表20200公里的上空均匀分布在6个轨道面上(每个轨道面4颗),轨道倾角为55°。
卫星的分布使得在全球任何地方、任何时间都可观测到4颗以上的卫星。
图A.1给出GPS 卫星的示意图。
图A.1:GPS 卫星的图片 图A.2:车载型GPS 信号接收机 GPS 的用户设备部分是GPS 信号接收机,它的作用是接收GPS 卫星所发出的信号,利用这些信号进行导航定位等工作,图A.2为一款GPS 信号接收机。
GPS 信号接收机能收到GPS 卫星发来的信息,信息由GPS 卫星所在的空间位置和GPS 信号到达地面接收机的时间组成。
卫星所在的空间位置由卫星的轨道参数确定,为简化问题,这里假定它是准确值。
GPS 信号到达接收机的时间是由卫星上的时钟(铯原子钟)和地面接收机上的时钟(低成本钟)决定,所以有误差。
由GPS 卫星上的原子钟与地面GPS 标准时间之
间的误差称为钟差,钟差是未知的。
设()i i i C B A ,,为第i 颗卫星在地心空间直角坐标系上的坐标,i t 为GPS 信号到达接收机的时间。
所谓地心空间直角坐标系就是将坐标系的原点O 与地球质心重合,Z 轴指向地球北极,X 轴指向经度原点E ,Y 轴垂直于XOZ 平面构
成右手坐标系,如图A.3所示。
图A.3:地心空间直角坐标系
表A.1给出了4颗卫星在空间中的位置,表A.2给出这4颗卫星的GPS信号到达四个地点处GPS接收机的时间。
表A.1:卫星在地心直角坐标系中的位置(单位:公里)
你所要完成的问题如下:
1. 建立相应的数学模型,确定出上述四个地点的经度与纬度,并地图标明它们所在的位置。
2. 在通常的情况下,地面的GPS接收机能收到5—8颗卫星的信号,对于多于4颗卫星的情况,你将如何修改你的数学模型,使得定位更准确?表A.3给出第5颗卫星的位置,表A.4给出5颗卫星的GPS信号到地点5的时间。
请用你提出的方法计算出地点5的位置(经度、纬度,并在地图上标出)。
表A.3:第5颗卫星在地心直角坐标系中的位置(单位:公里)
注:地球半径近似为R = 6371 公里;光速为c = 299 792.458 公里/ 秒。
B题:乒乓球团体赛上场队员排序问题
乒乓球团体赛的比赛规则如下:从一个队中挑选出的三名比赛队员和一个队长(可由参赛队员兼任,亦可由其他人员专任)组成。
比赛之前,双方队长应抽签决定A、B、C和X、Y、Z的选择,并向裁判提交每个运动员分配到一个字母的队伍名单。
现行的比赛顺序:第一场A—X,第二场B—Y,第三场C—Z,第四场A—Y,第五场B—X。
每场比赛为三局两胜制。
当一个队已经赢得三场个人比赛时,该次比赛应结束。
现有甲队挑选出的三名比赛队员分别是:A1、A2、A3,乙队挑选出的三名比赛队员分别是:B1、B2、B3,根据以往的历史资料,甲队与乙队比赛,甲队运动员在每一局中获胜的概率如表B.1所示。
表B.1:两队比赛,甲队运动员在每一局中获胜的概率
你所要完成的问题如下:
1. 甲队教练将如何安排上场运动员的次序,使得本队获胜的概率最大。
建立相应的数学模型,并说明你的理由。
2. 如果每一局比赛,A1胜B3的概率改为0.45,A3胜B1的概率改为0.55。
在这种情况下,甲队教练将如何调整甲队队员的上场次序?
C题:蔗糖生产问题
甘蔗在砍下之后将需要马上用货车运送到蔗糖厂,生产的蔗糖量取决于甘蔗收购的地点以及甘蔗成熟的程度。
在收割之后,甘蔗中的含糖量将由于发酵而迅速下降,在一段时间之后,所含糖份将完全流失。
现在有11 辆货车到达了蔗糖厂,每辆货车运载的甘蔗量都相同。
已经对每辆货车每小时的损失量以及剩余时间进行了测算,具体数据如表C.1所示。
表C.1:每车甘蔗的属性
在制糖厂内有三条生产线,每辆货车都可以选择任意一条生产线上进行加工。
一车甘蔗的加工时间为两个小时,必须在这车甘蔗的质量寿命结束之前完成加工。
请你帮助糖厂经理制订这批甘蔗的生产计划,使总的蔗糖损失降到最低。
建立相应的数学模型,说明你的理由。