粘弹性和滞弹性
- 格式:ppt
- 大小:83.00 KB
- 文档页数:17
名词解释1.应变:用来描述物体内部各质点之间的相对位移。
2.弹性模量:表征材料抵抗变形的能力。
3.剪切应变:物体内部一体积元上的二个面元之间的夹角变化。
4.滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动,就叫滑移.5.屈服应力:当外力超过物理弹性极限,达到某一点后,在外力几乎不增加的情况下,变形骤然加快,此点为屈服点,达到屈服点的应力叫屈服应力。
6.塑性:使固体产生变形的力,在超过该固体的屈服应力后,出现能使该固体长期保持其变形后的形状或尺寸,即非可逆性。
7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。
8.粘弹性:一些非晶体和多晶体在比较小的应力时,可以同时变现出弹性和粘性,称为粘弹性.9.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。
10.弛豫:施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。
11.蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。
12.应力场强度因子:反映裂纹尖端弹性应力场强弱的物理量称为应力强度因子。
它和裂纹尺寸、构件几何特征以及载荷有关。
13.断裂韧性:反映材料抗断性能的参数。
14.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。
15.亚临界裂纹扩展:在低于材料断裂韧性的外加应力场强度作用下所发生的裂纹缓慢扩展称为亚临界裂纹扩展。
16.裂纹偏转增韧:在扩展裂纹剪短应力场中的增强体会导致裂纹发生偏转,从而干扰应力场,导致机体的应力强度降低,起到阻碍裂纹扩展的作用。
17.弥散增韧:在基体中渗入具有一定颗粒尺寸的微细粉料达到增韧的效果,称为弥散增韧。
18.相变增韧:利用多晶多相陶瓷中某些相成份在不同温度的相变,从而达到增韧的效果,称为相变增韧。
19.热容:分子热运动的能量随着温度而变化的一个物理量,定义为物体温度升高1K所需要的能量。
20.比热容:将1g质量的物体温度升高1K所需要增加的热量,简称比热。
粘弹性名词解释粘弹性就是物体受力产生形变后,恢复原状的难易程度。
即有“滞后”特点的“弹性”,在受外力作用下发生变形(受力),产生新应力(形变)时会“滞后”一段时间。
反映这种滞后性的量称为粘弹性系数。
弹性表征一个物体或系统抵抗变形的能力。
在粘弹性力学中,将其定义为当外界作用力去掉时,材料可以回复到原始状态的能力,即:n(牛顿) =弹性极限以上解释说明了实验中所得到的粘弹性系数都是与几何因素相关的,属于材料力学范畴。
下面介绍一下当受到粘性或弹性应力的作用时,材料内部会引起应变,外部引起应力。
内外应力的差别叫做应变,在弹性力学中,应变是衡量材料力学性能的重要指标之一。
在材料力学中,应变计算方法分为应变硬化法和粘弹性法两种。
本论文以粘弹性、复变函数和数学建模为主线,首先讨论了粘弹性中关于应变集中的问题;然后引入复变函数来研究应力分布情况,根据具体问题来选择相应的函数类型和应用;最后利用数学建模方法分析并解决了涉及物理规律的计算问题。
我们认为,目前的物理现象多采用数学模型进行描述。
将这些数学模型的解析解输入计算机后,由于计算机的存储容量有限,常常不能完全求解出该物理现象的精确解。
因此,使用数值方法来求解物理问题比较经济、方便,从而推动了物理现象数值模拟的发展。
对于弹性、粘性与流体运动之间的关系,将其简单归纳为:将粘性大小作为系数,根据流体速度的变化而自动调节变形,并依此获得良好的物理效果;而流体速度增大时,必须增大变形才能维持流体的运动。
从本质上讲,我们是希望粘弹性系数的大小跟随着流体的速度大小而改变,这样粘弹性系数也会跟随着流体速度的变化而发生变化,从而可以获得更好的物理效果。
而且在研究各种物理现象时,能够预测系数变化的情况,是非常有意义的。
总而言之,粘弹性理论体系已经初步形成,基本满足了人们对粘弹性的需求,但尚存在着许多不足之处,还有待进一步探讨。
我国科技工作者将继续对粘弹性体系进行深入地探讨,为未来的研究提供更加充实的理论基础,争取在不远的将来取得更大的进展。
物体的粘弹性名词解释物体的粘弹性是指物体在受力后能够具有一定的变形,并且在去除外力后能够恢复到原有形状和大小的性质。
这种性质常见于许多材料和物质,如橡胶、黏土、塑料等。
粘弹性的具体表现包括两个方面:粘性和弹性。
粘性是指物体在受力下会出现持续性的变形和流动现象。
当外力作用于物体时,物体各部分间的分子或原子发生相对位移,导致物体的形态发生改变。
在外力去除后,物体会经过一段时间才能恢复到原始状态。
这是因为物体内部的分子或原子需要一定的时间来重新排列和重新组合,以恢复原有的结构。
橡胶是一个常见的具有粘性的材料,当我们拉伸一块橡胶时,它会发生可见的变形,并且橡胶大小变大,拉伸结束后,橡胶会慢慢恢复到原始长度和形状。
而弹性是指物体在受力下发生变形后能够迅速恢复到原有形状和大小的性质。
当外力作用于物体时,物体内部的原子或分子会发生相对位移,导致物体发生形变。
然而,一旦外力去除,物体会立即恢复到原有的形状和大小,这是因为物体内部的分子或原子能够自行重新排列和重新组合,以恢复原有的结构。
弹簧是一个典型的具有弹性的物体,当我们把弹簧压缩或拉伸时,它会发生可见的变形,但一旦释放压力,弹簧会立即恢复到原始状态。
粘弹性是指物体同时具有粘性和弹性的性质。
粘弹性物体在受力后既会发生形变,又会恢复到原有形状和大小。
这种性质可以通过应力松弛实验来进行观察和研究。
在应力松弛实验中,物体在受到外力后,会出现初始的形变,然后随着时间的流逝逐渐恢复到较小的变形。
这是因为物体内部的分子或原子在受力后会发生位移,导致物体产生粘性的流动,但随着时间的推移,分子或原子会重新排列和重新组合,恢复到原始结构,这个过程称为应力松弛。
粘弹性在工程和科学领域具有广泛的应用。
在材料工程中,理解和掌握材料的粘弹性能够帮助工程师设计和生产具有特定性能的材料。
在机械制造领域,合理利用物体的粘弹性能够改善产品的寿命和耐久性。
在生物医学领域,理解生物组织的粘弹性能够为疾病的诊断和治疗提供有力的支持。
1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时 ,由于晶粒发生滑移 , 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ (屈服强度);(3)ζ b(抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有 5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
粘弹性材料的力学性能研究粘弹性材料是一类具有特殊力学性能的材料,在各个领域都有广泛的应用。
本文将探讨粘弹性材料的力学性能研究,包括其定义、测试方法以及应用领域。
一、粘弹性材料的定义粘弹性材料是指既具有粘性(Viscosity)又具有弹性(Elasticity)的材料。
它们在受到外力作用时,既可以发生形变,又能恢复到原始状态。
粘弹性材料的力学行为常常被描述为粘滞弹性现象。
二、粘弹性材料力学性能的测试方法1. 粘滞性测试:粘滞性是指材料抵抗形变的能力,常用的测试方法包括剪切黏度测试、拉伸黏度测试等。
2. 弹性性测试:弹性是指材料在受力后能够恢复到原始状态的能力。
弹性性测试可以通过应力-应变曲线、弹性模量等进行。
3. 剪切模量测试:剪切模量是指材料在剪切载荷下承受的应力和应变之间的比值。
剪切模量的测试可以通过剪切试验获得。
4. 蠕变测试:蠕变是指材料在持续应力作用下发生的时间依赖性形变。
蠕变测试可以通过施加恒定应力后观察材料的变形情况。
三、粘弹性材料的应用领域1. 医学领域:粘弹性材料在医学领域中应用广泛,常用于仿生组织材料、医疗器械等的研发。
2. 建筑领域:粘弹性材料在建筑领域中的应用主要涉及隔震、减振等方面,可以提高建筑物对地震等外界震动的抵抗能力。
3. 航空航天领域:粘弹性材料常用于飞机、航天器等高性能结构件的制造。
其粘滞性、弹性等特性能够提高材料在复杂环境下的可靠性。
4. 汽车工业:粘弹性材料在汽车工业中的应用主要包括减震、隔声、密封等方面,可以提高汽车的舒适性和安全性。
5. 电子产品:粘弹性材料在电子产品中的应用主要涉及散热、缓冲、保护等方面,可以提高电子产品的性能和可靠性。
结论粘弹性材料的力学性能研究对于材料的开发与应用具有重要意义。
通过合理的测试方法,可以深入了解粘弹性材料的特性,并将其应用于各个领域,为社会的发展和进步做出贡献。
参考文献:1. 李同伟,胡力耀,王香,等. 粘弹性材料力学性能研究进展[J]. 北京航空航天大学学报. 2019(1).2. 李春波,李国强,徐建平. 粘弹性材料力学性能测试方法研究[D]. 东北大学. 2018.3. Ponnurangam R, Sethuraman S, Palsule S. Viscoelastic properties of engineering materials—A review[J]. Materials Science and Engineering: A. 2012, 556: 1-16.4. Zener C. Internal friction in solids: a comprehensive solution of a simple 'beetle's problem[J]. Physical Review. 1948, 73(7): 652-660.。
弹性模量:使物体产生伸长一倍变形量所需的应力上限弹性模量:两相通过并联组合得到混合系统的E 值称之~~下限弹性模量:两相通过串联组合得到混合系统的E 值称之~~粘弹性:某些非晶体或多晶体在应力较小时间时表现粘性弹性滞弹性:无机固体和金属的弹性模量依赖于时间的现象蠕变:当对粘弹性体施加恒定应力σ0时,其应变随时间而增加的现象弛豫:当施加恒定应变ε0在粘弹性体上,应力随时间而减小的现象。
影响蠕变的因素:1.温度2.应力3.显微结构的影响4.组成5.晶体结构塑性形变:指在一中外力移去后不能恢复的形变。
塑性形变的两种基本方式:滑移和孪晶声频支:相邻原子具有相同的振动方向光频支:相邻原子振动方向相反,形成了一个范围很小,频率很高的振动热膨胀:物体的体积或长度随温度的升高而增大的现象热传导:当固体材料一端的温度比另一端高时,热量会从热端自动的传向冷端,这个现象就称~~。
声子热导的机理:声子与声子的碰撞产生能量转移(声子:声频波的量子)介质损耗:电场作用下,单位时间内电介质因发热而损耗的电能抗热震断裂性:材料发生瞬时断裂,抵抗这种破坏的性能。
抗热震损伤性:在热冲击循环作用下,材料表面开裂、剥落并不断发展,最终碎裂或变质,抵抗这类破坏的性能。
热应力因子:由于材料热膨胀或收缩引起的内应力双碱效应(中和效应):当玻璃中碱金属离子总浓度较大时,碱离子总浓度相同的情况下,含两种碱金属离子比含一种碱金属离子的玻璃电导率要小。
当两种碱金属浓度比适当时,电导率可以降到很低。
压碱效应:含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃电导率降低热稳定性:材料在温度急剧变化而不被破坏的能力,也被称为抗热震性。
铁电体:能够自己极化的非线性介电材料,其电滞回路和铁磁体的磁滞回路形状相近似。
稳定传热:物体内温度分布不随时间改变。
载流子的迁移率:载流子在单位电场中的迁移速率。
移峰效应:在铁电体中引入某种添加物生成固溶体,改变原来的晶胞参数和离子间的相互关系,使居里点向低温或高温方向移动。
材料的弹性和滞弹性弹性和滞弹性是材料力学性质中的重要概念,对于材料的工程应用和设计具有重要意义。
弹性是材料力学性质中最基本的特性之一、当外力作用于材料时,材料会发生形变。
对于弹性材料而言,在外力解除后,材料会立即恢复到未受力前的原始形状和尺寸,即形变完全消失。
这种性质被称为弹性。
弹性是材料受力产生弹性形变的结果。
在材料受力时,其中的原子或分子发生相对位移,形成了新的平衡位置。
当外力解除后,这些原子或分子之间的相对位移便会消失,恢复到没有受力前的初始位置。
这种恢复到原状的能力称为弹性回复。
弹性材料的弹性回复是可以完全恢复的,也就是说,弹性形变是可逆的。
这意味着材料在受力下形变时,其内部原子或分子的相对位置发生改变,但是这种变化是可逆的,一旦外力解除,相对位置就会回到初始状态,形变完全消失。
当材料受到外力作用时,它的形变不仅取决于外力的大小和方向,还取决于材料自身的性质。
材料的弹性可以通过弹性模量(也称为杨氏模量)来描述。
弹性模量是衡量材料弹性性质的指标,它与材料的刚度相关,材料的刚度越大,弹性模量就越大,材料的形变能力就越小。
而相对于弹性,滞弹性是材料的一种特殊性质。
在实际应用中,有些材料在受力过程中不仅发生弹性形变,而且还有一定的延展性和留下不可逆形变的能力,这种现象称为滞弹性。
滞弹性是弹性材料在受力后不完全恢复到原始状态的性质。
当外力作用于滞弹性材料时,材料会发生形变,包括弹性形变和塑性形变。
弹性形变是可逆形变,当外力解除后可以完全恢复。
而塑性形变是不可逆形变,当外力解除后只能部分或者完全恢复。
滞弹性是由材料内部的微观结构和分子结构的变化引起的。
在材料受力作用下,微观结构和分子结构发生位移和相互影响,形成了新的平衡位置,导致材料的形变。
当外力解除后,这些位移不会完全恢复到初始位置,引起了材料的残余形变,即滞弹性变形。
滞弹性是由材料的内部结构和组成决定的,不同类型的材料具有不同的滞弹性特性。
一些金属材料,如钢和铜,具有较低的滞弹性,弹性变形和塑性变形在总形变中所占比例较大,形变能大部分恢复。
无机名词解释(2)无机名词解释屈服极限:中档应力足够大,材料开始发生塑性变形,产生塑性变形的最小应力。
延展性:指材料受塑性形变而不破坏的能力。
构建的受力模型:拉伸、压缩、剪切、扭转、弯曲塑性形变:指外力移去后不能恢复的形变。
热膨胀:物体的体积或长度随着温度的升高而增加的现象称为热膨胀,本质是点阵结构中质点的平均距离随温度升高而增大。
色散:材料的折射率随入射光频率的减小而减小的性质。
抗热震性:是指材料承受温度的剧烈变化而抵抗破坏的能力。
蠕变:对材料施加恒定应力时。
应变随时间的增加而增加,这种现象叫蠕变。
此时弹性模量也将随时间的增加而减少。
弛豫:对材料施加恒定应变,应力随时间减少的现象,此时弹性模量也随时间而降低。
滞弹性:对于理想弹性固体,作用应力会立即引起弹性形变,一旦应力消除,应变也随之消除。
对于实际固体,这种应变的产生和消除需要一定的时间,这种性质叫滞弹性。
粘弹性:有些材料在比较小的应力作用下可以同时表现出弹性和粘性。
虎克定律:材料在正常温度下,当应力不大时其变形是单纯的弹性变形,应力与应变的关系由实验建立。
晶格能又叫点阵能,英文名为Lattice Energy。
它是在反应时1mol离子化合物中的阴、阳离子从相互分离的气态结合成离子晶体时所放出的能量。
晶格滑移:晶体受力时,晶体的一部分相对于另一部分发生平移滑动。
应力:单位面积上所受的内力。
形变:材料在外力作用下,发生形状和大小的变化。
应变:物质内部各质点之间的相对位移。
本征电导:由晶体点阵的基本离子运动引起。
离子自身随热运动离开晶格形成热缺陷,缺陷本身是带电的,可作为离子电导截流子,又叫固有离子电导,在高温下显著。
杂质电导:由固定较弱的离子的运动造成,主要是杂质离子。
在低温下显著。
杂质电导率要比本征电导率大得多。
离子晶体的电导主要为杂质电导。
热电效应:自发极化电矩吸附异性电荷,异性电荷屏蔽自发极化电场而自发极化对温度影响当温度变化时释放出电荷。
材料性能名词解释弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质弹性比功:弹性变形过程中吸收变形功的能力弹性极限:即弹性变形过渡到弹-塑性变形时的应力弹性模量:工程上弹性模量被称为材料的刚度,表征材料对弹性变形的抗力滞弹性:快速加载或者卸载后,材料随时间的延长而产生的附加弹性应变的性能粘弹性:材料在外力作用下,弹性和粘性两种变形机理同时存在的力学行为伪弹性:材料在一定温度和外力作用下,金属或者合金将应力诱发马氏体相变,产生大幅度的弹性变形包申格效应:材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力增加;反向加载,规定残余应力降低的现象内耗:非理想弹性下,在变形过程中部分被材料吸收的加载变形功称为材料的内耗塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象应变硬化:塑性变形阶段后,随着变形量增大,形变应力不断提高的现象超塑性:在一定条件下,呈现非常大的伸长率而不发生缩颈和断裂的现象韧性:指金属材料断裂前吸收塑性变形功和断裂的能力韧窝:微孔聚集型断裂,宏观上呈暗灰色、纤维状; 微观上分布大量“韧窝”应力状态软性系数:不同加载条件下材料中最大切应力与正应力的比值剪切弹性模量:材料在扭转过程中,扭矩与切应变的比值缺口敏感度:材料因存在缺口造成三向应力状态和应力应变集中而变脆的倾向,NSR= σBN /σb硬度:硬度是表征材料软硬程度的一种性能。
一般认为硬度是一定体积内材料表面抵抗变形或破裂的能力静力韧度:静拉伸的σ-ε曲线下包围的面积减去试样断裂前吸收的弹性能冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。
冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。
低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态。
韧脆转变温度:材料在某一温度t下由韧变脆,冲击功明显下降。
该温度即韧脆转变温度。
迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬间并不屈服,需在该应力下保持一段时间后才屈服的现象。
比例极限p σ是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。
弹性极限e σ是材料发生弹性变形的最大应力,在撤消这个应力后,材料能完全恢复。
s σ:屈服极限—屈服强度, s σ=Fs/A0 材料屈服时对应的应力值也就是材料抵抗起始塑性变形或产生微量塑性变形的能力,这一应力值称为材料的屈服强度。
b σ:抗拉强度—断裂抗力,0A F bb =σ 试样拉断过程中最大实验力所对应的力。
弹性比功e a :弹性变形过程中吸收变形功的能力。
滞弹性:快速加载或者卸载后,材料随时间的延长而产生的附加弹性应变的性能。
伪弹性是指在一定的温度条件下,当应力达到一定水平后,金属或合金将产生应力诱发马氏体相变,伴随应力诱发相变产生大幅度的弹性变形的现象。
包申格效应是指,金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
粘弹性是指材料在外力作用下,弹性和粘性两种变形机理同时存在的力学行为。
其特征是应变对应力的响应(或反之)不是瞬时完成的,需要一个弛豫过程,但卸载后,应变恢复到初始值,不留下残余变形。
式中的e 为真应变。
于是,工程应变和真应变之间的关系为)1ln(lnε+==L Le 金属材料常见的塑性变形机理为晶体的滑移和孪生两种。
多晶体金属材料,由于各晶粒的位向不同和晶界的存在,塑性变形复杂,有如下特点: (1)各晶粒变形的不同时性和不均匀性; (2)各晶粒变形的相互协调性。
影响金属材料屈服强度的因素:1.晶体结构、2.晶界与亚结构、3.溶质元素、4.第二相、5.温度、6.应变速率与应力状态金属材料应变硬化的机理:是塑性变形过程中的多系滑移和交滑移造成的。
应变硬化指数n :nKe S = S 真应力,e 真应变,K 硬化系数 缩颈是变形集中于局部区域的特殊状态拉伸断裂 分类:①脆性与韧性断裂:按宏观塑性变形的程度; ②穿晶和沿晶断裂:按裂纹扩展的途径; ③解理和剪切断裂:按微观断裂机理;④正断和切断:按作用力的性质。